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Coulomb barrier creation by means of electronic field emission in nanolayer 
capacitors
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Alexey Bezryadin1 
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA

Abstract: The main mechanism of energy loss in capacitors with nanoscale dielectric films is 
leakage currents. Using the example of Al-Al2O3-Al, we show that there are two main 
contributions, namely the cold field emission effect and the hopping conductivity through the 
dielectric. Our main finding is that an application of a high electric field, ~0.6-0.7 GV/m, causes 
electrons to penetrate the dielectric. If the temperature is sufficiently low, such electrons become 
permanently trapped in the dielectric. To achieve a strong charging of the dielectric, the voltage 
needs to be high enough, so that a field emission occurs from the cathode into the dielectric. Such 
a strongly charged dielectric layer generates a Coulomb barrier and leads to a suppression of the 
leakage current. Thus, after the dielectric nanolayer of the capacitor is charged, the field emission 
and the hopping conductivity are both suppressed, and the hysteresis of the I-V curve disappears. 
The phenomenon is observed at temperatures up to ~225 K. It would be advantageous to identify 
insulators in which the phenomenon of the Coulomb barriers persists even up to the room 
temperature, but at this time it is not known whether such dielectrics exist and/or can be designed. 

I. INTRODUCTION

Metal-insulator-metal capacitors with nanometer-scale dielectric layers have attracted a lot of 
attention recently, due to their various possible technological applications 1,2,3,4,5. The central 
element of such capacitors is the nanometers-thick insulating film that defines the ability of such 
systems to withstand strong electric fields without allowing leakages. Previous studies have shown 
that the leakage current and the breakdown voltage depend on the choice of the materials for the 
capacitor plates 6,7. Such nanoscale dielectrics are important in many spheres of technology, 
notably in electronic energy storage systems, such as metal-dielectric-metal capacitors 5,8,9,10,11,12. 
Nanoscale dielectrics play a key role in the computer technology, which relies heavily on the 
performance of ultra-thin gate oxides in the field effect transistors 13,14,15,16. Yet, all known 
insulating barriers exhibit some level of conductivity, which is generically called "leakage". This 
leakage occurs even at relatively low electric fields of less than 2 MV/cm 1,17,18,19,20,21, so low that 
the tunneling effect and the field emission effect are negligible. This leakage conductivity causes 
significant energy losses in nanolayer capacitors, as well as the Joule heating in field effect 
transistors. Thus, it is highly desirable to achieve a better understanding of the processes 
responsible for the electrical conductivity of dielectric films and to develop new methods of 
suppression such leakages. 

Here we report on a series of measurements illustrating that the low-voltage leakage in 
nanolayer capacitors can be suppressed by introducing bulk charges into the dielectric film. The 
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“low voltage” term is understood as such low voltage and such low electric field that the field 
emission current is negligible. In the low voltage regime, the conductivity is due to the electron 
diffusion or hopping. On the contrary, the charge injection in the dielectric requires a high voltage 
bias, so high that the field emission current becomes significant. As electrons pass through the 
capacitor dielectric, some of them get permanently localized on defects and the dielectric traps. 
Such permanent localization or trapping of the charges takes place only if the temperature is 
sufficiently low, and the thermal energy is not enough to push the electrons out of the traps (e.g., 
at 77 K). Such trapped charges reduce the leakage current. The reduction of the leakage is 
explained by the Coulomb repulsion effect between the electrons trapped in the dielectric film and 
the mobile electrons participating in the leakage current. In this respect, our results provide a 
different view on the bulk charges (space charges). Previously it was observed that bulk charges 
in the dielectric can increase the leakage current through the dielectric, in a form of space charge 
limited currents 22.  Our focus is different. We report that a reduction of the leakage current can 
also occur under certain conditions, namely when the injected space charges are trapped and 
present a Coulomb barrier to the electronic flow.

Previously it was observed that electrons can penetrate the dielectric and thus can increase 
the charge storage ability of capacitors with a few-nanometer-thick dielectric films 23,24,25,26. But it 
was concluded that the charges are not permanently present in the dielectric since the temperature 
was too high for permanent trapping of the electrons. Namely, at room temperature, the electrons 
leave the insulating layer of the capacitor as the voltage is reduced. Here we report that such 
charging of the dielectric can be permanent if the temperature remains low, namely less than about 
~200 K for the type of dielectric tested. At such low temperatures, the low-voltage leakage 
becomes undetectable and the threshold for the beginning of the field emission current increases. 
Such finding is explained by a Coulomb barrier, as stated above. 

