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Abstract

Reliable information related to flash point of ternary mixtures assists in rational classification of 

different ternary mixtures of liquids.  Hence, dependable computational models for predictions of 

the above endpoint can be useful.  Simplified molecular input-line entry system (SMILES) is the 

representation of the molecular structure. Quasi-SMILES is the expansion of traditional SMILES 

by means of additional symbols that reflect "eclectic", which are able to influence physicochemical 

behaviour of substances. The application of the quasi-SMILES to build up model for flammability 

of ternary liquid mixtures has indicated that the approach provides very good model for the flash 

points of ternary mixtures of organic substances.  The Index of Ideality of Correlation (IIC) is a 

criterion of predictive potential of QSPR/QSAR models. The attempts of applying of the IIC to 

improve models for flammability of ternary liquid mixtures confirm applicability of this criterion 

to improve predictive potential of the above models.
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 INTRODUCTION

Flammable substances, such as organic solvents, are used in laboratories and industrial 

processes. The flash point (FP) is one of the most important parameters used to characterize the 

ignition hazards of these liquids.1-3 Obviously, the evaluation of a risk assessment via 

mathematical equations for mixtures is more complex task in comparison with the risk assessment 

for pure substances. Development of computational models able to predict flash points of ternary 

mixtures is an attractive alternative to experimental definition of this endpoint.4 

The CORAL software represents an efficient tool to build up quantitative structure – 

property / activity relationships (QSPRs/QSARs) for various endpoints.5  The input for the 

software is simplified molecular input-line entry system (SMILES).6  SMILES can be expanded 

by additional symbols, which represent various conditions by means of special quasi-SMILES.7-9 

Quasi-SMILES can use as a tool to represent binary mixtures.10,11  Following the previous studies 

in the current work this approach is applied for ternary mixtures. 

The Index of Ideality of correlation (IIC) has been assessed as a tool to improve predictive 

potential of QSPR/QSAR for various endpoints.12-17 The basic advantage of the IIC is sensitivity 

(i) to the correlation; and (ii) to the dispersion.

The aim of the present study is assessment of the CORAL models as a tool to build up 

predictive model for FP of ternary mixtures of organic liquids based on quasi-SMILES. In 

addition, the comparison of models calculated with and without the IIC is another objective of the 

study. 

METHOD 

Data

The experimental dataset contains 808 flash points FP (0C) of ternary mixtures of organic 

liquids (hydrocarbons, alcohols, ketones, esters, pyridines, and acids) with different molar 

fractions. These data are extracted from the literature.4 All experimental flash points, examined 

here, were measured using standardized protocols ASTM D56, ASTM D93/ISO 2719 or ASTM 

D3828/ISO 3679.4 Quasi-SMILES were used to represent these ternary mixtures as objects for the 

modelling. In contrast to traditional SMILES6 the quasi-SMILES contains special symbols to take 

into account conditions (circumstances), besides the molecular structure.18 

Building up Quasi-SMILES

Quasi-SMILES are defined as strings that involve the following elements: 

(i) ID (numbering); 

(ii) SMILES-1 that represents first component of binary mixture; 

(iii) Symbols, which represent molar fraction of the first component; 
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(iv) SMILES-2 that represents second component; 

(v) Symbols which represent molar fraction of second component; 

(vi) SMILES-3 that represents third component; 

(vii) Symbols which represent molar fraction of third component; and 

(viii) FP (0C). 

The first symbol of each line represents kind of set: training (+), invisible training (-), 

calibration (#), and validation (*).  Table 1 contains scale used to encode the molar fractions. 

Figure 1 contains the general scheme of building up quasi-SMILES. 

Figure 1. The general scheme of building up quasi-SMILES 
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Table 1. Discretization of different molar fractions into the codes for quasi-SMILES

    R   A    N  G   E Code for quasi-SMILES
Min(x) Max(x)

