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To fully enable the development of diagnostic tools and progressive pharmaceutical drugs, it is imperative to understand 

the molecular changes occurring before and during disease onset and progression. Systems biology assessments utilizing 

multi-omic analyses (e.g. the combination of proteomics, lipidomics, genomics, etc.) have shown enormous value in 

determining molecules prevalent in diseases and their associated mechanisms. Herein, we utilized multi-omic evaluations, 

multi-dimensional analysis methods, and new cheminformatics-based visualization tools to provide an in depth 

understanding of the molecular changes taking place in preeclampsia (PRE) and gestational diabetes mellitus (GDM) 

patients. Since PRE and GDM are two prevalent pregnancy complications that result in adverse health effects for both the 

mother and fetus during pregnancy and later in life, a better understanding of each is essential. The multi-omic evaluations 

performed here provide new insight into the end-stage molecular profiles of each disease, thereby supplying information 

potentially crucial for earlier diagnosis and treatments. 

Introduction 

Preeclampsia (PRE) and gestational diabetes mellitus 

(GDM) are two predominant maternal complications that 

result in an increased likelihood of morbidity and mortality for 

both the fetus and mother. Additionally, women with PRE or 

GDM and their offspring have an increased risk of chronic 

health outcomes such as type II diabetes, hypertension and 

cardiovascular disease
1, 2

. PRE is a systemic maternal syndrome 

affecting 3-8% of pregnancies and is a leading cause of 

maternal mortality and morbidity
3
. Clinically, PRE is defined as 

the new onset of hypertension and proteinuria or evidence of 

systemic organ dysfunction after 20 weeks of gestation
3, 4

. The 

only treatment for PRE is delivery, which often leads to 

iatrogenic preterm birth and increases the risk of infant 

morbidity and mortality 
3, 4

. Similarly, GDM affects 5-7% of 

pregnancies
5
 and is clinically defined as the onset of glucose 

intolerance during pregnancy. GDM increases the risk for 

gestational hypertension, PRE, birth injury, macrosomia, and 

neonatal hypoglycemia
6, 7

, and its’ diagnosis is typically 

evaluated based on risk criteria relating to body mass index 

(BMI), family history of diabetes, personal history of GDM, and 

glycosuria
8
. Women who classify as high risk for GDM are 

administered oral glucose tolerance tests at their first 

appointment, whereas women who do not meet high risk 

criteria are not typically examined until 24 to 28 weeks of 

gestation
8
. The late diagnosis of both GDM and PRE severely 

limits intervention timelines and allows for substantial disease 

progression. Rates of both complications are rising throughout 

the world due partially to increased prevalence of pre-

pregnancy obesity and advanced maternal age. Thus, PRE and 

GDM are serious public health concerns
9, 10

.  
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For many diseases, early diagnosis is commonly 

approached using universal biomarkers. Despite the 

identification of pathway aberrations linked to PRE and GDM, 

such as inflammation, insulin resistance and mild 

hyperlipidemia, there are currently no biomarkers for either 

condition with clinical utility. This is largely attributed to the 

broad disease definitions of PRE and GDM that encompass 

multiple novel mechanisms and subtypes (Figure 1a). For 

example, it is well accepted that PRE can be differentiated by 

both the timeline of disease onset and delivery, while GDM 

subtypes include mechanistic differences such as insulin 

secretion and insulin sensitivity. However, few studies have 

focused on molecular differences specific to term PRE (delivery 

after 37 weeks of gestation)
11, 12

 despite this subtype 

accounting for 60% of PRE cases
11

. GDM not only suffers from 

mechanistic differentiation of disease subtypes, but lacks 

comprehensive annotation of the intricate molecular 

mechanisms underlying the condition as a whole
13

. Moreover, 

overlapping pathology among common pregnancy disorders 

further complicates diagnoses, an obstacle best addressed 

through holistic annotation.  

Proteins are essential molecules with a variety of biological 

functions noted as being dysregulated in PRE and GDM
11, 14

. 

Lipids and lipid mediators also play integral roles in biological 

processes including proliferation, apoptosis, migration, 

metabolism, inflammation and pro-resolving immune 

responses. Since the placenta relies on fatty acid oxidation for 

energy and lipotoxicity inhibits trophoblast invasion and 

placental development, lipids also play important roles in PRE 

and GDM. However, despite being crucial for fetal 

development and placental energy processes, the vital roles of 

these species have been less extensively annotated compared 

to other omics. Furthermore, since PRE and GDM risk factors 

such as obesity and maternal age influence protein and lipid 

processes
15, 16

, an examination of the molecular mechanisms 

occurring and changing in both complications should shed light 

onto their unique pathophysiology. Thus, a holistic evaluation 

through sensitive multi-omic analyses and improved data 

visualization tools is needed to provide key information for a 

comprehensive understanding of PRE and GDM 

pathophysiology.  In this study, we address these challenges 

and provide an in-depth profile of term PRE and GDM 

pregnancy complications through the analysis of proteomic 

and lipidomic differences in the plasma for 191 pregnant 

women at admission to labor and delivery (Figure 1b). 