II. EXPERIMENTAL DETAILS

We fabricate our metal-insulator-metal (Al/Al2O3/Al) capacitors on glass substrates. The plates of 
the capacitor are fabricated out of 99.99% pure Al by thermal evaporation in a vacuum of ~10-

5 Torr. The top and bottom plate of the capacitor were 25 nm thick in most devices. After the initial 
deposition of the bottom Al plate, the samples were transferred into an atomic layer deposition 
(ALD) system (Savannah S100 by Cambridge NanoTech Inc.), where the whole surface was 
homogeneously covered with alumina, using trimethylaluminum (TMA) and water vapor 
precursors at 80C. The thicknesses of ALD grown oxide, toxide, were 7, 10, 15, 20, 25, 30, 50 and 
100 nm in the tested samples. The capacitor area was A=1 mm2. The time of exposure of the 
bottom Al film in the atmospheric oxygen during the sample transfer into the ALD chamber did 
not exceed 1 hour, thus the thicknesses of naturally grown alumina were ~3 nm 27,28.

A chip carrier with the sample was mounted in the 4He vacuum-sealed stainless-steel 
dipstick. The dipstick was vacuum pumped down to ~10-4 Torr and then filled with He gas at a 
pressure of ~10-3 Torr needed for thermal equilibration in cryogenic experiments. To shield the 
samples from external electromagnetic noise, the samples were placed into a Faraday cage located 
inside the dipstick. Such electromagnetic shielding is essential to obtain high accuracy 
measurements of the current in the pA or sub-pA range. Low temperature measurements were 
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performed as the dipstick was submerged either into a liquid 4He cryostat or into a liquid nitrogen 
bath.

The measurements were controlled and recorded using LabView software. The “high” 
voltage terminal was always connected with the top plate of the capacitors, which means that the 
positive voltage corresponds to the positive potential on the top plate. Note that the top and bottom 
plates are nominally identical, however, the local roughness could be higher in the top plate, since 
it is located over the bottom Al and the alumina dielectric, which are morphologically rough since 
they are not crystalline materials (insert, Fig.1b). To obtain the current-voltage dependence ("I-V 
curve"), the voltage was applied in small discrete steps of ~0.1 V. The time delay between the 
voltage steps was 300 seconds for the capacitors with 20, 25, 30, 50 and 100 nm alumina 
thicknesses and 100 seconds for the 7, 10 and 15 nm alumina thickness. The time delay is needed 
to detect the true leakage current. Generally speaking, the current through the capacitor includes 
three components26, namely, (1) the charging current of the plates, (2) the dielectric charging 
current, and (3) the leakage current. The first one decreases exponentially with time; the time 
constant is determined by the characteristics of the circuit, namely the capacitance, C, and the 
standard resistor, Rst, inserted in series with the capacitor. The capacitance of our samples was 
between 1 nF and 9 nF, for the dielectric layer between 100 to 7 nm thick, respectively. The series 
resistor was Rst = 10.6 MΩ, thus the plates charging time was τ = RstC ≈ 0.01 – 0.09 s. Since the 
charging current drops exponentially, its contribution to the total current becomes negligible after 
a few seconds. On the contrary, the dielectric-charging current continues for hundreds of 
seconds26. Thus, to detect the true leakage current, long equilibration times were necessary 
between the voltage application and the subsequent measurement of the response current (listed 
above). With these delays we were able to ensure that the measured current represents the true 
leakage and not some sort of transient process. The voltage on the capacitor (the "sample") was 
calculated using the formula VS = U-IRst, where Rst is the series resistor, I is the measured current 
in the circuit and U is the applied voltage. This formula accounts for the fact that the voltage U is 
not applied directly to the capacitor, but to the capacitor and the resistor Rst connected in series. 

The measurements of the current in the circuit were performed in most cases using Keithley 
6517B. This device is equipped with an adjustable voltage source, which also provides a controlled 
voltage biasing. Alternatively, we have used a National Instruments data acquisition board (DAB) 
NI-USB 6216. The circuit corresponding to such DAB measurements is shown on Fig.1a. The 
switch has to be in position "1" in order to charge the capacitor. The discharge process takes place 
when the switch is turned to position "2". Both charging and discharging are carried through a 
series standard resistor of Rst1=1 GΩ. The current was calculated by Ohm’s law formula 
(I=VR/Rst1). The bias voltage U is also provided by the same DAB, namely NI-USB 6216. 