    1 0.000 0.020 %11
    2 0.020 0.040 %12
    3 0.040 0.060 %13
    4 0.060 0.080 %14
    5 0.080 0.100 %15
    6 0.100 0.120 %16
    7 0.120 0.140 %17
    8 0.140 0.160 %18
    9 0.160 0.180 %19
   10 0.180 0.200 %19
   11 0.200 0.220 %19
   12 0.220 0.240 %19
   13 0.240 0.260 %19
   14 0.260 0.280 %19
   15 0.280 0.300 %25
   16 0.300 0.320 %26
   17 0.320 0.340 %27
   18 0.340 0.360 %28
   19 0.360 0.380 %29
   20 0.380 0.400 %30
   21 0.400 0.420 %31
   22 0.420 0.440 %32
   23 0.440 0.460 %33
   24 0.460 0.480 %34
   25 0.480 0.500 %35
   26 0.500 0.520 %36
   27 0.520 0.540 %37
   28 0.540 0.560 %38
   29 0.560 0.580 %39
   30 0.580 0.600 %40
   31 0.600 0.620 %41
   32 0.620 0.640 %42
   33 0.640 0.660 %43
   34 0.660 0.680 %44
   35 0.680 0.700 %45
   36 0.700 0.720 %46
   37 0.720 0.740 %47
   38 0.740 0.760 %48
   39 0.760 0.780 %49
   40 0.780 0.800 %50
   41 0.800 0.820 %51
   42 0.820 0.840 %52
   43 0.840 0.860 %53

Page 4 of 22New Journal of Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

   44 0.860 0.880 %54
   45 0.880 0.900 %55
   46 0.900 0.920 %56
   47 0.920 0.940 %57
   48 0.940 0.960 %58
   49 0.960 0.980 %59
   50 0.980 1.000 %60

Distribution of quasi-SMILES into the training and validation sets

According to the principle “QSPR is a random event”19  if a random split of the data into 

the training and validation sets is used to build up QSPR/QSAR then the careful checking up of 

the predictive potential of an approach should be based on consideration of a group of random 

splits. Therefore, the above-mentioned quasi-SMILES were distributed randomly, three times, into 

the active training set (≈25%), the passive training set (≈25%), the calibration set (≈25%), and the 

validation set (≈25%). Table 2 indicates that three random splits examined in this work are not 

identical.

Table 2. The measure (%) of identity of splits into the active training set, the passive training set, 

the calibration, and the validation sets examined here

split Set Split 1 Split 2 Split 3
 1 Active training 100* 35.1 42.6

Passive  training 100 35.0 40.0
Calibration 100 32.0 30.6
Validation 100 37.9 38.0

2 Active training 100 34.8
Passive  training 100 37.2
Calibration 100 38.8
Validation 100 40.3

3 Active training 100
Passive  training 100
Calibration 100
Validation 100

 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦(%) =
𝑁𝑖,𝑗

0.5 ∗ (𝑁𝑖 + 𝑁𝑗) ∗ 100 

 is the number of quasi-SMILES which are distributed into the same set for both i-th split and j-th  split 𝑁𝑖,𝑗

(i.e. set can be training, invisible training, calibration, or validation);

 is the number of quasi-SMILES which are distributed into the set for i-th split;𝑁𝑖

 is the number of quasi-SMILES which are distributed  into the set for j-th split.𝑁𝑗

Each set has special task. The active training set is the “builder” of model, correlation 

weights extracted from quasi-SMILES distributed in this set are optimizing via the Monte Carlo 
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technique. The passive training set is the “inspector” of the model. Quasi-SMILES from this set 

are used to check up “whether the model is suitable for quasi-SMILES which are out of the active 

training set”. The calibration set is aimed to detect start of the overfitting: situation where excellent 

statistical quality for the training set is accompanied by poor statistical quality for the calibration 

set. The task of the validation set is final estimation of the model. Thus, each set has important 

task, consequently, equivalent distributions probably are quite reason strategy. 10,12,15-18 

Optimal descriptor

The optimal descriptor used to build up model for flash points (0C) is defined as:

𝐷𝐶𝑊(𝑇 ∗ ,𝑁𝑒𝑝𝑜𝑐ℎ ∗ ) = 𝐶𝑊(𝐻𝐴𝑅𝐷) +

𝑁𝐴

∑
𝑘 = 1

𝐶𝑊(𝑆𝑘) +

𝑁𝐴 ― 1

∑
𝑘 = 1

𝐶𝑊(𝑆𝑆𝑘) +

𝑁𝐴 ― 2

∑
𝑘 = 1

𝐶𝑊(𝑆𝑆𝑆𝑘)      (1)

The Sk is so-called “quasi-SMILES-atom” i.e. one symbol (e.g. ‘C’, ‘N’, ‘O’, etc.)  or group of 

symbols which cannot be examined separately (e.g. ‘Cl’, ‘Si’, %11, %35, etc.); the SSk is a 

combination of two quasi-SMILES-atoms; the SSSk is a combination of three quasi-SMILES-

atoms the HARD is special SMILES attribute as decsribed in the literture.20 This is special code 

that characterized corresponding molecular system according to presence (absence) chemical 

elements, i.e. nitrogen, oxygen, sulphur, phosphorus, fluorine, chlorine, bromine, iodine, as well 

as presence of double, triple, and 3D (stereocehemical) bonds.

