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Design, System, Application

While polymer nanocomposites display an unprecedented combination of mechanical and 

electrical properties, tailoring them to meet application specific requirements remains a 

challenging task, owing to the vast, mixed variable design space that includes composition (i.e. 

choice of polymer, nanoparticle & surface modification) and microstructures of nanocomposite 

material. Modelling properties of interphase region introduces additional complexity to the design 

process and requires computationally expensive simulations. 

This article demonstrates that a data centric design framework, where each step of design process 

is guided by experimental and/or simulated data, can overcome these challenges. Using design of 

nanocomposites for electrical insulation as an exemplar, we describe the integration of 

experimental data with sophisticated computational simulations for microstructure 

characterization, interphase modelling, and structure-property prediction. A novel Latent Variable 

Gaussian Process (LVGP) approach enables mixed variable Bayesian Optimization for concurrent 

composition and microstructure optimization to expedite the search for Pareto designs under 

multiple performance criteria. While discussions are centered on nanocomposites, the concepts of 

data centric design, mixed variable Bayesian Optimization and multicriteria design are ubiquitous 

and immediately applicable to other material systems.
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ABSTRACT 
With an unprecedented combination of mechanical and electrical properties, polymer 

nanocomposites have the potential to be widely used across multiple industries. Tailoring 

nanocomposites to meet application specific requirements remains a challenging task, owing to 

the vast, mixed-variable design space that includes composition (i.e. choice of polymer, 

nanoparticle, and surface modification) and microstructures (i.e. dispersion and geometric 

arrangement of particles) of the nanocomposite material. Modeling properties of interphase, the 

region surrounding a nanoparticle, introduces additional complexity to the design process and 

requires computationally expensive simulations. As a result, previous attempts at designing 

polymer nanocomposites have focused on finding the optimal microstructure for only a fixed 

combination of constituents. In this article, we propose a data centric design framework to 

concurrently identify optimal composition and microstructure using mixed-variable Bayesian 

Optimization. This framework integrates experimental data with state-of-the-art techniques in 

interphase modeling, microstructure characterization & reconstructions and machine learning. 

Latent Variable Gaussian Processes (LVGPs) quantifies the lack-of-data uncertainty over the 

mixed-variable design space that consists of qualitative and quantitative material design variables. 

The design of electrically insulating nanocomposites is cast as a multicriteria optimization problem 

with the goal of maximizing dielectric breakdown strength while minimizing dielectric 

permittivity and dielectric loss. Within tens of simulations, our method identifies a diverse set of 
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designs on the Pareto frontier indicating the tradeoff between dielectric properties. These findings 

project data centric design, effectively integrating experimental data with simulations for Bayesian 

Optimization, as an effective approach for design of engineered material systems. 

 

1. INTRODUCTION 
The launch of the Material Genome Initiative (MGI) [1] has revolutionized the way 

advanced material systems are designed with targeted performance. MGI strives to elucidate the 

Processing-Structure-Property (PSP) relationships [2] for material design. A holistic design 

strategy for bi-directional traversal of PSP relationships requires us to address some key issues – 

cost effective processing techniques, microstructure representation and reconstruction, 

dimensionality reduction and tractable optimization techniques, to name a few. In the field of 

polymer nanocomposites, goal-oriented design has proven to be a difficult task due to several 

reasons. 

First, limited understanding of complex polymer(matrix)-nanoparticle(filler) interactions 

and their influence on properties hinders the selection of the optimal combination from the vast 

space possible combinations. While finite element analysis (FEA) models have been developed to 

simulate structure-property relationships for polymer nanocomposites [3-5], modeling interphase 

behavior remains a prominent challenge. Researchers have investigated interphase behaviors and 

their origin both analytically and experimentally [5-7]. Recent experiments have demonstrated that 

the local polymer properties significantly change near the polymer surface via measurement of 

properties in  model nanocomposites [7, 8]. While direct measurement of interphase properties in 

nanocomposites is challenging experimentally, one method to calculate the interphase properties 

is to inversely tune the parameters in micro-scale model constitutive equations or finite elements 

analysis using the bulk composite properties [3, 9-11]. However, this tuning procedure is very 

time-consuming given the complexity of experimental data and the simulation cost of FEA.  