III. RESULTS

Room temperature measurements are shown in Fig.1a. In these experiments, the current flowing 
into the capacitor was measured, as the voltage was increasing with a step size ΔU = 0.1 V and 
time delay of 100 or 300 s. Since the voltage was increasing very slowly, the presented current 
represents the leakage through the dielectric layer. The main feature of all the I-V curves is that 
initially the current increases slowly, but, as the voltage exceeds some sample specific threshold, 
the current exhibits a very sharp upturn. The threshold voltage, at which the strong increase of the 
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leakage current begins, is denoted Vth. For example, the sample with the oxide thickness of 100 nm 
(curve #8) has a threshold of Vth=30 V. Obviously, for the applications where the leakage is 
supposed to be low, the bias voltage should be lower than the high leakage threshold Vth.

A universal behavior is observed as we plot the current versus the electric field, Fig.1b. In 
this figure one can identify when the strong leakage current regime begins, namely at 
Eth~0.33 GV/m. This electric field sets the limit for the application, in which a low leakage is 
required. 

(a)  (b)

Figure 1. (a) I-V plots for the leakage current in Al/Al2O3/Al capacitors with different thicknesses 
of the dielectric, measured at 295 K. The dielectric layer thickness for the eight tested samples is 
indicated on the graph. The threshold voltage, Vth, separates the low bias regime and the high bias 
regime. At high bias, V>Vth, the field emission effect is dominant and much stronger than the 
leakage detected at low bias, V<Vth. (a, insert) Electronic scheme of the setup: as the capacitor is 
charged from the voltage source U, the current, I, is monitored by measuring VR and computing 
the current using Ohm's law I=VR/R. The voltage VR was measured using National Instruments 
data acquisition board NI-USB 6216. (b) All the curves of graph (a) are plotted versus the electric 
field. A universal behavior is observed, where the current density is defined by the strength of the 
electric field. The area of all reported capacitors was 1 mm2. The threshold electric field is defined 
as Eth=Vth/toxide, where toxide is the dielectric thickness. (b, insert) Atomic force microscope (AFM) 
image of the bottom plate of a capacitor. 

To detect the field emission current, we plot the logarithm of the current density normalized 
by the second power of the electric field versus the inverse electric field (Fig.2a). The formula for 
the cold field emission tunneling current density is29: 
J = e3E2/(8πheϕb)·exp[-8π(2em*)1/2ϕb

3/2/3hE], where J is the current density, e is the electronic 
charge, h is the Planck’s constant, ϕb is metal-insulator energy barrier height, m* is effective 
electron mass in the insulator. The current density J is calculated as J = I/А, where A is the area of 
the capacitor and I is the measured current. The signature of the field emission effect is that the I-
V curve appears linear if it is plotted in the coordinates y=ln(J/E2) vs x=1/E. The linear behavior 
seen in Fig.2a gives strong evidence that the leakage at higher voltages is due to the field emission 
effect. The straight line is a fit plotted according to the expression given above.
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The slope of the linear part of the y vs x curve (Fig.2a) is given by the formula 
dy/dx=-8π(2em*)1/2ϕb

3/2/3h=-6.83·109(m*/m0)1/2ϕb
3/2. The value of the slope is defined by the best 

fit. Then, the effective barrier was determined assuming that the effective mass is30 m*=0.05m0, 
the result being ϕb=3.25 eV.

At higher values of x (lower values of V and E), a minimum in the y-x plot is observed at 
Eth=0.33 GV/m, which indicates that the physical mechanism determining the electrical current in 
the insulator changes. Previously, such a minimum has been linked to a transition from the field 
emission (at higher voltages) to direct tunneling (at lower voltages) 31. Yet, the observed weak 
(weaker than exponential) dependence of the leakage current on the dielectric thickness (Fig.1b) 
strongly suggests that the direct tunneling is not essential in our sample. Note also that all curves 
collapse on one curve (Fig.1b). Thus, the mechanism should be the same for all of them. Yet, 
tunneling of electrons over a distance of 100 nm in a dielectric is very unlikely, so the direct 
tunneling is negligible in this series of samples. Our conclusion that the direct tunneling is 
negligible in our samples is in agreement with previously published results (Ref. 19) where it was 
shown that the direct tunneling is significant only through the alumina films which are thinner than 
approximately 3 nm. Our thinnest films were 7 nm.  

