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New Concepts 

In the quest towards green electronics, the formation of electronically active films from green solvents that enable 
multi-layer device fabrication is a key challenge. In this contribution we demonstrate how the classic concept of acid 
dyeing can be used to deliver a materials system that can be roll-to-roll compatible processed from alcohol or water 
into solvent resistant semiconducting films. While prior work has mostly focused on polymer-based systems with 
cleavable side chains to yield films, we have utilized a simple, yet versatile, molecular system based on the popular 
perylene diimide chromophore. Functionalization with a pyrrolic NH bond has a dual systems enhancement. First, the 
NH group can be polarized to enable alcohol or water processing while second, the NH group participates in hydrogen 
bonding with an adjacent molecule strengthening intermolecular interactions, thus leading to solvent resistant film. 
This study lays the groundwork for the development of next-generation green electronics and has uncovered a new 
materials design concept for which one can envision a myriad of new structures being developed. 
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Abstract

The alcohol and water-based processing of a perylene diimide (PDI) organic 

semiconductor into large area and solvent resistant films is reported. The compound, 

PDIN-H, is an N-annulated PDI dye with a pyrrolic NH functional group that can be 

deprotonated to render the material soluble in polar solvents. Addition of NaOH to 

mixtures of PDIN-H in 1-propanol results in a progressive color change from orange/red 

to purple with increasing equivalents of base. Use of 1 molar equivalent of NaOH was 

found to fully dissolve the PDIN-H in alcohol solvents up to a concentration of 10 mg/mL. 

Primary alcohols 1-propanol to 1-hexanol as well as 2-propanol were used. All solutions 

were readily spin-coated or slot-die coated into uniform thin films. Solutions in 1-propanol 

could be coated with concentrations up to 50 mg/mL. All films were red in color and 

characterized by optical absorption spectroscopy confirming the existence of the parent 
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PDIN-H species in the film. Single crystal X-ray diffraction was used to determine the 

molecular packing of PDIN-H. Films showed no signs of dewetting, swelling, or dissolution 

upon exposure to 2-propanol, water, or o-xylene via coating or dipping indicating they 

were solvent resistant. To exploit the semiconducting properties of these PDIN-H films, 

organic photovoltaic devices were fabricated using the films as electron transport layers 

in inverted type P3HT:PC61BM bulk heterojunction devices. Moreover, the PDIN-H films 

changed from red to purple upon exposure to butylamine vapors which prompted the 

investigation of hydroxide free processing. Indeed, films of PDIN-H were easily formed by 

processing with 1-propanol/butylamine or water/butylamine solutions. 

 Introduction

Perylene diimide (PDI) dyes have a long history as stable colorants with uses as diverse 

as textile dyes, print media, and automotive paint.1,2 The extended π-conjugated structure 
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yields strong visible light absorption and deep lying frontier molecular orbital (FMO) 

energies.3–5 In addition, the molecules self-assemble into structures with strongly 

overlapping π-stacks rendering this chromophore appropriate as an electron transport 

material in optoelectronic devices.6–8 This organic polycyclic aromatic building block has 

been used to prepare myriad functional materials for use in electronic devices including 

photovoltaics,9 light emitting diodes,10 and field-effect transistors.11 A key feature of PDI 

is that its self-assembly properties can be further optimized by modifying the core at the 

bay, headland, and imide positions. This level of control is critical to tune its morphology 

in the solid-state for realizing high organic electronic device performance.12,13

Of unique importance in controlling both the molecular properties and self-assembly in 

thin films via heteroatom annulation at the bay position of the PDI chromophore. 