Second, the high dimensionality of nanocomposite microstructure requires specialized 

techniques for characterization of micrographs with reduced dimensionality and establish its 

relationship with processing conditions and properties. To this end, computational Microstructure 

Characterization and Reconstruction (MCR) [12] techniques provide a quantitative representation 

of microstructures and the ability to reconstruct realizations with desired features. Among the 

existing methods, Physical Descriptors [13, 14] and Spectral Density Function (SDF) [15-18] have 
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been widely adopted for design of material systems due to their physically meaningful 

characterization, relative ease of reconstruction and low dimensional representation. The selection 

of MCR method for a material system and ascertaining associated parameters is accomplished by 

analyzing the micrographs obtained from different processing conditions.  

Third, calibration of interphase parameters and selection of MCR technique requires a 

database, where each nanocomposite sample is labelled by processing conditions, microstructure, 

and properties. NanoMine [19, 20] - a online database with built-in data curation capabilities 

provides access to several nanocomposites reported in the literature. However, articles seldom 

report all the aforementioned labels which hinders the development of PSP relationships necessary 

for targeted design of nanocomposites.  

Fourth, the high computational cost of physics-based property evaluation methods 

prohibits their direct usage in the iterative design process that could require hundreds of property 

evaluations. To alleviate this problem, Bayesian Optimization (BO) [21, 22] has emerged as a 

viable proposition in material design [23-25]. However, these applications of BO involve only 

quantitative design variables in the form of descriptors (aka features) known to influence material 

properties; while mixed-variable problems containing both qualitative and quantitative variables 

is common in material design. Choice of constituents in any material system can be treated as 

qualitative variables, while microstructure descriptors, processing, and operating parameters 

(temperature, RPM, wavelength etc.) are quantitative variables. For example, nanocomposite 

design involves concurrent optimization of qualitative (choice of polymer, nanoparticle, surface 

modification) and quantitative (microstructure descriptors) variables. The Latent Variable 

Gaussian Process (LVGP) [26] provides an intuitive way to predict material properties from 

mixed-variable inputs and improves the performance of single criterion BO as compared to 

existing GP methods [27]. However, materials design requires mixed-variable multicriteria BO 

since suitability for commercial application relies heavily on multiple criteria. 

These factors hinder the establishment of a comprehensive methodology to fully 

incorporate processing, structure, and property information for nanocomposite materials into the 

design process. Combinations of experimental, theoretical, and simulated investigations [28-32] 

have improved our understanding of the influence of materials and processing conditions on 

nanocomposite morphology and properties. These studies are typically guided by researcher’s 

knowledge and intuition. In recent years, there has been a push toward the “fourth paradigm” of 
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science [33] which seeks to leverage the increasing data availability to develop tools that can 

effectively extract knowledge to guide a data-driven search of optimal materials. However, 

previous attempts at data-driven nanocomposite design have been limited to design of 

microstructure for a prespecified combination of polymer, nanoparticle and surface modification 

[34, 35].    

This article presents a data-centric design framework and the associated techniques to 

leverage existing data for multicriteria nanocomposite design. The framework is flexible to 

incorporate data generated by experiments as well as simulations or machine learning to overcome 

existing challenges in establishing structure-property relationships. Nanocomposite design is cast 

as a mixed-variable optimization problem to concurrently identify optimal composition and 

microstructure. Central to the design strategy is integration of LVGP, which enables mixed-

variable machine learning and uncertainty quantification, with multicriteria BO to navigate 

complex, non-linear design space and identify a diverse Pareto frontier. While discussions on data 

and modeling tools are centered on polymer nanocomposites, the concept of data centric design is 

generic and applicable to any material system. 
 

2. DATA-CENTRIC NANOCOMPOSITE DESIGN FRAMEWORK 
Despite their attractive mechanical and electrical properties, commercial application of 

polymer nanocomposites is plagued by a lack of goal-oriented design methodology. In this context, 

we present the data-centric design framework, guided by the philosophy that integrating curated 

databases with physics-based simulations and machine learning expedites nanocomposite design.  

Fig.1 depicts the mixed-variable BO framework exemplified by the design of insulating 

materials, indicating the various modules involved and information flow between them. The 

framework is initiated from a materials database (Module 1) comprising nanocomposite samples 

with varying compositions, corresponding microstructures and measurement of properties such as 

dielectric loss. Composition is defined by the choices of polymer, nanoparticle and surface 

modification. Microstructure descriptors influenced by composition and processing conditions, 
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e.g., nanoparticle dispersion, are quantified from micrographs using the MCR techniques. The 

identified range of microstructure descriptors will be used as bounds in the design process.  