Experimental  

Human Sample Collection. This study utilized stored 

plasma from Peribank
17

, a database and biospecimen 

repository. Peribank enrolls women at the time of labor and 

delivery from four facilities in Houston, TX. Trained study 

personnel approached participants at the time of admission to 

labor and delivery. After consent was obtained, over 4,700 

variables of clinical information were directly extracted from 

electronic medical records and accompanying prenatal records 

alongside directed subject questioning. PeriBank was approved 

by the Institutional Review Board at Texas Children’s Hospital 

and Baylor College of Medicine. For this study, analysis was 

limited to women with singleton pregnancies and had no 

current or history of chronic conditions including pre-existing 

diabetes, heart disease, renal disease or hypertension. A 

detailed description of cohort profiles for the Control, GDM, 

and PRE cohorts is presented in Supplemental Table 1 (Table 

S1). The current investigation and Peribank usage of samples 

was approved by the Institutional Review Board at Temple 

University (IRB protocol number 26904). All PeriBank samples 

were strictly collected once consent was properly obtained 

under rigorous uniform protocols by perinatal and placental 

pathology-trained personnel. Maternal blood for this study 

was collected at the time of admission, after admission, and up 

Figure 1. PRE and GDM are prevalent maternal complications leading to serious 

maternal and fetal complications and morbidities. a) Subtypes of PRE and GDM are 

shown as raindrops and increased health risks for the mother and fetus later in life 

are noted around each. b) Synopsis of cohort information for GDM, PRE and Control 

patients. Race, type of labor and infant sex are shown as patient distributions. BMI, 

age, gestational age and birth weight are given for the cohort average +/- the 

cohort’s standard deviation. 
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to 24 h after delivery. It was then stored at 4˚C until 

processing.  

Proteomic Extraction, Depletion and Digestion. Individual 

human plasma samples were partitioned and depleted of the 

14 highly abundant proteins using a Multiple Affinity Removal 

Column, 4.6 x 100 mm, Hu-14 (Agilent, Santa Clara, CA). This 

column was coupled to a 1200 series HPLC (Agilent, Santa 

Clara, CA) composed of a quaternary pump with degasser and 

connected to Peltier-cooled autosampler, diode array 

detector, and refrigerated fraction collector.  The unbound, 

flow-through fraction containing low- and medium- abundance 

proteins was collected and concentrated. Buffer exchanged to 

50 mM Ammonium Bicarbonate (ambic) pH 8.0 was then 

performed using a 3-kDa molecular mass cutoff Amicon 

centrifugal filters (Millipore, Burlington, MA) and following the 

manufacturer’s instructions. The protein concentration of the 

depleted samples was measured by BCA Protein Assay 

(Thermo Scientific, San Jose, CA) and the volume of each 

sample was adjusted with 50 mM ambic. All processing steps 

following depletion were carried out in a 96 1 mL deep-well 

plate to minimize batch effects associated with processing, 

utilizing automated protocols on an epMotion 5075 

(Eppendorf, Hauppauge, NY).  

To perform digestion of the depleted samples, 145 µL 

aliquots were utilized, giving a starting amount of 

approximately 100 µg total protein. Aliquots were transferred 

to a 96-well plate preloaded with urea to achieve a 

concentration of 8 M urea in the sample solution. 500 mM 

Dithiothreitol (DTT) (Sigma-Aldrich, St. Louis, MO) was then 

added to a final concentration of 10 µM and samples were 

incubated for 1 h at 37°C with constant shaking at 1200 rpm in 

BioShake iQ Thermal Mixer (Bulldog Bio, Portsmouth, NH) to 

denature the proteins and reduce disulfide bonds. Reduced 

cysteine residues were alkylated by adding 1 M iodoacetamide 

(Sigma-Aldrich, St. Louis, MO) to a final concentration of 40 

mM and incubated in the dark at 25°C for 45 min. Samples 

were then diluted 4-fold with 50 mM ambic, 1 mM CaCl2 prior 

to the addition of sequence grade TPCK treated trypsin 

(Trypsin Gold, Mass Spectrometry Grade, Promega) in a 1:50 

enzyme to protein ratio. Enzymatic digestion was carried out 

for 16 h at 25°C with a constant shaking at 1200 rpm in 

BioShake iQ Thermal Mixer. The reaction was stopped by 

acidifying the samples with 10% trifluoroacetic acid (Sigma-

Aldrich St. Louis, MO) to a final concentration of 0.1%. 

Peptides were desalted using solid-phase extraction (SPE) via 

Strata C18-E cartridges formatted in 96-well plate 

(Phenomenex, Torrance, CA). Peptides were eluted with 80 % 

ACN, 0.1 % TFA using Preston 100 Positive Pressure Manifold 

(Phenomenex, Torrance, CA) and concentrated down in a 

SpeedVac concentrator.  After final sample peptide 

concentrations were evaluated by BCA Assay, they were 

normalized with 2% acetonitrile, 0.1% formic acid to 0.1 µg/µL 

prior to LC-IMS-MS analyses.  

PRE, GDM and Control depleted sample pools were created 

by combining equal amounts of digested peptide samples from 

each group. 300 µg pooled samples were separated on a 

Waters reversed phase XBridge C18 column (250 mm × 4.6 

mm column containing 5-μm particles, and a 4.6 mm × 20 mm 

guard column) (Waters, Milford, MA) using an Agilent 1200 

HPLC System. The sample was loaded on C18 column in 

solvent A (5 mM ammonium format, pH 10.0) and a 109-min 

LC gradient with solvent B (5 mM ammonium format, pH 10, 

90% acetonitrile) was applied. The LC gradient started with a 

linear increase of solvent A to 10% B in 3 min, then linearly 

increased to 30% B in 86 min, 10 min to 42.5% B, 5 min to 55% 

B and another 5 min to 100% solvent B. The flow rate was 0.5 

mL/min. A total of 96 fractions were collected into a 96 deep 

well plate throughout the LC gradient. These fractions were 

concatenated into 24 fractions by combining 4 fractions that 

were each 24 fractions apart (i.e., combining fractions #1, #25, 

#49, #73; #2, #26, #50, #74; and so on). For proteome analysis, 

each concatenated fraction was dried down and re-suspended 

in 2% acetonitrile, 0.1% formic acid to adjust the peptide 

concentration to 0.1 µg/µL prior to LC-IMS-MS analyses. 