The CW(Sk), CW(SSk), CW(SSSk), and CW(HARD) are so-called correlation weights of the 

above-mentioned attributes of SMILES. 

The numerical data on the CW(Sk), CW(SSk), CW(SSSk),  and CW(HARD) are calculated 

with the Monte Carlo method, i.e. via the optimization procedure which gives maximal value of a 

target function (TF). The NA is the number of attributes in SMILES. 

The T is threshold i.e. integer to distribute all quasi-SMILES attributes into two categories 

(i) non-rare, if frequence of the attribute in the training set is larger than T; and (ii) rare, otherwise. 

Correlation weights of all rare attributes are equal to zero (i.e. these are not involved in building 

up model). The Nepoch is the number of epoch of the optimization. One epoch is sequence of 

modifications of all quasi-SMILES attributes involved in building up model. The T=T* and 

Nepoch=Nepoch* are values of the parameters which are preferable for statistical quality of the 

model for the calibration set. 

Two kinds of the QSPR-models are studied: (i) models calculated with the Monte Carlo 

optimization based on target functions TF1 and (ii) models calculated with the Monte Carlo 

optimization based on target functions TF2: 12, 15, 21-24 
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                                                                                  (2)𝑇𝐹1 = 𝑟𝑇𝑅𝑁 + 𝑟𝑖𝑇𝑅𝑁 ― |𝑟𝑇𝑅𝑁 ― 𝑟𝑖𝑇𝑅𝑁| ∗ 0.1

                                                                                                             (3)𝑇𝐹2 = 𝑇𝐹1 + 𝐼𝐼𝐶𝐶𝐿𝐵 ∗ 0.1

The  and   are correlation coefficient between observed and predicted endpoint 𝑟𝑇𝑅𝑁 𝑟𝑖𝑇𝑅𝑁

for the training and invisible training sets, respectively. 

The IICCLB  is calculated with data on the calibration (CLB) set as the following:

  𝐼𝐼𝐶𝐶𝐿𝐵 = 𝑟𝐶𝐿𝐵
min ( ―

 𝑀𝐴𝐸 𝐶𝐿𝐵, +
 𝑀𝐴𝐸 𝐶𝐿𝐵)

𝑚𝑎𝑥 ( ―
 𝑀𝐴𝐸 𝐶𝐿𝐵, +

 𝑀𝐴𝐸 𝐶𝐿𝐵)

 

where

                        

(4)

―
 𝑀𝐴𝐸 𝐶𝐿𝐵 =

1
―

 𝑁

―
 𝑁

∑
𝑘 = 1

| 𝛥𝑘|, 𝛥𝑘 < 0; ―
 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝛥𝑘 < 0   (5)

+
 𝑀𝐴𝐸 𝐶𝐿𝐵 =

1
+

 𝑁

+
 𝑁

∑
𝑘 = 1

| 𝛥𝑘|, 𝛥𝑘⩾0; +
 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝛥𝑘⩾0   (6)

                                                                                                   (7)  𝛥𝑘 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑘 ― 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑘

The “observed” and “calculated” are corresponding values of the endpoint. 

Having the numerical data on the above-mentioned corrlation weights the predictive model 

is calculated using quasi-SMILES of the training set: 

𝐹𝑃(0
 𝐶) = 𝐶0 + 𝐶1 ∗ 𝐷𝐶𝑊(𝑇 ∗ ,𝑁 ∗ )                    (8)

The predictive potential of the model should be checked up with the validation set. 12, 15, 21-24  

Domain of applicability 

Domain of applicability of the model is defined according to distribution of quasi-SMILES 

attributes in the training and calibration sets as two-step:20 

Step 1: the definition of statistical defect (dk) for each quasi-SMILES attribute involved 

(non- blocked) in building up a model:

𝑑𝑘 =
|𝑃(𝐴𝑘) ― 𝑃′(𝐴𝑘)|
𝑁(𝐴𝑘) + 𝑁(𝐴𝑘)

(9)
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where P(Ak) and P’(Ak) are probability of attribute of quasi-SMILES Ak in the training and 

calibration sets, respectively; N(Ak) and N’(Ak) are frequencies of Ak in the training and calibration 

sets, respectively.