The database also contains experimental measurements of nanocomposite properties, 

which can be used to calibrate simulation models (Module 2) and train machine learning models 

for situations where finite element simulations (Module 3) are too expensive or simulation models 

are premature (Module 4). For example, experimental measurements of bulk nanocomposites data 

are used for calibrating the nanoparticle-polymer interphase parameters necessary to accurately 

predict properties via FEA. With bounds for design variables identified and models to predict 

dielectric properties, BO (Module 5) expedites the search for high-performing nanocomposites 

designs. The steps included in the BO procedure can be summarized as follows: 

I. A machine learning model is trained on existing data to predict material properties of 

interest from design variables and quantify prediction uncertainty 

II. An acquisition function uses the predictions and associated uncertainties to select the 

design that promises the largest improvement in properties.  

III. Properties of the selected design are evaluated and added to the dataset. 

This process is repeated for a prespecified number of iterations or until a global optimum 

(for single criterion design) / Pareto front (for multicriteria design) is identified. While GP are 

frequently used in BO, existing GP models were developed for quantitative variables and the 

associated correlation functions cannot accommodate qualitative inputs. We overcome this 

 
Figure 1: Data centric design framework for polymer nanocomposites 
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limitation by leveraging the recently developed LVGP† approach [26, 27]  which implicitly 

converts qualitative variables to continuous latent variables for evaluating correlations. Since 

functional materials must satisfy multiple performance criteria, we extend the LVGP based BO for 

multicriteria optimizations. 

In this article, we demonstrate the data-centric design process for electrically insulating 

polymer nanocomposites, with potential application in high voltage rotating machines [36]. Three 

major electrical properties to be optimized are breakdown strength, dielectric permittivity and 

dielectric loss. Breakdown strength (𝑈𝑈𝑑𝑑) is the minimum voltage at which current flows through 

an insulating material. Dielectric permittivity (𝜖𝜖) characterizes the degree of electrical polarization 

experienced by the material and dielectric loss (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is related to the amount of heat generated 

under an alternating electric field. High 𝑈𝑈𝑑𝑑, low 𝜖𝜖 and low 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are ideal but tradeoffs between 

𝑈𝑈𝑑𝑑  vs 𝜖𝜖 and 𝜖𝜖 vs 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 have been observed [37, 38].  

For the design of insulating materials, these properties are known to be influenced by 

composition (choice of filler, polymer, surface modification) and nanoparticle dispersion. We 

consider nanocomposites with two types of polymers - polystyrene (PS) and 

polymethylmethacrylate (PMMA) containing silica nanoparticles with three choices of surface 

modifications– Chloro-, Amino- and Octyl-silanes. Nanoparticle dispersion is quantified from 

Transmission Electron Microscopy (TEM) images using the Spectral Density Function (SDF) [15-

18]. Dielectric permittivity 𝜖𝜖 and loss 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are evaluated using FEA, where interphase properties 

are characterized by a shift in the nanocomposite properties w.r.t pure polymer properties and 

obtained by calibration (Module 2) based on the bulk properties from experiments. In Module 3 

SDF based microstructure reconstruction [39] is used to generate 2D Representative Volume 

Elements (RVEs) with desired filler area fraction and dispersion for FEA. Module 4 is an empirical 

machine learning model employing Random Forrest technique [40] which is trained on 

experimental data present in nanocomposite database to predict the breakdown strength 𝑈𝑈𝑑𝑑 as a 

function of both qualitative and quantitative material design variables.  

In Module 5,  the mixed-variable BO problem is performed by leveraging the built-in 

uncertainty quantification of LVGP models for performing single and multicriteria optimization 

using the expected improvement [41] and expected maximin improvement [42] acquisition 

                                                           
† An implementation of LVGP in R programming language is available from the Comprehensive R Archive 
Network (CRAN) at  https://CRAN.R-project.org/package=LVGP. 
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functions respectively. At each iteration, the LVGP model is updated with a new design whose 

dielectric properties are evaluated using Modules 3 and 4. 

The design framework presented here has two significant benefits. First, its modularity 

allows for selection, replacement, and customization of methods within each module without 

affecting the rest of the framework. For example, the machine learning model used for 𝑈𝑈𝑑𝑑 can be 

replaced by a physics-based simulation model in the future. The microstructure characterization & 

reconstruction method can be selected based on the nature (nanoparticle or nanotube) of the filler. 