Lipid Extraction. Extraction of the unbound lipids was 

performed using a modified Folch extraction
18, 19

. For the 

plasma lipid extraction, 25 µL of plasma was transferred into a 

2.0 mL tube where 600 µL of -20°C 2:1 chloroform/methanol 

were added. Each sample was vortexed for 30 sec then 

transferred into a shaker at 22°C for 60 min at 600 rpm. The 

samples were vortexed again for 30 sec and 125 µL of water 

was added to induce a phase separation. The samples were 

gently inverted several times, placed at room temperature for 

5 min and then centrifuged at 10,000 x g for 5 min at 4°C and 

put on ice to maintain the clear phase separation. Finally, 200 

µL of the top polar layer was removed, dried in a speedvac, 

and stored at -80°C for later analysis of polar metabolites, 

while 350 µL of the bottom nonpolar layer was removed, dried 

in a speedvac, and stored at -20°C in 250 µL of 2:1 

chloroform/methanol for lipid analyses. Prior to analysis, the 

total lipid extracts were dried down and then reconstituted in 

100 µL of MeOH. To generate pooled case and control samples 

for LC-IMS-MS analyses, 5 µL aliquots from each reconstituted 

control plasma sample were removed and combined.  

LC-IMS-MS Analyses 

Proteomic Analyses. Analysis of the 191 human proteomic 

extracted plasma samples was performed on an in-house built 

instrument that couples a 1-m ion mobility separation with an 

Agilent 6224 TOF MS upgraded to a 1.5 meter flight tube 

providing resolution of ~25,000 in enhanced dynamic range 

mode
20

. A fully automated in-house built 2-column HPLC 

system equipped with in-house packed capillary columns was 

used with mobile phase A consisting of 0.1% formic acid in 

water and phase B comprised of 0.1% formic acid in 

acetonitrile 
21

. A 60-min gradient with shorter columns (30 cm 

long columns with an o.d. of 360 µm, i.d. of 75 µm, and 3-µm 

C18 packing material) was used with the IMS-MS. The gradient 

linearly increased mobile phase B from 0 to 60% until the final 

2-min of the run when B was purged at 95%. 5 µL of each 

sample was injected for both analyses and the HPLC was 

operated under a constant flow rate of 0.4 µL/min for the 100-

min gradient and 1 µL/min for the 60-min gradient. IMS-MS 

data were collected from 100-3200 m/z.  
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 Lipidomic Analyses. For the 191 human lipidomic extracted 

plasma samples, the Agilent 6560 IM-QTOF MS platform (Santa 

Clara, CA) outfitted with the commercial gas kit (Alternate Gas 

Kit, Agilent) and a precision flow controller (640B, MKS 

Instruments) was utilized.  IMS-MS data were collected in both 

positive and negative mode from 50-1700 m/z with a cycle 

time of 1 sec/spectra to increase the signal of low abundance 

species. For the LC analyses, a Waters Aquity UPLC H class 

system was used. 10 µL of each sample was injected onto a 

reversed phase Waters CSH column (3.0 mm x 150 mm x 1.7 

µm particle size).  The lipids in the mixture were separated 

over a 34 min gradient (mobile phase A: acetonitrile/water 

(40:60) containing 10 mM ammonium acetate; mobile phase 

B: acetonitrile/ isopropyl alcohol (10:90) containing 10 mM 

ammonium acetate) at a flow rate of 250 µL min
-1

.  The 

gradient and column wash are provided in Table S2. The 

resolution of isomeric lipid species noted herein (A and B pairs) 

were largely resolved due to retention time using this LC 

method, while IMS collision cross section values were utilized 

to increase confidence of the identified lipids.   

Quantification and Statistical Analysis 

Data Pre-processing. Statistical analysis for both the 

proteomic and lipidomic studies for the Complication versus 

Control patients was completed in MATLAB (version 9.1). In 

the proteomic study, 14,429 unique peptides were observed 

from the LC-IMS-MS analyses. These peptides correspond to 

1,093 proteins using the identification criteria of at least 2 

peptides detected per protein where at least one peptide must 

be unique as outlined in Tables S3 and S4.  In the lipidomic 

study, 288 unique lipids were identified as shown in Table S5.  

Potential outliers in the proteomic and lipidomic analyses were 

identified using the RMD-PAV algorithm 
22

, and were then 

confirmed by Pearson correlation and subsequently removed 

from the dataset (Figure S1).  Three patients in negative ion 

lipidomics (3 PRE patients), one patient in positive lipidomics 

(GDM patient) and one in proteomics (Control patient) were 

removed following outlier assessment. Lipids and peptides 

with inadequate data for either qualitative or quantitative 

statistical tests were also removed 
23

. Statistical analysis of 

proteins and lipids for the complication comparisons (PRE vs. 

GDM) was completed with MetaboAnalyst (version 4.0) 
24

 with 

results shown in Table S6. 

Protein Quantification and Statistics. Peptides and 

proteins were evaluated using Analysis of Variance (ANOVA) 

with a Dunnett test correction 
25

 and a Bonferroni-corrected g-

test 
26

 to compare the GDM and PRE patients to the Control 

patients (Supplemental Tables S3 and S4). Following outlier 

removal, ANOVA comparisons for Complication vs. Control 

comparisons consisted of 97 control patients, 48 term PRE and 

45 GDM patients to give statistical powers of 78.6% for GDM 

vs. Control and 80.3% for PRE vs. Control at an effect size of 

0.5 (medium). For g-test analyses, power at a large effect size 

(0.5) was determined to be 60.9% for GDM vs. Control and 

61.6% for PRE vs. Control comparisons. To perform signature-

based protein quantification, BP-Quant with the background 

probability of a zero signature set to the default of 0.9 was 

used 
27

. Only significant proteins with greater than 2 

peptides/protein and at least 1 unique peptide for 

identification were utilized in this study (Table S4). Proteins 

with a Dunnett multiple testing correction adjusted ≤ 0.05 

were considered significant for discrimination. Of filtered 

proteins, 227 proteins were significant in at least one 

Complication versus Control comparison. Enrichment analysis 

of significant proteins for each Complication versus Control 

comparison was assessed using STRING (version 11.0)
28

. 