Sulphur,14,15 selenium,16,17 and nitrogen18,19 annulation have all been explored to create 

new classes of PDIs.20,21  As we have previously demonstrated,22–25 N-annulation 

destabilizes the FMO energies and provides an extra site for side-chain engineering.26,27 

These alterations have led to the development of non-fullerene acceptors (NFAs) for 
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organic photovoltaic (OPV) applications. In particular, OPV devices based on these NFAs 

exhibit large open circuit voltages > 1 V and can be coated using non-halogenated 

solvents via roll-to-roll compatible methods.28–32

Processing from benign solvents is a necessity for the commercialization of organic 

electronic materials. Concern about adverse health and environmental effects of the 

materials, processing solvents, and devices at end of use is mounting.33–36 Specifically, 

halogenated aromatic solvents such as 1,2-dichlorobenzene and chlorobenzene are 

often used despite their toxicity and low vapour pressure. Such solvents pose safety 

hazards to human and environment health and as such, large scale industrial production 

can no longer target methods that require these halogenated and aromatic solvents. 

Specifically, for OPV technologies, much effort is being dedicated to green solvent 

processing.37,38 A selection guide summarizes the “greenness” of common solvents via 

safety, health and environmental criteria for further information.39
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Replacing halogenated solvents is no easy task using currently available materials. 

Stringent requirements on the solubility, uniformity of film formation, and self-assembly 

into ideal nano-morphologies40 have made aromatic and halogenated solvents the most 

common processing solvents for device fabrication with standard alkylated π-conjugated 

materials.37,41 The molecule and solvent can no longer be thought of as independently 

optimizable parameters, making  device fabrication with green solvents both a 

tremendous challenge and research opportunity.42,43

An additional challenge is to not only develop materials that can be processed from green 

solvents,44 but to prepare films that can be rendered solvent resistant enabling multi-layer 

devices.45 This challenge looms especially large with a more limited solvent palette that 

is typically employed in so-called “orthogonal processing” (i.e. forming multilayer organic 

films using sequentially immiscible solvents). One common method to impart solvent 

resistance that enables orthogonal processing is to modify a semiconducting polymer with 

a cleavable or crosslinkable side-chain.45–47 These approaches have their disadvantages. 

Solvent resistance imparted by cleavable side-chains is inherently not atom-economical. 
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Solvent resistance imparted by crosslinkable side-chains requires post-deposition 

treatment such as thermal or UV annealing. A third method developed by the groups of 

Reynolds and Reichmanis is the use of an ester or acid modified alkyl chain appended to 

the materials conjugated backbone.42,43 Upon treatment with hydroxide base, in this case 

a conjugated polymer, the material becomes water soluble and thus can be cast into a 

film from this green solvent. In Reynolds’ system, UV-treatment results in side-chain 

cleavage rendering the film solvent resistant, while for Reichmanis’ system a mild acid 

treatment leaves the film impervious to various solvents. For the latter, this is analogous 

to the process of acid dyeing wherein a dye molecule containing an acidic functional group 

(typically sulfonic acids) can be deprotonated to increase aqueous solubility. A textile can 

be immersed in the solution of the anionic dye and exposed to acid to protonate the dye 

and permanently color the textile. Acid dyeing is a robust method to generate highly 

resistant coloured fabrics while still retaining high solubility in water.48 As such we took 

inspiration from both acid dyeing as well as the work of Reichmanis to develop an acid 

dye process to produce solvent resistant thin films for organic electronics.
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In this report we expand these works into an intrinsically acidic molecular system and 

demonstrate how the N-annulated PDI can be rendered alcohol or water soluble by 

deprotonation. Upon drying, the film spontaneously protonates to form a solvent resistant 

semiconducting film. Critical is the presence of a pyrrolic N-H site which can be 

deprotonated to yield an ionic molecule soluble in polar solvents and when protonated in 

the solid-state, participates in hydrogen bonding, contributing to the solvent resistant 

property of the film. 