We have tested different mechanism, including electron diffusion, direct tunneling, 
Schottky emission, thermionic-field emission, Poole-Frenkel emission 17,29. It appears that the 
most suitable explanation for the leakage current (at low electric fields, E<0.33 GV/m), which 
does not lead to unphysical assumptions about the fitting parameters, is the hopping conductivity. 
The theory of the hopping conductivity is outlined in Ref.29. The hopping conductivity formula is 
J=eanν·exp[(eaE-Ea)/kT], where a is the mean hopping distance, n is the electronic density, ν is 
the frequency of thermal vibration of electrons at trap sites, T is the absolute temperature, k is 
Boltzmann’s constant, and Ea is the activation energy. Based on the fact that trapped electrons get 
released at ~225 K (see below), we suggest that the activation energy is of the same order of 
magnitude. 

As it is shown in Fig.2b, the log(J) versus E plot is linear in the range 
~0.5·108 V/m<E<3.3·108 V/m, which is in agreement with the hopping conductivity formula 
given above. From the slope of the linear fit we determine the average hopping distance in Al2O3 
as a≈1.6 nm. If one assumes a homogeneous distribution of the traps in the dielectric, then one can 
estimate the concentration of the electronic traps as nt=1/a3≈2·1026 m-3. This is comparable with 
the estimate of the trap concentration being in the range 1025-1026 m-3 given in Ref. 32. The atomic 
density of the amorphous ALD-deposited alumina33 is ~1029 m-3. It follows that there is roughly 
one trap per one thousand atoms.
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(a)   (b)

Figure 2. Experimental results (connected symbols) for the leakage current versus voltage 
measurements on the eight capacitors with different dielectric layer thickness, varying in the range 
between 7 nm and 100 nm. (a) These are FN field emission plots in the coordinates y=ln(J/E2) 
versus x=1/E, where J is the current density in the dielectric layer and E is the electric field. (b) 
These are plots made to reveal the hopping conductivity in the coordinates log(J) versus E. See 
text for details. 

We have also compared the leakage currents occurring at various temperatures. The results 
are shown in Fig.3. At low voltages (V<Vth or E<0.33 GV/m) the leakage current is low and only 
visible at room temperature, while at cryogenic temperatures this sub-threshold current appears 
completely suppressed. The threshold voltage, Vth, is the voltage at which a sharp upturn of the 
leakage occurs, due to the onset of the field emission current, i.e., tunneling from the cathode into 
the dielectric layer. This threshold voltage increases significantly with cooling from Vth~3 V at 
room temperature up to Vth~6 V at the liquid helium temperature (4.2 K). We propose that such 
increase takes place because of the charging of the dielectric layer with external electrons arriving 
from the negatively charged plate of the capacitor. These injected electrons become trapped on 
defects of the insulating layer 26,34 (Fig.3a) and contribute to the energy barrier experienced by the 
tunneling electrons. Such extra barrier, termed Coulomb barrier, is due to the Coulomb repulsion 
between the electrons trapped on the defect in the dielectric and the electrons participating in the 
tunneling field emission current.

Key results are obtained as the capacitors were repeatedly charged and discharged (about 
7 times at each temperature). We will first discuss the room temperature measurements. At room 
temperature, a hysteresis is present in the V-I curves (Fig.3). The origin of the hysteresis is that 
the electrons penetrate the dielectric as the voltage is increased and leave the dielectric as the 
voltage is reduced to zero26. Therefore, the measured total current is elevated as the voltage is 
ramped up and the current flowing into the capacitor is reduced as the voltage is lowered, due to 
the backflow of the electrons escaping from the dielectric layer, as was previously reported in Refs. 
[26,34].

The cycling of the applied voltage, performed at room temperature, does not make a 
significant change in the behavior, presumably because the external electrons can enter the 
dielectric as the voltage is ramped up and then they can leave the dielectric as the voltage is ramped 
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down, since thermal fluctuations help them to escape from the electronic traps in the dielectric 
film. This is the case for the curve #1 in Fig.3.

 To summarize, at room temperature, the V-I curves are hysteretic but reproducible, i.e., 
the V-I obtained in the first voltage sweep cycle is virtually identical to the V-I curve measured in 
the second and subsequent cycles.

A qualitatively different, and in some sense opposite, behavior is observed at cryogenic 
temperatures: The V-I curves are hysteretic only in the first voltage sweep cycle and loose 
hysteresis completely in the subsequent cycles.