Second, diverse applications can be explored using the same framework by modifying the 

objectives. For example, we can design nanodielectrics by maximizing 𝜖𝜖 and minimizing 𝑈𝑈𝑑𝑑, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

in Module 5 without modifying the rest of the framework. 

 

3. IMPLEMENTING DATA CENTRIC DESIGN FRAMEWORK 
In the following subsections, we describe the techniques that are used to support the 

implementation of the proposed materials design framework, using the design of insulating 

polymer composites as an example. 
3.1 Nanocomposite Database Preparation (Module 1) 

A database comprising nanocomposite samples labelled by their composition, processing 

conditions, microstructures and dielectric properties is essential for identifying design variables 

and developing the structure-property relations. For design of insulating nanocomposites, we 

developed a database of samples with varied composition and dispersions.  

Silica nanoparticles (diameter 14 nm) in methyl ethyl ketone were procured from Nissan 

Inc. The surface of the nanoparticles was modified using three monofunctional silane coupling 

agents: aminopropyledimethylethoxysilane (Amino), chloropropyledimethylethoxysilane 

(Chloro) and octyldimethylmethoxysilane (Octyl), from Gelest Inc. Polystyrene (PS) from 

Goodfellow Corporation and polymethylmethacrylate (PMMA) from Scientific Polymer Products 

Incorporated is used as the polymer. Surface modification of the nanoparticles is carried out in 

accordance to the procedure outlined by Natarajan et al. [43]. The choice of polymer and surface 

modification determine nature of interactions between nanoparticle and polymer matrix. Our 

analysis [44] has shown that nanoparticle-polymer compatibility, quantified by ratio of work of 

adhesion, determines the likelihood of deagglomeration during extrusion. Incompatible systems 
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such as amino modified silica in PMMA matrix experienced less deagglomeration as compared to 

compatible systems. 

Nanocomposites with 2wt% filler loading were prepared in a Thermo Haake Minilab, co-

rotating twin screw extruder. Mixing parameters such as screw speed and specific energy input 

were varied to obtain a range of different dispersion states. A JEOL 2010 transmission electron 

microscope (TEM) was used to characterize the dispersion state of the nanocomposites. The TEM 

images were binarized using the Niblack algorithm [45, 46]. Dielectric spectroscopy 

measurements was carried out for each nanocomposites sample prepared for this study, details of 

which is available in ref. [44]. 

3.2 Microstructure Characterization and Reconstruction (Modules 1 & 3) 

MCR enables extraction and quantitative representation of nanoparticle dispersion from 

TEM images of nanocomposites. The extracted representation will serve as microstructure 

parameters in PSP mapping and design optimization. In this article, dispersion is extracted using 

SDF, a frequency domain microstructure representation capable of capturing spatial correlations 

of complex heterogeneous materials. Mathematically, SDF 𝜌𝜌(𝑘𝑘) can be evaluated as: 

 𝜌𝜌(𝒌𝒌) = |ℱ{ℳ}|2, (1) 

where ℳ is the binarized microstructure, ℱ(. ) is the Fourier transform operator and 𝒌𝒌 is 

the frequency vector. For isotropic microstructures, SDF can be radially averaged about zero 

frequency such that the frequency vector 𝒌𝒌  is reduced to a scalar 𝑘𝑘; making SDF a one-

dimensional function of frequency. Although it is known to be the Fourier transform of  a two-

point autocorrelation function and hence encapsulates equivalent morphological information, Yu 

et al. [18] have shown that SDF is a more convenient representation to parametrize and design 

microstructures. These features are also evident from the analysis of nanocomposite 

microstructures in our database (Module 1). After binarizing TEM images using the Niblack 

algorithm [46] and assuming isotropy, SDF was evaluated using Eq.(1). We noticed that the SDF 

of all microstructures approximately follows an exponential distribution that can be parametrized 

with two variables – shape parameter 𝛼𝛼 and scale parameter 𝜃𝜃: 

 𝜌𝜌(𝑘𝑘) =  𝛼𝛼 ∗ exp �−
𝑘𝑘
𝜃𝜃�

 . (2) 