Results and Discussion

The N-annulated PDI (PDIN-H, Figure 1) can be readily synthesized and purified column 

chromatology free, on multi-gram scale.22 The compound is bright red and is only 

sparingly soluble in halogenated solvents such as CHCl3 or polar solvents such as 

propanol (Figure S1). Upon addition of NaOH to a slurry of 1-propanol and PDIN-H (10 

mg/mL) a color change from orange/red to purple and complete dissolution of the PDIN-

H is observed. Spin-coating this solution onto an anti-static coated polyethylene 

terephthalate (PET) substrate results in the formation of a uniform red thin-film. In this 
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process the NaOH is deprotonating the PDIN-H creating an alcohol soluble ionic dye, 

PDIN-Na+. Via established density functional theory (DFT) protocols,49–54 here at the 

M06/6-31G(d,p) level of theory55–58 with the SMD model59 and a dielectric medium 

representing 1-propanol (ε = 20.52), we estimate the pKa of PDIN-H to be 19.7. A 

transition from solution to film shifts back to the PDIN-H giving the distinct neutral PDI red 

color (Figure 1).  

Figure 1. Chemical structure of PDIN-H. Treatment of a 10 mg/mL slurry of PDIN-H in 1-
propranol with 1 molar equivalent of NaOH produces a purple ionic solution. Spin-coating 
this solution onto a PET substrate yields a red colored organic film owing to the 
spontaneous protonation of the PDIN anion. This processes mimics that of classic acid 
dyeing of textiles. 

This process was further investigated in dilute solution using optical absorption 

spectroscopy (Figure 2). In dilute CHCl3 solution, PDIN-H gives rise to a typical PDI based 

Page 10 of 41Materials Horizons



10

absorption spectrum with strong absorption from 400-550 nm with three diagnostic 

vibronic bands. Adding base to this solution has no effect. For solutions of PDIN-H in 1-

propanol (PDIN-H concentration of 0.01 mg/mL), a gradual change in color from orange 

to purple with increasing equivalents of NaOH added (up to 10 molar equivalents) was 

observed. The gradual change in dilute solution suggests an equilibrium in favor of the 

PDIN-H. UV-visible spectroscopic analysis of the solutions reveals that at 0.5 eq. NaOH 

added, the dominate absorption profile of PDIN-H is present with characteristic PDI bands 

at 459, 490, and 525 nm. At 1.0 eq. NaOH added a small lower energy band at around 

601 nm appears. This new band is attributed to the PDIN- anion.60 The red-shift (0.64 eV) 

is expected as the deprotonation adds a lone pair of electrons to the pyrrolic N-atom, 

increasing electron density, and subsequently destabilizing the HOMO and LUMO 

energies and narrowing the bandgap. Indeed, DFT and time-dependent DFT (TDDFT) 

calculations, both at the M06/6-31G(d,p) level theory (in the gas phase), confirm this 

hypothesis. The HOMO and LUMO (Figure 3) for both PDIN-H and PDIN−, share similar 

spatial distributions, as one may expect. Deprotonation of PDIN-H to form the PDIN− 

anion, however, results in a considerable energetic destabilization of both the HOMO 
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(from –6.17 eV in PDIN-H to –2.87 eV in PDIN−) and LUMO (from –3.11 eV in PDIN-H to 

+0.33 eV in PDIN−). Notably, the HOMO-LUMO gap of PDIN− is 0.19 eV smaller than that 

of PDIN-H. This smaller HOMO-LUMO gap for PDIN− correlates well with the red-shifted 

S0→S1 vertical transition for PDIN− (534 nm, 2.32 eV) compared to PDIN-H (476 nm, 2.61 

eV), as both S0→S1 transitions are described predominantly by a one-electron excitation 

from HOMO→LUMO (95% electronic configuration for PDIN−, and 98% electronic 

configuration for PDIN-H). These one-electron transitions, and simulated absorption 

spectra derived through convolution of the vertical transition energies and oscillator 

strengths with Gaussian functions, correlate well with data derived from UV/vis 

spectroscopy. At 2.0 eq. NaOH the two species have near equal absorbance intensity. At 

10.0 eq. NaOH it appears that the PDIN-H is fully deprotonated giving rise to an 

absorbance spectrum of only the PDIN- anion, characteristics which have been observed 

in other PDI based molecules.61,62 The high concentration of NaOH implies an equilibrium 

exists for this system. The process is fully reversible upon addition of protic acid (Figure 