Step 2: the calculation for all substances of the statistical quasi-SMILES-defect (Dj):

𝐷𝑗 =

𝑁𝑎𝑐𝑡

∑
𝑘 = 1

𝑑𝑘

(10)

where Nact is the number of non-blocked SMILES attributes in the quasi-SMILES.

A substance falls in the domain of applicability if 

𝐷𝑗 <  2 ∗ 𝐷     (11)

where  is average of the statistical quasi-SMILES-defect for the training set.𝐷

RESULTS AND DISCUSSION

The essence of approach applied here is optimization of the above correlation weights of 

all fragments of the quasi-SMILES.  One epoch of the optimization is variations of all correlation 

weights involved in the modelling process. Two versions of the Monte Carlo optimization are 

studied here. These optimization were carried out for 35 epochs with two different target functions 

TF1 (Eq. 2) and TF2 (Eq. 3). 

There is significant difference between the results of the Monte Carlo optimization with 

the target function TF1 and the optimization with the target function TF2. The comparison of 

“typical histories” of these Monte Carlo optimizations expressed via evolutions of correlation of 

the optimal descriptor and the endpoint for the active training set, the passive training set, the 

calibration set, and the validation set from epoch-1 till epoch-35 confirms that  TF2 function 

generates better model. Figure 1, 2, and 3 contain the graphical representations of these histories 

for split-1, split-2, and split-3, respectively.

Factually, the Index of Ideality of Correlation (IIC) (i.e. application of TF2) results in 

decrease of correlation coefficients for the training and invisible training sets that is accompanied 

by the increase of correlation coefficient for calibration set.12, 15, 21-24 The increase of the correlation 

coefficient for the validation set as the rule is accompanied by improvement of statistical situation 

for the external validation set (Table 2, Figure 2-4).
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Figure 2. Comparison of evolution of correlations for the active training set, the passive training 

set,  the calibration set, and the validation set in process of the Monte Carlo optimization with 

different target functions (TF1 and TF2) for the case of split 1
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Figure 3. Comparison of evolution of correlations for the active training set, the passive training 

set,  the calibration set, and the validation set in process of the Monte Carlo optimization with 

different target functions (TF1 and TF2) for the case of split 2
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Figure 4. Comparison of evolution of correlations for the active training set, the passive training 

set,  the calibration set, and the validation set in process of the Monte Carlo optimization with 

different target functions (TF1 and TF2) for the case of split 3
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The CORAL models for FP obtained with TF1 are the following:

FP(0C)  = -96.74(± 0.22) +    6.321(± 0.015) * DCW(1,3)          (12)

FP(0C)  = -70.84(± 0.20) +    4.544(± 0.012) * DCW(1,2)          (13)

FP(0C)  = -70.84(± 0.23) +    3.451(± 0.010) * DCW(1,2)          (14)

The CORAL models for FP obtained with TF2 are the following:

FP(0C)  = -67.63(± 0.15) +    5.322(± 0.011) * DCW(1,15)        (17)

FP(0C)  = -75.59(± 0.18) +    5.040(± 0.011) * DCW(1,15)        (18)

FP(0C)  = -82.88(± 0.22) +    6.179(± 0.016) * DCW(1,15)        (19) 

Table 3 contains the statistical characteristics of these models.  Data represented in Table 

3 indicates that the Monte Carlo optimization with the TF2 generates better model in comparison 

with models obtained using the TF1 , if the statistical quality of the model for the validation set is 

applied as the basis for comparison of these models. Factually, taking into account IIC modify the 