TEM images gathered from samples subjected to different processing conditions were 

characterized using SDF and parameters 𝛼𝛼 and 𝜃𝜃 were ascertained by curve fitting using Eq.(2). 
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The average 𝑅𝑅2 value for fitting was 0.90. Images with exceptionally large nanoparticle 

agglomerates are not considered for this analysis as they do not significantly impact bulk 

nanocomposite response for loss or permittivity.  Fig. 2 shows three microstructures along with 

their one-dimensional SDF and curve fitting. Filler dispersion increases through Fig. 2(A-C) and 

is reflected in a slower decay rate of SDF which can be quantified by 𝜃𝜃. Each nanocomposite 

sample is represented by the average values of  𝛼𝛼 and 𝜃𝜃 estimated from the analysis of TEM 

images. It was noticed that 𝛼𝛼 varies in a narrow interval [0.39, 1.84] and has very little influence 

on the SDF profile. On the other hand, scale parameter 𝜃𝜃 varies between [1.49, 46.85], changing 

the rate of decay of SDF and consequently characterizing the dispersion of the filler aggregates. 

Thus, we will consider 𝜃𝜃 as a microstructure design variable and fix 𝛼𝛼 to its mean value 1.1. The 

range of 𝜃𝜃 identified here will be used to define bounds for these variables in design formulation. 

Microstructure reconstruction is an integral part of material design framework, since 

material properties must be evaluated for the microstructure represented by design variables at 

each iteration of optimization (Module 3). In this study, we are using the fast Fourier transform 

based reconstruction method developed by Iyer et al. [39].  
 

 
Figure 2: Three representative microstructures with varying dispersions and their SDF (blue 
curve) and corresponding curve fit using Eq. 2(red dashed curve). The design variable 𝜃𝜃′s value 
for each image shown in inset 
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3.3 Interphase Calibration and Finite Element Analysis for Dielectric Permittivity and Loss 

(Modules 2 and 3) 

Each objective function evaluation (Module 3) is accomplished via finite element (FE) 

computation of the effective dielectric permittivity and loss of an RVE constructed using 

microstructure descriptor (dispersion) and composition (polymer type and surface modification 

type) recommended by BO. Incorporating interphase material properties into each FE simulation 

corresponding to the given combination of polymer type and surface modification type is a 

necessary intermediate step between constructing an RVE and computing its dielectric response 

[11]. Generally, we specify the permittivity and loss of the interphase in the form of five shifting 

factors that are applied to the polymer properties in the frequency domain to generate the complete 

frequency domain interphase properties [3, 47]. Frequency dependent dielectric properties, real 

(𝜀𝜀′(𝜔𝜔)) and imaginary (𝜀𝜀"(𝜔𝜔)) permittivity, of a polymer are expressed as superposition of 

independent Debye functions with different relaxation time (𝜏𝜏𝑖𝑖) and intensity (∆𝜀𝜀𝑖𝑖)  

 𝜀𝜀′(𝜔𝜔) = 𝜀𝜀∞ + �
∆𝜀𝜀𝑖𝑖

1 + (𝜔𝜔𝜏𝜏𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1

 , (3) 

 
𝜀𝜀"(𝜔𝜔) = �

∆𝜀𝜀𝑖𝑖𝜔𝜔𝜏𝜏𝑖𝑖
1 + (𝜔𝜔𝜏𝜏𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1

, 
(4) 

Shift factors 𝐶𝐶,𝑀𝑀𝛼𝛼 , 𝑆𝑆𝛼𝛼 ,𝑀𝑀𝛽𝛽 , 𝑆𝑆𝛽𝛽 (𝛼𝛼 and 𝛽𝛽 relaxation modelled separately) scale polymer 

relaxation time (𝜏𝜏𝑖𝑖) and intensity (∆𝜀𝜀𝑖𝑖) to generate interphase relaxation time (𝑆𝑆𝛼𝛼𝜏𝜏𝑖𝑖, 𝑆𝑆𝛽𝛽𝜏𝜏𝑖𝑖) and 

interphase intensity (𝑀𝑀𝛼𝛼∆𝜀𝜀𝑖𝑖,  𝑀𝑀𝛽𝛽∆𝜀𝜀𝑖𝑖 ). Superposition of Debye functions, as shown below, gives 

frequency dependent interphase properties  

 𝜀𝜀′𝑖𝑖𝑛𝑛𝑖𝑖(𝜔𝜔) = 𝜀𝜀∞ + 𝐶𝐶 + 𝑀𝑀𝛼𝛼 �
∆𝜀𝜀𝑖𝑖

1 + (𝜔𝜔𝑆𝑆𝛼𝛼𝜏𝜏𝑖𝑖)2𝜏𝜏𝑖𝑖>𝜏𝜏0

+  𝑀𝑀𝛽𝛽 �
∆𝜀𝜀𝑖𝑖

1 + (𝜔𝜔𝑆𝑆𝛽𝛽𝜏𝜏𝑖𝑖)2
,

𝜏𝜏𝑖𝑖<𝜏𝜏0

 (5) 