Biological process associations below a false discovery rate of 

0.05 are noted with GO annotation, count in gene set, and 

false discovery rate expanded upon in Table S7. 

Lipid Quantitation and Statistics. Positive and negative 

mode lipidomic data was also evaluated using ANOVA with a 

Dunnett correction (Table S5) 
25

. Lipids with adjusted p ≤ 0.05 

were considered relevant for Complication versus Control 

discrimination. ANOVA for Complication vs. Control 

comparisons in positive ion lipidomics data consisted of 98 

control patients, 48 term PRE and 44 GDM patients following 

outlier removal. This yielded statistical powers of 78.1% for 

GDM vs. Control and 80.4% for PRE vs. Control at an effect size 

of 0.5 (medium). Following outlier removal for negative ion 

lipidomics, three PRE patients were removed to yield sample 

sizes of 98, 45 and 45 for control, PRE and GDM groups; 

respectively. Statistical power for both of these analyses was 

78.7% at a medium effect size (0.5). Of the 288 unique lipid 

identifications, 120 were significant in at least one 

Complication versus Control comparison.   

Pre-processing, Molecular Descriptor, Clustering, and 

Circular Dendrogram. Proteins with known biological 

processes and pathways of interest for GDM and PRE were 

evaluated using STRING
28

, UNIPROT
29

, and KEGG
30

 online tools. 

Lipid relationships, which are traditionally probed with 

heatmaps and spreadsheets, were expanded upon in this study 

to assess biological linkages using a cheminformatics-powered 

structural clustering of head groups and fatty acyls. Head 

group clustering was performed based on chemicals initially 

represented as SMILES strings
31

, then converted into 2D 

standardized structures, and further characterized using an 

ECFP_6 fingerprint. The hierarchical clustering was done using 

Euclidean distance and average linkage method using 

fingerprint and ggtree packages in R (Version 3.6.0). For lipids 

with multiple potential identifications, a representative SMILES 

was chosen to denote all possible identifications. Fatty acyl tail 

composition was also used to relate lipids. For our analyses, 

most sn-1 and sn-2 fatty acyl positions were unknown, so all 

possible positions were considered to account for potential 

backbone position effects. For lipids with multiple identities, 

lipids were partitioned into all possible identifications to 

visualize fatty acyl effects. Visualization of adjusted p-values 

was utilized in this clustering technique due to their set cut-off 

for significance (adjusted p-value ≤ 0.05) using the pheatmap 

package in R. Statistical upregulation is represented by red and 

downregulation by blue with darker colors indicating a more 

significant adjusted p-value. Fold changes of significant lipids 

were also investigated to emphasize analytes with the greatest 

discrepancy in disease and control groups.   
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In this study, we evaluated the proteomic and lipidomic 

profiles in plasma of 191 pregnant women from the Peribank
17

 

bio-repository. All plasma samples were collected at admission 

to labor and delivery. Samples were obtained from 48 women 

with term PRE, 45 women with GDM and 98 healthy control 

women. All women were singleton pregnancies with no 

current or history of chronic conditions including pre-existing 

diabetes, heart disease, renal disease or hypertension. A 

synopsis of cohort profiles for GDM, Control and PRE is 

presented in Figure 1b with full clinical information on patients 

that participated in this study detailed further in Table S1. The 

majority of patients for all three cohorts were Hispanic with 

variation across groups such as age, infant sex, and type of 

labor (Table S1). To provide sensitive analyses of this cohort, 

we utilized a multi-dimensional platform coupling liquid 

chromatography, ion mobility spectrometry and mass 

spectrometry (LC-IMS-MS) separations. This platform was 

capable of molecular speciation due to the three orthogonal 

techniques, providing simultaneous evaluations of polarity, 

structure and mass for each species studied and detected. 

Proteomic and lipidomic specific extractions were performed 

on the plasma samples and each resulting sample was 

analyzed with the LC-IMS-MS platform to provide protein and 

lipid quantification information for statistical analyses 

comparing the PRE, GDM and the Control groups. Initially, 

each omic evaluation was performed separately and novel 

cheminformatics visualization tools were created to assess the 

structural and biological relationships for the identified 

molecules. After the individual assessments, the proteomic 

and lipidomic results were rolled together in a multi-omic 
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assay illustrating unique molecular mechanisms for each 

disease. 

Protein Associations Specific to PRE and GDM 

In the bottom-up proteomic analyses of the 191 pregnant 

women, 14,429 unique peptides were detected in the plasma 

samples and rolled into 1,093 proteins using the identification 

criteria of at least 2 peptides detected per protein where at 

least one peptide must be unique (Table S3 and S4). Of these 

proteins, analysis of variance (ANOVA) evaluations identified 

163 and 76 statistically significant proteins (α ≤ 0.05) for PRE 

and GDM when compared to Control patients after a Dunnett 

multiple comparisons correction
25

 (Figure 2a). Despite shared 

placental dysfunction in GDM and PRE, only a slight overlap 

was observed in the statistically significant proteins as shown 

in the Venn Diagram in Figure 2a. Furthermore, of the 

statistically significant proteins found for the two 

complications (Figure 2a), PRE illustrated more upregulation, 

while GDM was predominantly downregulated compared to 

the Control group. Specifically, of the 103 significantly 

upregulated proteins for both conditions, 85 were unique to 

PRE, 15 were unique to GDM, 2 were upregulated in both, and 

only 1 was upregulated in GDM but downregulated in PRE. A 

total of 125 proteins were observed to be significantly 

downregulated for both conditions with 66 unique to PRE, 49 

to GDM, 9 downregulated in both and the 1 protein which was 

upregulated in GDM but downregulated in PRE. 