To illustrate this, we will now discuss in detail the behavior observed at T=77 K. At this 
cryogenic temperate, the hysteresis is only seen in the first cycle and then disappears in the 
subsequent cycles (curve #2 in Fig.3). The threshold also changes, namely it is Vth1(77K)~4 V in 
the first charging cycle and increases to Vth2(77K)~5.1 V in the subsequent cycles. Thus, the ratio 
is Vth2(77K)/Vth1(77K)=1.27. The resulting effect is that at high voltage (V>Vth) the leakage current 
is lower in the second and subsequent charging cycles. After the second cycle, the V-I curve does 
not change significantly with subsequent charging-discharging cycles.

A similar behavior is observed when the sample temperature is further reduced to 4.2 K 
(see curve #3 in Fig.3). During the first charging cycle, a hysteresis is visible. In the second and 
subsequent cycles, the V-I curves are reproducible and exhibit no hysteresis. The threshold in the 
first charging cycle is Vth1(4.2K)~5.2 V, and it increases to Vth2(4.2K)~6 V in the subsequent 
cycles. Thus, the ratio is Vth2(4.2K)/Vth1(4.2K)=1.15.

We propose that the reason for the disappearance of the hysteresis and the decrease of the 
leakage current observed after the first charging-discharging cycle at T=77 K and T=4.2 K is that 
most of the electronic traps are filled within the first charging cycle and, as the voltage is reduced, 
the electrons remain trapped on the defects in the dielectric. Thus, in the second and subsequent 
cycles, the electrons trapped in the dielectric present a Coulomb barrier for the leakage current. 
Moreover, since at low temperatures the electrons which have been trapped remain trapped, no 
hysteresis occurs on the V-I curve.

After a repetition of a few (6-8) charging-discharging cycles at 4.2 K, we warmed the 
sample up to 77 K. To our surprise, the sample "remembers" that it was conditioned at 4.2 K and 
exhibits the same exact V-I curve as was observed at 4.2 K. Thus, we conclude that the thermal 
energy at T=77 K is not large enough to shift the electrons which filled the traps during the 
previous, lower temperature, charging cycle at T=4.2 K. To verify this conclusion, compare the 
curve #4, taken at 77 K, and the curve #3, which was taken at 4.2 K. These two curves coincide, 
except in the first cycle (at 4.2 K) in which the traps are being filled. Thus, it appears that the 
charge traps filled at a much lower temperature remain filled as the sample warms up to T=77 K. 
Apparently, the thermal energy at T=77 K is lower than the characteristics trapping energy.

It is interesting to note that by cooling to T=4.2 K, we were able to introduce additional 
charges in the dielectric and thus further reduce the leakage, as well as increase the threshold. 
These changes remain present even after the sample was warmed up back to T=77 K. We speculate 
that at lower temperatures leakages of all types are further reduced, so that it becomes possible to 
create higher electric fields, which strengthen the charge injection in the dielectric, without causing 
too much leakage and associated Joule heating. 
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(a)   (b)

Figure 3. Leakage current vs. sample voltage Vs for the Al/Al2O3/Al capacitor with the 10 nm Al2O3 
thickness at different temperatures. (a) and (b) show the results of the same series of 
measurements, but in (b) we zoom in only on the positive bias to see the details better. Four 
measurements are shown, namely the room temperature curve (1), the liquid nitrogen temperature 
curve (2), and the liquid helium temperature curve (3), and then one more liquid nitrogen 
temperature measurement (4). 