S2). 
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Figure 2. A) Image showing the color changes of PDIN-H in 1-propanol solution with 
varying equivalents of NaOH added. B) UV-vis spectra of PDIN-H solutions in CHCl3 with 
1 mol equivalent NaOH, and in 1-propanol with 0-10 mol equivalents of NaOH.
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Figure 3. A) Schematic molecular orbital (MO) correlation diagram for PDIN− (left, purple) 
and PDIN-H (right, black) as determined at the M06/6-31G(d,p) level of theory. B) 
Simulated absorption spectra of PDIN− (purple) and PDIN-H (black) derived from TDDFT 
calculations at the M06/6-31G(d,p) level of theory.    

To expand the solvent scope for solution preparation and subsequent film formation a 

series of five alcohols were tested and solutions both spin-coated and slot-die coated 

onto PET substrates. Alcohols were the solvent of choice, as they have an appropriate 

drying rate for large scale printing techniques, and were chosen over other green solvents 
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such as esters or hydrocarbons as they tend to show better EHS (environmental, health 

and safety) properties,63 as well as solubilize the sodium hydroxide necessary for our 

system to work.  Multiple PDIN-H/NaOH solutions were prepared at 10 mg/mL in the 

following alcohols: 2-propanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol. Only 1 

molar equivalent of NaOH was required to solubilize the PDIN-H. Methanol failed to yield 

solutions suitable for uniform film formation as the PDIN-H did not dissolve and thus be 

converted to the anion. The longer chain alcohols 1-heptanol and 1-decanol were not 

suitable for roll-to-roll coating methods owing to low vapour pressures and 

correspondingly long drying times (>12 hours at room temperature). 1-Octanol and 1-

nonanol were not tried as they are environmental hazards (see SI appendix S1)). 

Evaluating solutions for scalable film deposition methods rather than spin-coating is 

important in demonstrating a material’s relevance for large scale manufacturing. Slot-die 

coating has been identified as a viable method for the roll-to-roll coating of organic 

semiconducting films with several reports detailing the practical use of the technique.64–

68 We faced no challenges in either spin-coating or slot-die coating the solutions and, in 

all cases, uniform films were formed with no visible defects or particles (Figure 4A). The 
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purple solutions remained purple upon initial coating of the PET substrate, but as solvent 

evaporation occurred the resulting films were red in color.

Controlling film thickness is important in a variety of contexts, making it necessary to 

deposit films from a wide range of solution concentrations. Solutions of PDIN-H/NaOH 

were prepared with PDIN-H concentrations of 5, 10, 20, 30, 40, and 50 mg/mL with 1 

molar equivalent of NaOH added. Inks were purple in color with all solids dissolved. Upon 

slot-die coating, the inks yielded highly uniform thin films (Figure 4B).  

Figure 4. A) Top – images of spin-coated (SC) 1.5 cm x 1.5 cm films. Bottom – images of 
slot-die coated (SD) 13 mm x 20 cm films., (1) 2-propanol, (2) 1-propanol, (3) 1-butanol, 
(4) 1-pentanol, (5) 1-hexanol. Films prepared from 10 mg/mL solutions of PDIN-H in 
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alcohol with 1 molar equivalent of NaOH added. B) Images of slot-die coated films from 
1-propanol solutions with varying PDIN-H concentrations. (6) 5 mg/mL, (7) 10 mg/mL, (8) 
20 mg/mL, (9) 30 mg/mL, (10) 40 mg/mL, (11) 50 mg/mL. For all solutions 1 molar 
equivalent of NaOH was added. 

Optical absorption spectroscopy can be used to understand the molecular packing within 

the thin-film and determine relative film thickness based on light absorption, thus all films 

were analyzed using UV-visible spectroscopy (Figure 5). All films exhibited the same 

basic optical absorption profile with a dominant absorption band from 380 nm to 625 nm 

with max at 498 nm and a low energy shoulder at 524 nm. This profile has been seen 

previously in thin films of PDI monomers.69,70 For the spin-coated films an increase in light 

absorption is observed with an increase in the vapour pressure of the alcohol (Figure 5A). 