Monte Carlo optimization. Moreover, a paradoxical situation takes place. There is an improvement 

of the statistical quality for the calibration and validation sets, but it is accompanied by the 

detriment of the active training set and passive training set. Does this situation is advantageous 

from practical point of view? We believe that rather yes, than no. Computational experiments 

recently described in the literature12-17 confirm this hypothesis. Figure 5 contains graphical 

representations of models calculated with Eqs. 17-19, for splits 1-3.
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Table 3. The statistical characteristics of the CORAL models for flash point of ternary liquid 

mixtures of organic substances based on TF1 and TF2 
Split TF  Set n* R2 CCC IIC Q2 Q2

F1 Q2
F2 Q2

F3 RMSE
1 1 Active training 200 0.8846 0.9388 0.7852 0.8815 6.34

Passive training 206 0.8581 0.9239 0.8028 0.8543 7.15
Calibration   195 0.8964 0.9450 0.9420 0.8937 0.8842 0.8828 0.9290 4.91
Validation   207 0.9085 0.9516 0.8310 0.9063 4.86

2 Active training 200 0.8779 0.9350 0.7981 0.8750 6.52
Passive training 206 0.8755 0.9356 0.9091 0.8722 6.58
Calibration   195 0.9262 0.9609 0.9619 0.9246 0.9181 0.9171 0.9498 4.13
Validation   207 0.9345 0.9653 0.9234 0.9331 4.12

2 1 Active training 204 0.8015 0.8898 0.8779 0.7972 8.59
Passive training 205 0.7313 0.8519 0.8215 0.7248 9.13
Calibration   205 0.8096 0.8976 0.8905 0.8048 0.8004 0.7964 0.8881 6.14
Validation   194 0.8888 0.9414 0.9264 5.55

2 Active training 204 0.8795 0.9359 0.8671 0.8765 6.69
Passive training 205 0.8614 0.9274 0.7248 0.8576 6.52
Calibration   205 0.9203 0.9580 0.9593 0.9186 0.9214 0.9198 0.9559 3.86
Validation   194 0.9392 0.9684 0.9447 0.9379 4.03

3 1 Active training 204 0.7630 0.8656 0.6896 0.7579 9.23
Passive training 209 0.7738 0.8754 0.7947 0.7691 8.16
Calibration   197 0.9165 0.9572 0.9217 0.9149 0.9128 0.9128 0.9313 4.70
Validation   198 0.9105 0.9527 0.8223 4.63

2 Active training 204 0.8595 0.9245 0.7768 0.8557 7.10
Passive training 209 0.8633 0.9246 0.6541 0.8597 6.48
Calibration   197 0.9386 0.9678 0.9688 0.9372 0.9325 0.9324 0.9468 4.13
Validation   198 0.9372 0.9658 0.8784 4.02

*) the n is number of compounds in a set; R2 is correlation coefficient; CCC is concordance 

correlation coefficient; IIC is index of ideality of correlation; Q2 is cross validated correlation 

coefficient; Q2
F1, Q2

F2, and Q2
F3 criteria of predictive potential suggested in the literature [34]; 

RMSE is root mean squared error.
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Figure 5. Graphical representation of models calculated with Eqs. 17-19 for splits 1-3 

(validation sets) 
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In contrast to the Monte Carlo optimization with TF1, the optimization with TF2 is sensitive 

to both correlation and dispersion of points in diagram “experiment-calculation”. It seems, that 

this is the reason why TF2 gives better results. Nevertheless, different splits result in different 

statistical quality (predictive potential) of models (Table 3). 

It is to be noted, that any approach in several attempts to build up a model with different 

“correct” or "random" splits of data into the training set and validation set can furnish "unpleasant" 

results, e.g. the Kubinyi paradox.25,26 Perhaps, this is the main reason, why many published 

QSPR/QSAR models, as a rule, are based on one "correct" (or “rational”) split, but do not provide 

information on the results of applying of several random splits.

Table 4 indicates that the statistical quality of the CORAL models and the statistical quality 

of models, which were suggested in the literature4, 35-38 are comparable. However, in the model 

available in the literature4,35-38 descriptors derived from quantum mechanics together with 

additional physicochemical parameters and 3D descriptors were involved in building up models. 