So far, we have discussed the effect of the dielectric charging using an example of a 10 nm 
thick dielectric layer capacitor. In what follows we show that the dielectric charging occurs 
analogously in capacitors with various thickness of the dielectric. The results are shown in Fig.4, 
in which the left three graphs (a, b, and c) represent the 77 K tests; the right three graphs (d, e, and 
f) represent the 4.2 K tests. The top graphs (Fig.4(a) and Fig.4(d)) show how the threshold changes 
when the samples are cooled, for the dielectric thickness ranging between 10 nm and 100 nm. The 
effect is slightly stronger for thinner dielectric layers. The second row of graphs (Fig.4(b) and 
Fig.4(e)) represents the ratio of the thresholds corresponding to the charged dielectric layers and 
not charged dielectric layers, at a given temperature. This ratio is typically near ~1.4, and it 
becomes somewhat larger for thicker samples. Finally, the bottom two graphs (Fig.4(c) and 
Fig.4(f)) show the ratio of the charged insulator threshold, measured at the corresponding 
cryogenic temperature, and the room temperature threshold. The ratio is about ~1.65 for 77 K and 
~1.9 for 4.2 K. The ratio of the threshold voltages, Vth2(4.2K)/Vth(295K)~1.9, is roughly 
independent of the dielectric film thickness, for the thickness range tested. The same is true for the 
ratio Vth2(77K)/Vth(295K)~1.65. This thickness independence is visualized by the horizontal fit 
lines in Fig.4(c) and Fig.4(f).
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Figure 4. Ratios of the threshold voltages (c1-c6) measured at cryogenic temperatures. Here 
Vth(295K) represents the thresholds measured at the room temperature. Also, Vth1(77K) and 
Vth1(4.2K) represent, correspondingly, the thresholds measured at 77 K and 4.2 K in the first run 
of the V-I curve cycle, when the dielectric is not charged yet. Finally, Vth2(77K) and Vth2(4.2K) 
represent, correspondingly, the thresholds measured at 77 K and 4.2 K in the second and the 
subsequent runs of the V-I curve measurements, when the dielectric is charged. The horizontal line 
in (c) and (f) are shown to emphasize the approximate independence of the corresponding 
threshold ration to the film thickness. The ratios are defined as c1=Vth1(77K)/Vth(295K), 
c2=Vth2(77K)/Vth1(77K), c3=Vth2(77K)/Vth(295K), c4=Vth1(4.2K)/Vth(295K), 
c5=Vth2(4.2K)/Vth1(4.2K), c6=Vth2(4.2K)/Vth(295K).

The discussion above was based on the assumption that, at cryogenic temperatures, the 
charges become trapped in the dielectric layer and also remain trapped even if the voltage is 
reduced to zero. Below we will discuss in detail how to explicitly confirm the fact that charges get 
trapped in the dielectric and will show that the charging effect is strongly nonlinear: The amount 
of charge injected and trapped in the dielectric is much larger if the charging voltage is chosen to 
be sufficiently high, so that the field emission current is detected. In this case, the electrons tunnel 
into the traps that are located near the anode (the positive plate), since these traps have lower 
energies 35,36. 

Another important finding is that the hopping conductivity channel is completely 
suppressed at cryogenic temperatures, down to the precision of our measurements. This is the case 
because thermal energy is not sufficient to allow the electrons to jump from one trap to another. 
Thus, the energy storage is more reliable at cryogenic temperatures. The experiments discussed 
below will show that the energy remains stored in the dielectric even if the capacitor plates are 
short-circuited, which is an unexpected but important finding.
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Below we will discuss how to probe dielectric-trapped charges directly, namely by 
warming up the sample and by simultaneously measuring the current generated by the electrons 
escaping from their traps. We term this phenomenon "thermal spectroscopy" of the trapped 
charges. It provides an estimate of the trapping energy. 

The experimental circuit for performing the thermal spectroscopy is illustrated in Fig.1a, 
insert. The sample was charged at V=5 V for 18 h at 77 K. After the charging, the capacitor was 
discharged through a series standard resistor Rst1=1 GΩ for 5 min. The discharge then proceeded 
further, just to make sure that any charges that could move freely were fully discharged. To this 
goal, the plates of the capacitor have been short-circuited. Namely, the plates were connected using 
a copper wire for ~50 min. After the complete discharge, the capacitor was again connected to a 
current-measuring circuit and the temperature was slowly increased. The current was measured 
while no external voltage was applied. 

Figure 5. (a) Current through a capacitor having a 10 nm dielectric film, as a function of time at 
different regimes: (1) charging (at 77 K), (2) discharge (at 77К), and (3) warming up to the room 
temperature. The sample was charged at 77 K at either V=5 V (red curve) or 3 V (blue curve) for 
18 h. (a, insert) The charging current as a function of time. The black line represents the best 
exponential fit for the charging current of the plates of the capacitor, marked as “plate charging”. 
At times t > 40 s the measured current is larger than the extrapolated exponential dependence. 
The observed excess current is due to the dielectric charging current (red curve marked as 
“dielectric charging”). (b) The temperature ramps up as a function of time. The horizontal time 
axis in (a) and (b) is the same. (b, insert) Current through the capacitor upon the warming up 
process as a function of a temperature. The sample was charged at 77 K at V=5 V for either 10 h 
(curve #1) or 16 h (curve #2), or 18 h (curve #3, data from (a), red curve). It is clear that the 
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charges remain unmoved up to ~225 K, but above that temperature the electrons leave their traps 
and quickly move to the anode.