This is consistent with the notation that higher vapor pressure solvents evaporate quicker 

during spin-coating and leave more material on the substrate. For the slot-die coated films 

from different alcohols, the optical absorption profiles remain constant, consistent with all 

material being deposited on the substrate (Figure 5B). Not surprisingly, increasing the 

concentration from 5 to 50 mg/mL results in a progressive increase in light absorption 
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(Figure 5C). The optical absorption profile of an organic conjugated material in the film is 

known to be sensitive to morphology and aggregation.71,72 Considering the optical profiles 

are more similar than different we do not expect major differences in the molecular 

packing.  

Figure 5. Optical absorption spectra of A) PDIN-H films spin-coated from different 
alcohols at 10 mg/mL, B) PDIN-H films slot-die coated from different alcohols at 10 
mg/mL, and C) PDIN-H films slot-die coated from 1-propranol at varying concentrations 
onto PET. In all cases 1 molar equivalent NaOH was added to each pre-deposition 
solution. 

As mentioned, multi-layer device formation requires that the deposited films can be made 

solvent resistant in respect to the subsequent layer. To test the films solvent resistance, 

we exposed the films to 2-propanol, water, and o-xylene. Films were inspected visually, 

examined using optical and atomic force microscopy, and UV-visible spectra were 
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collected to asses film quality (Figures 6 and 7). In all cases, no significant dissolution, 

swelling, cracking, or dewetting of the film was observed. Only with o-xylene did we 

observe any difference as seen in the slight change in the shape of the UV-visible optical 

absorption spectra. These results demonstrate that PDIN-H can be processed from 

greener solvents into solvent resistant films. These results were obtained whether the 

solvent treatment was applied via slot-die coating (Figures 6 and 7) or soaking the films 

in neat solvent for 10 seconds (Figures 7 and S3).

Figure 6. Photographs of 1.5 cm x 1.5 cm (top), optical microscopy images (10x 
magnification with white scale bar corresponding to 500 µm) (middle), and atomic force 
microscopy height images along with the corresponding root mean square roughness 
RMS (bottom) for PDIN-H films on PET A) as-cast with no solvent coated on top and with 
B) 2-propanol, C) water, or D) o-xylene slot-die coated on top and left to dry. PDIN-H films 
formed via slot-die coating 10 mg/mL PDIN-H solutions in 1-propanol with 1 molar 
equivalent of NaOH added. 
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Figure 7. Optical absorption spectra of PDIN-H films as-cast with no solvent coated on 
top and with A) 2-propanol, water, or o-xylene slot-die coated on top and left to dry or B) 
dipped in 2-propanol, water, or o-xylene for 10 s then removed and left to dry. 

The solvent resistance of PDIN-H films likely results from hydrogen bonding between the 

NH and C=O functional groups of adjacent molecules yielding strong intermolecular 

coupling. To assess this hypothesis, single crystals of PDIN-H were grown from 

dioxane/methanol solution (Figure 8). The crystal structure of PDIN-H shows a distorted 

perylene core owing to the N-annulation bending the polycyclic aromatic structure.22 

Adjacent molecules of PDIN-H form nanoribbons tightly bound by hydrogen bonds with a 

NH••O=C distance of 1.96 Å and an angle of 171°. These parameters characterize the 

hydrogen bonds as moderate with a bond strength of ~ 4-15 kcal mol-1.73 DFT analysis of 
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the strength of the hydrogen bond at the M06/6-31G(d,p) level of theory using the 

supramolecular approach estimates the binding energy of the hydrogen-bonded dimer to 

be –10.1 kcal/mol. In the π-stacking direction, PDIN-H forms slightly offset π-stacks with 

a π-π distance of 3.44 Å (based on the shorted distance between ring centroids). In 

addition to being offset, the π-stacked molecules are twisted by 37° and tilted by 6.7°, 

relative to adjacent molecules in the stack, to avoid imide chain interactions. Combined, 

the tight π-stacks as well as the moderate strength hydrogen bonding explains the solvent 

resistance of PDIN-H. Further, the tight π-stacking indicates that PDIN-H could function 

as an electron transport material.