The statistically significant proteins for each complication 

were further explored by evaluating both their unique Uniprot 

biological functions
29

, STRING 
28

 functional enrichment analysis 

(Figure 2b and Figure 2c) and associated KEGG
30

 pathways 

(Figure 3). Again, very different functions and mechanisms 

were observed for each complication. For GDM, a considerable 

decrease in protein expression was observed as 76% of its’ 

statistically significant species were downregulated (Figure 2a) 

including transport, cellular adhesion, blood coagulation and 

cholesterol metabolism, all of which were found to be 

functionally enriched at a false discovery rate less than 0.05 

using STRING (Figure 2b, Table S5). Notably, this proteome-

wide depression affected starch and carbohydrate metabolism 

enzymes lysosomal alpha-glucosidase (LYAG) and beta-1,4-

galactosyltransferase 1 (B4GT1) which were both 

downregulated in GDM patients (Figure 3). In addition to the 

dysregulation in carbohydrate metabolism we also found a 

significant change in proteins related to beta cell function such 

as glutathione synthetase (GSHB) and receptor-type tyrosine-

protein phosphatase kappa (PTPRK). These proteins could 

subsequently trigger elevated maternal glucose, the criteria 

currently used for GDM diagnosis. The reduced protein 

synthesis and glucose intolerance observed in GDM may also 

be related through protein/nucleic acid deglycase DJ-1 

(PARK7), an enzyme that has been reported to regulate 

transcription mechanisms of mRNA and maintain glucose 

homeostasis and diabetes onset
32

. This protein was observed 

to be downregulated in GDM with a log2 fold change of -0.54 

and adjusted p-value of 0.0049. 

In PRE, both upregulation and downregulation were observed 

for the statistically significant proteins as 53% of differentially 

expressed proteins were upregulated (Figure 2a). The PRE biological 

function analyses showed the most dysregulation in processes 

related to innate immunity, inflammatory response and blood 

coagulation and complement activation, which were all determined 

to be functionally enriched at a false discovery rate less than 0.05 

(Figure 2c, Table S5). Further evaluation illustrated that a majority 

of the proteins associated with these processes were linked to the 

blood coagulation and complement cascade (BCC), a pathway that 

serves as a moderator of innate immunity (complement) and fibrin 

clot formation (coagulation)
33

. BCC pathway activation through the 

complement and coagulation cascade was largely observed to be 

upregulated. Complement activation promotes innate immunity 

responsible for maintaining host homeostasis, promoting 

inflammation and enhancing immune system pathogen defense
34

. 

Dysregulation of species associated with this process is agreeable 

with instances of immune dysregulation commonly reported in PRE 

studies
35

. Plasminogen activator inhibitor 1 (PAI1) was among the 

most differentially upregulated proteins in PRE patients (-1.25 log2 

fold change and adjusted p-value of 0.00277). Since this enzyme 

serves to downregulate fibrinolytic activity, its upregulation could 

induce endothelial dysfunction by means of tissue and/or blood 

vessel damage, thereby activating the coagulation cascade in the 

BCC pathway. Taken together, BCC activation of complement and 

coagulation cascades is consistent with reduced placental perfusion 

and hemodynamic placental dysfunction potentially triggering 

hypertension while complement activation reflects a state of 

immune dysregulation commonly reported in PRE cases
33, 36

. Both 

of these effects could serve as a driving force of inflammation as 

well as dysregulation of metabolic processes and dyslipidemia. The 

glycolysis-related enzymes alpha-enolase (ENOA), glyceraldehyde-3-

phosphate dehydrogenase (G3P), phosphoglycerate kinase 1 (PGK1) 

and 3-mercaptopyruvate sulfurtransferase (THTM) were also found 

Figure 2. Statistically significant proteins detected for PRE and GDM vs. controls. a) The Venn diagram illustrates the statistically significant proteins detected for PRE and 

GDM and their slight overlap. b) Each statistically significant protein was then associated with its biological functions or processes utilizing Uniprot. (top) GDM exhibited a 

decrease in functions such as cellular adhesion, immunity, and lipid transport, and both up- and downregulation in overall transport. (bottom) PRE, on the other hand, 

exhibited an overall increase in cellular adhesion, immunity and lipid transport, in addition to enhanced dysregulation of blood coagulation, homeostasis and innate 

immunity. Functional enrichment of biological processes with false discovery rates below 0.05 are noted with (*) and expanded upon in Table S4. All statistically upregulated 

proteins are shown in red while downregulated are in blue.  

Figure 3. KEGG metabolic pathway analyses illustrate specific areas of up- and 

downregulation for PRE and GDM. Namely, GDM exhibited downregulation in starch 

and carbohydrate metabolism and purine and pyrimidine metabolism, while PRE 

showed upregulation in glycolysis specific enzymes. 
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to be uniquely upregulated in PRE (Figure 3), promoting the 

hypothesis of metabolic abnormality of the placenta, a proposed 

mechanism unique to the late onset PRE subtype
12

. Interestingly, 

although transport had both up- and downregulation in both 

conditions, lipid transport was only downregulated in GDM and 

only upregulated in PRE (Figure 2b and 2c). These findings were 

further investigated in the following lipidomic evaluations. 

Lipid Associations Specific to PRE and GDM 

In the lipidomic evaluations of the 191 patients, 288 unique 

lipids were identified from three main lipid categories: 46 

sphingolipids, 72 glycerolipids and 170 glycerophospholipids. 

Previously, evaluating the biological implications for each lipid 

species has largely relied on the manual elucidation of lipid 

relationships. However, with hundreds of lipids detected in 

lipidomic studies, this can be exceedingly challenging and 

result in an incomplete picture of disease pathophysiology. 