The CORAL models applied in our study are derived with data on molecular structure of 

components and molar fractions (i.e. without additional physicochemical and 3D data). This 

difference should be considered as the advantage of the CORAL approach in comparison with 

above approaches.4,35-38The CORAL models examined here, were checked up with several 

distribution of available data into the training and validation sets. This indicates that the checking 

up of the CORAL approach is more meticulous than the previously published works since only 

one split into training and validation sets has been considered in those publications.
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Table 4. Comparison of QSPR models for flash point of ternary mixtures 
Component1 Component2 Component3 Set n* R2 MAE Comments 

on Building up models
In literature
methanol methylacetate methylacrylate 68 - 4.7
methanol ethanol acetone 66 - 14.7 Physicochemical parameters
methanol toluene i-octane 147 - 7.6 of atoms and molecules;
methanol n-decane acetone Total 119 - 7.3 topological  and 3D descriptors;
acetic acid n-hexanol cyclohexanone 59 - 19.1 descriptors of quantum 
i-propanol ethanol n-octane 101 - 10.9 mechanics are used to build up
2-butanol ethanol n-octane 109 - 4.8 model [4,35,36]
cyclohexanol ethanol n-octane 94 - 7.7

Training 1104 0.9350 - Pure-binary-ternary mixtures; 
Test 276 0.9335 - quantum mechanics descriptors 
Total 1380 0.9405 - [37]
Training 
Test

137
-

0.902
-

-
-

Experimental data on normal 
boiling point, the standard 
enthalpy of vaporization, the 
average number of carbon atoms 
and the stoichiometric 
concentration of the gas phase of 
mixtures are basis to build up 
model [38]

 In this work
Total 808 0.8966 4.17 SMILES of components together 

Organic compounds from    list** 808 0.8941 4.25 with corresponding molar fractions 
808 0.8903 4.15 are used to build up model

*) The n is the number of ternary mixtures; R2 is the determination coefficient; MAE is mean 
absolute error. 
**) The list of compounds is the following: methanol; methyl acetate; methyl ethyl ketone; ethanol; 
ethylene glycol butyl ether; acetone; toluene; i-propanol; i-octane; n-pentanol; n-heptane; n-
octane; n-decane; acetic acid; n-hexanol; cyclohexanone; i-propanol; 2-butanol; cyclohexanol.

There is one more advantage of the CORAL models. These models are providers of the 

mechanistic interpretation in form of promoters of increase or decrease of an endpoint. 12, 20-24 The 

promoters of increase are attributes of quasi-SMILES, which have only positive values in several 

probes of the Monte Carlo optimization. Vice versa, attributes of quasi-SMILES, which have only 

negative correlation weights in several probes of the optimization should be considered as 

promoters of decrease for an endpoint. It is necessary, however, to take into account the prevalence 

of corresponding attributes in the training set and validation set: rare attributes hardly should be 

considered as source of reliable heuristic hypothesises. 

Based on our results the promoters of increase for flash point are (i) branchiung, i.e. 

presence brackets in SMILES; (ii) presence of cycles (digits in SMILES); (iii) presence of carbon 

and oxygen atoms; and (iv) presence of double bonds. Supplementary materials contains the list 

of promoters for flash points increase. 

Finally, it should be noted that the CORAL software 5, 15, 16, 21, 22, 30 as well as the technique 

of quasi-SMILES7-9, 18, 31-33 can be applied for building up predictive models of other endpoints. 

Thus, the described approach can be useful for technologists, because: (i) data required to calculate 
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the flash point include molecular structures (represented by SMILES) and molar fractions for two 

compounds, without other data (e.g. 3D geometry, quantum mechanics descriptors, different 

physicochemical parameters, etc.); and (ii) suggested models are freely available on the Internet.

Supplementary materials contain three splits of quasi-SMILES into the active training set, 

passive training set, calibration set, and validation set for ternary liquid mixtures used here. In 

addition, mechanistic interpretation in form of the list of molecular features, which are promoters 

for increase of FP, and the domain of applicability, are presented in Supplementary materials.

CONCLUSIONS

The described approach based on quasi-SMILES provides possibility of fast modifications 

of corresponding databases (corrections of wrong data as well as applying new data valuable from 

practical and theoretical points of view).  

The approach gives possibility to define mechanistic interpretation of a model via lists of 

molecular features, which are promoters of increase (or decrease) for flash points. The quasi-

SMILES technique generates quite good models for flash points of ternary liquid mixtures of 

organic substances. 

The Index of Ideality of Correlation is important and useful component of the target 

function in the Monte Carlo optimization, since this approach allows improving the predictive 

potential of models of flash point, for the external invisible validation set. 
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