The dielectric charging current is explicitly measured during the charging process, as was 
reported in previous publications 26,34. A typical charging curve is shown in Fig.5a (insert). As bias 
voltage is applied through a series resistor, the current is initially strong, but it drops exponentially 
with time. At some point, a "tail" is observed (approximately at t < 40 s), which indicates the 
presence of some excess current. This excess current is the signature of the dielectric charging.

In Fig.5 we present the current measured in the entire experimental sequence. The sequence 
of events includes the initial charging and then discharging of the capacitor performed at 
temperature T=77 K. During this voltage cycling, the electrons are able to enter the dielectric. But 
since the temperature is low, they become trapped inside the dielectric and form the Coulomb 
barrier as discussed above. Then, in the final stage of the test, the capacitor is warmed up, at zero 
applied voltage, and we are able to measure an additional current, I(t), providing a direct probing 
tool for the electrons escaping from their trapping centers in the dielectric layer and exiting the 
device. A current increase was detected only when the temperature reached ~225 K, indicating 
that the trapped electrons are well trapped in the alumina below that temperature. As the 
temperature is further increased, the current goes to zero as all available electrons leave the 
dielectric layer. 

Since I=dQ/dt, the integral of the current upon the warming up process equals the total 
charge stored in the dielectric. Thus, we obtain the total trapped charge: Q=4.6·10-8 С, 
Q=1.4·10-7 С, and Q=2.9·10-7 С for the charging times of 10 hours, 16 hours, and 18 hours 
correspondingly (see the curves #1, #2 and #3 correspondingly, in Fig.5b(insert)). These results 
indicate that the amount of charge accumulated in the dielectric increases with the charging time.

The number of electrons released by the capacitor should be compared to the number of 
traps estimated in the above discussion of the hopping conductivity. The number of the released 
electrons can be evaluated as N=Q/e. The corresponding concentration of the trapped electrons is 
ne=N/Voxide, where Voxide=Atoxide=10-14 m3 is the volume of the dielectric. Thus, the estimated 
concentration of the trapped electrons is nе=N/Voxide≈3·1025 m-3 or ≈8·1025 m-3, or ≈1.8·1026 m-3 
(for the curve #1, curve #2 and curve #3 in Insert, Fig.5b, correspondingly). The trap concentration 
found from the above analysis of the hopping conductivity is very similar, namely nt~1026 m-3. 
Thus, we obtain additional evidence that at cryogenic temperatures the electrons permanently 
saturate the traps, namely the same traps which enable hopping conductivity at room temperature. 
The ability to store a large amount of charge in the insulator is based on the absence of hopping 
conductivity. This is in agreement with our finding that at cryogenic temperatures the stored charge 
is a few times larger than the charge stored on the capacitor plates and, at the same time, the 
hopping conductivity leakage is undetectable.

We have also attempted to charge the dielectric using a lower bias voltage at which no field 
emission leakage current can be detected. The exact conditions were T=77 K and V=3 V and the 
result is shown in Fig.5a as the blue curve, marked "V=3 V", to indicate the applied voltage. In 
this case the curve is qualitatively different than the "V=5 V" curve. One difference is that there is 
no detectable leakage current during the charging phase. The other, key difference is that upon 
warming up the capacitor charged at "V=3V" shows a charge release of only 3 nC, which is almost 

Page 11 of 17 Nanoscale



12

100 times less then what was measured when the capacitor was charged at V=5 V. Thus, the 
charging effect is strongly nonlinear and requires an electron injection, which is only possible if 
the applied voltage is high.

IV. DISCUSSION

To explain the results, we present a simple model (Fig.6). First, an electric field is appleid by 
biasing the capacitor to a voltage so high, that a field emission effect occurs and the electrons 
tunnel into the dielectic layer. (The voltage of course has to be lower than the breakdown voltage.) 
The left Al plate in the diagram is negatively charged, and the electrons penetrate into the dielectric 
forming a pile near the opposite electrode, the anode. This is because the tunneling effect energy 
has to be conserved. Thus, at votlages just slightly higher than the threshold at which the field 
emission begins, the electrons will tunnel into the region with the lowest trap energy, which is the 
region adjacent to the anode (Fig.6a). 

If the voltage is increased, then the width of the classically forbidden region in the dielectric 
layer gets thinner. So the electrons occupy traps in a wide segment of the dielectric on the anode 
side. Also, the field emission current is stronger at higher voltages, so a larger percentage of traps 
gets occupied and the total charge trapped in the dielectic becomes much larger than in the case 
considered in Fig.6b.