Challenges also arise when annotating lipids with existing 

pathways as broad lipid classifications are often rolled 

together through shared structural elements, such as head 

group, even when different directionality of species is 

observed. For example, many studies will indicate that 

phospholipids, or even more specifically 

phosphatidylethanolamine (PE), are only changing in one 

direction even when different species have conflicting 

directionalities such as PE(16:0_22:4) being downregulated in 

PRE while PE(18:0_20:3) is upregulated. Since structural 

annotations of polar metabolites has previously shown valid 

association to biological function
37

, we created a novel 

lipidomic analysis workflow to more readily assess how head 

group and fatty acyl structural elements of lipids trigger 

specific biological responses (Figure 4).  

In our lipidomic workflow, first the 288 lipids were 

identified from the LC-IMS-MS analyses (Figure 4, Step 1). All 

identified lipids were then structurally evaluated by mapping 

their SMILES
31

 strings to an ECFP_6 fingerprint that encodes 

the presence/absence of key functional groups and 2D sub-

structural motifs of each (Figure 4, Steps 2A and 2B). ANOVA 

evaluations were simultaneously performed for the PRE and 

GDM patients by comparing them to the Control group to 

acquire p-values and log2 fold changes for each lipid (Figure 4, 

Step 2C). To begin grouping structurally similar lipids, 

hierarchical clustering then utilized the ECFP_6 fingerprint, 

Euclidean distance, and an average linkage method to 

generate a circular dendrogram for visual evaluation of the 

changes occurring (Figure 4, Step 3A). Fatty acyl variations 

were also assessed by grouping all lipids with the same fatty 

acyl components into heatmaps to allow a visual assessment 

of their statistical significance (Figure 4, Step 3B).  

Upon assessing the lipidomic changes for PRE and GDM, 81 

and 28 unique lipids were found to be statistically significant (α 

≤ 0.05) with a Dunnett correction for multiple comparisons 
25

 

as shown by the Venn diagram in Figure 5a. Similar to the 

proteomic analyses, only a slight overlap was observed for the 

statistically significant lipids with 11 lipids shared between 

conditions. The results also showed that PRE illustrated 

significant lipid dysregulation with 39 unique lipids statistically 

upregulated and 42 downregulated, while GDM exhibited 

fewer with 15 unique lipids statistically upregulated and 13 

downregulated. The lipids were then evaluated based on head 

and fatty acyl groups (Figure 5b) using the previously 

described workflow to further assess the role of each 

component. While the overall comparison of all identified 

lipids is very important to clearly elucidate molecular effects, 

in the proceeding analyses only lipids found to be statistically 

significant in both diseases were assessed for their head group 

and fatty acyl structural similarity (Figures 5c and 5d). 

Upon evaluation of the dendrograms for the three 

categories of lipids detected in GDM and PRE, the most 

significant variation for both complications occurred in the 

glycerophospholipid category. Since these lipids are the most 

abundant membrane lipids and serve integral roles in 

membrane transport, enzyme activities and extracellular 

signaling, this finding also relates to the lipid transport 

dysregulation observed in the proteomic analyses for both 

complications. The three lipid categories were then further 

broken down into specific lipid head groups, resulting in three 

sphingolipid classes (ceramides, galactose/glucose ceramides, 

sphingomyelins), two glycerolipid classes (diacylglycerols (DG) 

and triacylglycerols (TG)), and five glycerophospholipid classes 

(phosphatidylethanolamine (PE), phosphatidylserine (PS), 

phosphatidylcholine (PC), phosphatidylinositol (PI), and 

phosphatidylglycerol (PG)). The PE and PC classes were further 

broken down into their fatty acyl linkages of either the alkenyl 

ether linkage (plasmalogens, PE P- and PC P-) or the alkyl ether 

linkage (PE O- and PC O-) subclasses since each have unique 

biological roles. In PRE, all PIs were downregulated and all DGs 

upregulated. This result matched a previous study of placental 

Figure 4. The lipidomics data analysis workflow utilized in this study. 1) Lipids were first identified from the LC-IMS-MS analyses based on LC retention time, m/z and IMS 

collision cross section. 2A) Next, the identified lipids were clustered using an ECFP_6 fingerprint for building head group associations. 2B) Lipid identifications were further 

related by shared fatty acyl groups. 2C) Heatmaps and statistical tests were also performed in this step to evaluate the significance of each lipid with regard to the PRE, GDM 

and Control patients. 3) Finally, the structural information and statistical significance of each lipid was combined to generate 3A) a circular dendrogram for head group 

associations and 3B) heatmaps of fatty acyl variation allowing concurrent visualization of all conditions and their statistical significance based on either adjusted p-value or 

log2 fold change. Upregulated and downregulated lipids are shown in red and blue with the darker colors indicating a more significant adjusted p-value.  
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lipidomics, linking elevated DGs in PRE to acyl CoA, a placental 

source of energy
38

. PRE also exhibited changes specific to lipid 

species in the PC, TG and SM classes. Similar to the DGs, TGs 

were mainly upregulated except for 3 species. This trend was 

also noted in serum samples of PRE patients with significant 

TG dysregulation as early as 10 weeks gestation
39

. On the 

other hand, PCs were largely downregulated with the 

exception of lyso species, which were upregulated and may 

suggest enhanced PC degradation
40

. SMs in PRE were both up 

and downregulated. 

For GDM, most lipid species from various head groups 

were largely downregulated except for PE and PE plasmalogen 

(PE P-) species, which were all upregulated. The significant 

downregulation of lipids in GDM is potentially indicative of 

free fatty acid accumulation (FFA), a phenomenon that has 

previously been associated with insulin resistance and 

hyperinsulinemia 
41

. Since the head group trends noted for 

both PRE and GDM did not always correlate, head group 

composition was concluded to only be a partial contributor to 

lipid dysregulation. Furthermore, since previous studies have 

demonstrated that enzymes have enhanced selectivity for 

fatty acyl length, double bond position, and sn-positioning on 

the lipid backbone, fatty acyl composition and corresponding 

changes were also assessed 
42

.  