1.96 Å

1.96 Å

3.44 Å 37 °

A) B) C)

Figure 8. Structural of PDIN-H highlighting: A) hydrogen bonding between the NH and 
C=O functional groups, B) π-π stacking motif, and C) the offset and dihedral angle 

Page 21 of 41 Materials Horizons



21

between two π-stacked molecules. In A) and B) C, H, N, and O atoms are shown as grey, 
white, blue, and red, respectively. In C), H atoms have been omitted for clarity and one 
molecule of PDIN-H is represented in blue and another in red.

To probe the semiconducting behavior of the PDIN-H films, proof-of-concept organic 

photovoltaic (OPV) devices were fabricated. PDIN-H was used as an electron transport 

interlayer (ETL) in inverted type OPV devices to both modify and replace the standard 

ZnO ETL. A device architecture of glass/ITO/ETL/P3HT:PC60BM/MoOx/Al was utilized 

where ETL = ZnO, ZnO/PDIN-H, or PDIN-H. In all cases the PDIN-H film was formed by 

spin-coating a 5 mg/mL solution of PDIN-H in 1-propanol with 1 molar equivalent of NaOH 

added. The P3HT:PC60BM active layer was selected as it is common to nearly all OPV 

research laboratories. The device architecture, external quantum efficiency (EQE) 

spectra, and current density-voltage plots are displayed in Figure 9 (metrics in Table S2). 

Control devices using a ZnO ETL gave a power conversion efficiency (PCE) of 2.8%, 

consistent with literature. Use of a ZnO/PDIN-H ETL gave similar PCE of 2.7%. The 

similar PCE is not unexpected as PDI based materials have been widely used to engineer 

the ZnO interface.12,74,75 PDIN-H ETLs performed well, giving similar performance with 
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OPV devices exhibiting a PCE of 2.3%. The slight drop owing to a slightly smaller fill factor 

(FF) (53% versus 60% in the control devices). Regardless, these proof-of-concept 

devices demonstrate the utility of the alcohol solvent processed PDIN-H organic films to 

function as electron transport materials and provides a new material for all-organic PV 

device fabrication. 

Figure 9. A) OPV device architecture. B) EQE spectra. C) Current density-voltage 
characteristics under 1-sun illumination (left) and in the dark (right). PDIN-H layer 
processed from PDIN-H solutions in 1-propanol with 1 molar equivalent of NaOH added. 

To test the viability of water-based processing of the PDIN-H films we tested primary 

amines. The rationale is that (1) they are soluble in alcohols and water, and (2) could 
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interact with PDIN-H by polarizing the NH bond and thereby aid in both alcohol and water 

based processing.60  To test this hypothesis, we first slot-die coated films of PDIN-H from 

1-propanol/NaOH solution then exposed them to butylamine vapor. Indeed, upon 

exposure in a closed environment, the red PDIN-H film immediately changed color to 

purple. Simply removing the purple film from the amine vapor and letting sit in air for a 

few seconds re-established the red color (Figure 10A). Here the excess butylamine 

deprotonates the PDIN-H to give the purple PDIN- anion. When the atmosphere saturated 

with butylamine is removed, the PDIN- anion is protonated regenerating the red color, 

characteristic of PDIN-H, while the butylamine evaporates. No changes in the film were 

detected by visual inspection and UV-visible spectroscopy (Figure S5). 