Next, the voltage is set to zero (Fig.6c). Due to the trapping random potential, most of the 
electrons remain trapped in the dielectric film, assuming the temperature is still low, so that 
hopping conductivity is negligible. Thus, this arrangement represents an ideal energy storage 
environment, the electrons remain trapped even if the plates of the capacitor are short-circuited. 
Also, the trapped electrons present a Coulomb barrier for the leakage current. 

In the last stage of the experiment, the temperature is increased, so that most of the electrons 
can escape from their trapping sites. They flow to the nearest electrode which is the anode. This 
experiment represents a form of thermal spectroscopy, since at each temperature the escaping 
electrons come from the traps whose energy depth is comparable to kBT. At such temperatures, 
where electrons can escape from their traps, hopping conductivity begins. Thus, the electrons 
become mobile and move to the electrodes. 

 

Figure 6. A schematic illustrating the penetration of electrons (red color) in the dielectric. A 
negative potential is applied to the left electrode, driving the electrons inside the insulator by 
means of the field emission effect, which ensures that the electrons end up father away from the 
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cathode (the negative capacitor plate) since they can only tunnel into the region where their energy 
is equal or less than the Fermi energy in Al. In this case, the charge density is higher near the 
anode. Here ϕb is the metal-insulator energy barrier height for the tunneling electrons. (a) Weaker 
potential. Electrons can only tunnel to the states very close to the anode. (b) Stronger voltage bias. 
Electrons can tunnel in a wide segment of the dielectric closer to the anode. (c) The plates of the 
capacitor are shorted, so the voltage is zero. Many electrons remain trapped if the temperature is 
sufficiently low. If the temperature is increased, these trapped electrons would predominantly 
escape to the plate which is closer to them, i.e., to the anode. 

To summarize, our explanation to the observed changes of the V-I curves at cryogenic 
temperatures is that at high temperature the electrons injected into the dielectric can diffuse away 
by means of hopping conductivity. The injection is due to the field emission effect, which is 
discussed in the context of Fig.2a. The hopping conductivity effect is discussed in the context of 
Fig.2b, where a theoretical fit is given and matches the data. At low temperatures, the field 
emission is still present because it is a quantum mechanical tunneling effect, which is temperature 
independent. Yet the hopping conductivity, which is a thermally activated effect, freezes out 
(becomes very low). Thus, a qualitatively different phenomenon occurs at low temperatures, 
namely it becomes possible to inject electrons into the dielectric layer of the capacitor and build 
up a significant bulk charge there, which then acts as a Coulomb barrier for the leakage current.

V. CONCLUSIONS

We have investigated the leakage current in capacitors with nanometer scale dielectric layers, 
ranging between 7 nm and 100 nm. Two main leakage mechanisms are identified. At higher 
electric fields, it is the field emission process which persists down to T=77 K and even T=4.2 K. 
The second leakage mechanism is the hopping conductivity, which is present at room temperature 
but becomes immeasurably low at cryogenic temperatures.

Our key finding is that repeated cycling of the voltage on capacitors at cryogenic 
temperatures changes the properties of their dielectric spacer, such that the leakage current is 
reduced. Our conclusion is that the electrons can penetrate the insulator layer when the voltage is 
such that the field emission current between the plates of the capacitor just begins. The electrons 
then can tunnel into the traps, which are predominantly located near the anode. The charge builds 
up in the dielectric and causes a Coulomb barrier of the leakage current. The field emission is still 
observed but its onset is shifted to significantly higher voltages. Such charging of the dielectric is 
stable only if the temperature is sufficiently low, so that the accumulated charge cannot diffuse 
away by means of hopping conductivity. 

We have confirmed the trapping of the electrons in the dielectric film by means of thermal 
spectroscopy: if the sample is slowly warmed up, a significant current is detected, which flows in 
the same direction as the charging current. The fact that the direction of the thermally released 
current coincides with direction of the current observed during the initial charging confirms the 
fact that the electrons are present in the dielectric, as is illustrated in Fig.6. If some sort of 
polarization would be responsible, then it would generate a current in the opposite direction 37. The 
number of the released electrons, upon the warming, matches the estimated number of traps.
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Based on these results, we can envision two types of procedures which might improve the 
energy storage abilities and reduce the leakages in capacitors with nanoscale dielectric films. The 
first one is to operate these devices at cryogenic temperatures, where the induced Coulomb barrier 
is stable after a conditioning cycle. The second is to search or design insulators in which the energy 
of the electronic traps is higher, so that the hopping conductivity would be suppressed even at 
room temperature.
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