To probe fatty acyl composition in all of the identified 

lipids, an additional visualization tool that parses out lipids 

with common fatty acyl groups was utilized (Figure 4, Step 3B). 

As most lipids typically consist of two or more fatty acyl groups 

with a specific glycerol backbone position, this technique relies 

on the identification of the specific fatty acyl moieties by 

MS/MS analysis. In the fatty acyl analyses of PRE and GDM, 

lipids specifically containing 12:0, 14:0, 15:0, 18:3, 22:4 or 24:1 

fatty acyls were found to be downregulated across both 

disease states and 20:0 and 22:6 were shown to be 

upregulated (Figure 5d). However, the head group/fatty acyl 

combinations were often different in the two diseases. For 

example, 22:6 fatty acyls were upregulated in GDM for PE P-, 

PC and PE O- species, while in PRE it was for TG and PE species. 

Furthermore, myristic acid or 14:0, which has previously been 

characterized as being negatively associated with 22:6 
43

, was 

also downregulated in both GDM and PRE but not for the same 

lipid species. Furthermore, LysoPC(0:0_14:0) was the only 

exception to the upregulation of all other lyso PC species in 

PRE. Other fatty acyl trends were also observed within the 

head groups for the complications, including saturated 18-

carbon fatty acyls being upregulated in PRE and as 

unsaturation increased, downregulation heightened. For 

example, all 18:0 TG species were upregulated and all TGs with 

18:3 species were downregulated. Interestingly, GDM only 

exhibited a few significant downregulated TGs all consisting of 

shorter, saturated fatty acyl groups (e.g. 12:0, 14:0, and 16:0). 

This trend was surprising as type II diabetes is commonly 

associated with an upregulation of circulating TG species which 

compensate for glucose variations 
44

. This trend however may 

depend on fatty acyl chain lengths as medium chain fatty acids 

(MCFAs) or those with > 6 carbons and ≤ 12, do not require 

enzymes for binding, transport or transmembrane location
45

. 

MCFA-containing TGs therefore could serve as quickly 

available energy sources for the fetus and placenta to further 

evidence the dysregulation of placental energy processes 

previously reported in GDM and PRE studies
45

. As the only 

upregulated head groups in GDM, the PE and PE-plasmalogen 

(PE P-) species overexpression was mainly observed in lipids 

containing long chain polyunsaturated fatty acids (LC-PUFAs). 

LC-PUFAs have 18 or more carbons and at least 2 double 

bonds. Plasmalogen phospholipids are commonly 

characterized with an sn-2 located LC-PUFA species as the 

preferential oxidation of the vinyl ether bond protects LC-PUFA 

species from oxidation and readily involves these lipids in 

Figure 5. Statistically significant lipids detected for PRE and GDM. a) The Venn 

diagram illustrates 81 and 28 unique statistically significant lipids observed for 

PRE and GDM with little overlap between conditions (11 lipids). b) The lipids were 

then evaluated based on head groups (circle) and fatty acyl groups (green 

rectangles). c) Circular dendrogram from the hierarchical clustering of the head 

groups of significant lipids visually illustrates great differences between lipid 

responses for PRE and GDM. d) Evaluation of fatty acyl group presence also 

showed differences between the two diseases. All identified but insignificant 

lipids are shown in grey and statistically significant upregulated and 

downregulated lipids are shown in red and blue with the darker colors indicating 

more significant adjusted p-values.  
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signaling processes following phospholipase release
46

. As 

neither of these fatty acyl groups can be synthesized by the 

fetus, the entire supply of LC-PUFAs, which are vital for 

neuronal and visual development are transferred across the 

placenta. Therefore, upregulation of PE and PE P- species 

containing LC-PUFAs could suggest these fatty acids are being 

preferentially shunted to PE P- species. This would alter LC-

PUFA transfer and lipid signaling processes in placental and 

fetal metabolism. 

Multi-omic Associations  

Currently, associations between lipids and proteins lack in 

literature due to an abundance of isomeric lipids that are 

incredibly difficult to differentiate, therefore, attempts to 

relate lipid and protein findings is often limited by broad 

classifications. In our analyses, we initially assessed proteins 

that have established lipid associations. Of our statistically 

significant proteins, only 16 of the 227 had established 

associations to lipid binding, lipoprotein complexes and lipid 

metabolic processes (Table 1a) and each was assessed for its 

significance in GDM and PRE. Several very interesting findings 

were observed. First, alpha-synuclein (SYUA), which protects 

insulin signaling from saturated-fat-related insulin resistance 

through the redirection of free fatty acids for transport
47

 was 

Table 1. Multi-omic associations for PRE and GDM complications. a) Statistically significant lipoproteins in PRE and GDM with GO annotations  related to lipid metabolism 

and/or transport and b and c) Protein and lipid pathway relationships of interest for (b) PRE and (c) GDM. 

a Previously reported lipoprotein associations for PRE and GDM are shown with an asterisk (*). 

b G-test significance is noted with ++ and - - , whereas ANOVA significance is denoted by + and - for the upregulated and downregulated proteins. 

c Grey illustrates proteins statistically significant in PRE, while blue denote GDM. 
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upregulated in GDM. Next, annexin A5 (ANXA5), which reflects 

a hypercoagulable state that impairs blood coagulation 

processes and fetal growth, was found to be downregulated 

for PRE, consistent with other studies
14, 48

. Lipid involvement in 

inflammation in PRE was evidenced through the upregulation 

of both the lipopolysaccharide-binding protein (LBP), a marker 

of fetal inflammation noted in Table 1a, and C-reactive protein 

(CRP), a general marker of inflammation, shown in Table 1b
49, 

50
.  