Next, slurries of PDIN-H in 1-propanol and water were prepared and volume equivalents 

of butylamine added. For both slurries there was a progressive color change and 

dissolution of the PDIN-H with increasing volume equivalents of butylamine added. At 

one volume equivalent complete solvation was observed. (Figure 10B). The solutions 

were readily processed into uniform thin-films via slot-die coating (Figure 10C) or spin-
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coating (Figure S6). The films turned to the characteristic red color of PDIN-H immediately 

upon film drying. Analysis of the thin films via UV-visible spectroscopy showed the 

signature profile for the PDIN-H, although the water/butylamine processed films were 

slightly hazy as a result of light scattering (Figure S6B). Regardless, the PDIN-H can be 

readily processed into uniform thin-films using alcohol or water-based solutions with a 

volatile amine additive, thus eliminating the need for the use of caustic hydroxide salts. 

These films showed no significant signs of dissolution, swelling, or cracking upon coating 

polar and non-polar solvents on top (Figure S6). 

Figure 10. A) Chemical structure of PDIN-H and corresponding slot-die coated films (1) 
as-cast, (2) during exposure to butylamine vapor, and (3) after removal of butylamine 
vapor. PDIN-H films processed from 10 mg/mL 1-propanol solutions with 1 molar 
equivalent NaOH added. B) Top: PDIN-H in 1-propanol (10 mg/mL) with added volume 
equivalents of butylamine. Bottom: PDIN-H in water (10 mg/mL) with added volume 
equivalents of butylamine. C) Photographs of PDIN-H films prepared via slot-die coating 
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from: Top: 1-propanol/butylamine (1:1 v/v) solutions of PDIN-H (5 mg/mL). Bottom: 
water/butylamine (1:1 v/v) solutions of PDIN-H (5 mg/mL).  

Conclusions

In summary, the formation of large area, solvent resistant perylene diimide films has been 

demonstrated using alcohol and water-based formulations and the roll-to-roll compatible 

slot-die coating method. The N-annulated perylene diimide, PDIN-H, is a dye with a low 

solubility in most common solvents that has an intrinsically acidic pyrrolic NH functional 

group. Upon deprotonation with hydroxide or amine bases the molecule can be fully 

solubilized in alcohols or water. The purple solution could be slot-die coated into uniform 

organic films which spontaneously protonate to give the diagnostic red color of the parent 

PDIN-H molecule. The films were resistant to both polar and non-polar solvent, a result 

of the PDIN-H molecule forming tight π-π stacks with significant NH••O=C hydrogen 

bonding in the solid state. This process is reminiscent of acid dyeing of textiles. Proof-of-
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concept inverted type OPV devices using the alcohol processed films as a replacement 

for zinc oxide layer showed similar power conversion efficiencies demonstrating the utility 

of PDIN-H to function as an electron transport layer. This work provides a new design 

principle for the green solvent processing of organic charge transporting materials that 

will allow for multi-layered electronic systems to be printed at large scale.

ASSOCIATED CONTENT

Experimental

Crystal Data for PDIN-H, C34H29N3O4 (M =543.60 g/mol): monoclinic, space group P21/c (no. 
14), a = 18.2166(7) Å, b = 18.5973(10) Å, c = 7.8095(2) Å, β = 97.881(2)°, V = 
2620.71(19) Å3, Z = 4, T = 173 K, μ(CuKα) = 0.734 mm-1, Dcalc = 1.378 g/cm3, 22039 reflections 
measured (4.898° ≤ 2θ ≤ 130.452°), 4467 unique (Rint = 0.0349, Rsigma = 0.0216) which were used 
in all calculations. The final R1 was 0.0581 (I > 2σ(I)) and wR2 was 0.1639 (all data).

Supporting Information

Supporting information available: Materials and methods. PDIN-H solubility images in 

various solvents. Deprotonation/protonation reversibility. Films dipped in solvent images. 
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UV-vis of film exposure to amine vapors. PDIN-H films spin cast and slot-die coated from 

1-propanol/butylamine and water/butylamine images and UV-vis. Films cast from 1-

propanol/butylamine and water/butylamine with solvents slot-die coated on top images 

and UV-vis. Safety comment and hazards information. The following files are available 

free of charge.
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