Multi-omic comparisons were also used to identify protein 

and lipid species that uniquely characterize each complication 

at admission to labor and delivery (Table 1b and 1c). Both PRE 

and GDM demonstrated dysregulation of enzymes associated 

with phospholipid variation, shedding light on specific head 

group and fatty acyl trends. Specifically for GDM, 

phosphatidylethanolamine-binding protein 1 (PEBP1), an 

enzyme with preferential binding of PE lipid species, and 

peroxiredoxin-6 (PRXD6) which has been shown to selectively 

reduce the sn-2 position of phospholipids were significantly 

downregulated and serve as unique candidates for GDM 

diagnosis (Table 1c). Notably, a majority of PE P- upregulation 

was within 22:6-containing species and this trend was 

extended to other lipid classes with PC(17:0_22:6) also being 

differentially expressed solely in GDM. Downregulated TG 

species were also uniquely observed in GDM patients. 

Interestingly, these species all contain MCFA groups, which can 

cross the placenta without carrier proteins. Protein disulfide-

isomerase A6 (PDIA6) and protein disulfide-isomerase A5 

(PDIA5), which affect disulfide bonds, were also uniquely 

largely downregulated in GDM and could be partial 

contributors to the altered proteome expression observed. 

Other notable proteins uniquely observed for GDM were the 

glycosylation enzymes (LYAG, EXT1 and B4GA1), which are 

involved in carbohydrate metabolism. 

Unlike GDM, PRE was largely characterized by protein 

dysregulation in enzymes involved in innate immunity with a 

majority of uniquely dysregulated species serving roles in the 

BCC pathway, again affirming this pathway and its relationship 

to PRE diagnosis (Table 1b) 
33, 36

. Phosphoglycerate kinase 1 

(PGK1) and alpha-enolase (ENOA) suppression further defined 

dysregulation of placental energy processes through their 

activity in glycolysis. Lipid dysregulation was also observed as 

characteristically defining PRE. PE species containing 20:0 were 

uniquely upregulated, a finding of interest considering the 

upregulation of 22:6 in GDM patients. The most notable multi-

omic connection for PRE was that phosphatidylinositol-glycan-

specific phospholipase D (PHLD), an enzyme responsible for 

the hydrolysis of proteins from PI-glycans was downregulated 

in PRE, giving context to the dysregulation of the PI species 

observed. Downregulation of PI(18:1_20:4) isomers resolved 

by LC and IMS were defining characteristics of PRE. 

Comparison of these species to a dataset collected with Oz-ID 

allowed for double bond characterization, revealing both 

isomers shared the same double bond positions of 18:1 (n-9) 

and 20:4 (n-6,9,12,15)
51

.  Therefore, we hypothesize the PI 

isomers could have different headgroup arrangements due to 

the fully resolved LC separation and different IMS sizes but 

further evaluation is needed to confirm this 
52

. Ultimately in 

this study, by utilizing both the lipid and protein relationships 

for both GDM and PRE, while limited, we found strong 

evidence for head group and fatty acyl specificity for certain 

proteins. 

Conclusions 

To evaluate PRE and GDM, multi-dimensional analyses 

were performed on a clinically diverse cohort. The proteomic 

analyses for GDM and PRE illustrated specific proteins 

predominantly unique to both complications. Significant 

proteins in GDM correlated with beta cell productivity and 

carbohydrate metabolism. Given the well-documented 

association of insulin dysregulation and GDM, these findings 

were expected. For PRE, proteins associated with blood 

coagulation and complement cascade (BCC), were of 

significance. These results showed unique molecular 

signatures matching the known dysregulation of GDM and 

PRE, which despite cohort limitations, verify the results of this 

study and subsequent associations made for less-

comprehensively annotated lipidomic and multi-omic 

associations.  

To facilitate improved lipidomic analysis, tailored structural 

clustering techniques and cheminformatics-powered 

visualization tools were created to allow for head group and 

fatty acyl assessments. While other studies have investigated 

lipid dysregulation for PRE and GDM, most have focused on 

specific head groups or summed fatty acyl composition. For 

example, some studies have called out whole subclasses 

together (e.g. TG upregulation in GDM
39

) or have focused on 

multiple species in summed notations such as PI(34:2) 

upregulation in PRE 
53

. Assessing the head and fatty acyl 

groups independently allowed for the evaluation of lipid 

changes with greater specificity and showcase significant 

dependencies for PRE and GDM. However, even in our 

evaluations, exceptions arose, thus even more extensive 

annotations including double bond orientations and positions 

are still needed to fully understand some of the alterations 

occurring in the lipidomic studies.  

Several direct protein-lipid associations in the multi-omic 

analyses shed light on the correlation of protein and lipid 

dysregulation and known biological implications. Specifically, 

for GDM, the PE P- lipids having 22:6 fatty acyl groups were 

upregulated, while PEBP1, which preferentially binds to PEs 

(among many other roles in the protein signaling cascade), was 

downregulated. Since these associated molecules were 

uniquely significant in GDM, their directionality differences 

provide important mechanistic information for the condition.  

In PRE, the PI lipids were consistently downregulated in 

addition to the PHLD enzyme which is specific for PI species. 

This finding suggests dysregulation in PI associated molecular 

mechanisms, which was not observed in GDM. While limited 

biological information causes protein-lipid associations to be 

sparse for many diseases, the direct relationships observed 

here suggest a strong interdependence in disease origin and 

progression. Furthermore, the detected molecular markers 
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could serve as biomarker candidates for the early detection of 

both GDM and PRE. However, since our study evaluated 

patients upon admission to labor and delivery, it only captured 

disease pathogenesis after clinical diagnosis. To determine 

whether the observed molecular candidates serve as early 

diagnostic markers will require longitudinal assessment of a 

new patient cohort throughout their entire pregnancy to 

determine early molecular changes prior to clinical diagnosis. 
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