 𝜀𝜀"
𝑖𝑖𝑛𝑛𝑖𝑖(𝜔𝜔) = 𝑀𝑀𝛼𝛼 �

∆𝜀𝜀𝑖𝑖𝜔𝜔𝑆𝑆𝛼𝛼𝜏𝜏𝑖𝑖
1 + (𝜔𝜔𝑆𝑆𝛼𝛼𝜏𝜏𝑖𝑖)2𝜏𝜏𝑖𝑖>𝜏𝜏0

+  𝑀𝑀𝛽𝛽 �
∆𝜀𝜀𝑖𝑖𝜔𝜔𝑆𝑆𝛽𝛽𝜏𝜏𝑖𝑖

1 + (𝜔𝜔𝑆𝑆𝛽𝛽𝜏𝜏𝑖𝑖)2𝜏𝜏𝑖𝑖<𝜏𝜏0

, 

 

(6) 

where 𝜏𝜏0, relaxation time corresponding to critical frequency, is used to make distinction between 

low frequency (𝛼𝛼) and high frequency (𝛽𝛽) regime. More details can be found in [47,48]. 

In this study, we focus on the design problem at a specific frequency target, 60Hz. 

Therefore, the calibration problem reduces from the task of finding five shifting factors to finding 
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two scale factors. These scale factors (𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖) simply scale the polymer permittivity(𝜀𝜀′) 

and loss (𝜀𝜀") at 60Hz to generate the corresponding interphase properties (𝜀𝜀′𝑖𝑖𝑛𝑛𝑖𝑖, 𝜀𝜀"𝑖𝑖𝑛𝑛𝑖𝑖) at 60Hz. 

 𝜀𝜀′𝑖𝑖𝑛𝑛𝑖𝑖(𝜔𝜔 = 60𝐻𝐻𝐻𝐻) = 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗  𝜀𝜀′(𝜔𝜔 = 60ℎ𝐻𝐻), (7) 

 𝜀𝜀"𝑖𝑖𝑛𝑛𝑖𝑖(𝜔𝜔 = 60𝐻𝐻𝐻𝐻) = 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖 ∗  𝜀𝜀"(𝜔𝜔 = 60ℎ𝐻𝐻),  (8) 

Calibration of these scale factors (Module 2) is performed to minimize difference between 

the dielectric spectroscopy response of the FE simulation and that measured in experiments at 

60Hz, for each of the six material combinations that span the design space. This calibration can be 

accomplished either with manual tuning by trial and error iterations [3, 47] or using black-box 

optimization methods, for instance, adaptive sampling using Bayesian approach [48], the former 

being used here. The trial and error calibration approach begins with simulation of the two phase 

microstructure (no interphase) to obtain the initial error with respect to the composite values at 

60Hz. Based on this error, an initial assumption on the scaling factors for the interphase is made 

and used as input in a three phase model (with interphase) and the new output properties are 

predicted in FE. The values of the scale parameters are then varied iteratively until the error 

between the FE predicted properties for the three phase composite and the experimental data is 

less than the target acceptable error. A similar manual procedure can be followed, with some 

additional considerations, while tuning frequency dependent interphase description as explained 

in [47].  

The calibration protocol (module 2) is performed once for each of the six possible material 

combinations. The RVE construction for the FE simulation is based on a microstructure 

constructed by averaging microstructure descriptors across all processing conditions (30 TEM 

images per processing condition) for that composition. Since a single interphase property is 

Table 1: Dielectric properties (relative to vacuum permittivity of 8.85x10-12 F/m [3]) of 
interphase and pure polymer at 60Hz 

Polymer – Surface 
Modification 

Permittivity Loss 

PMMA 3.44 0.170 
PS 2.02 0.001 

PMMA-Chloro 3.10 0.120 
PS-Chloro 6.00 0.010 

PMMA-Nitro 2.70 0.050 
PS- Nitro 4.80 0.023 

PMMA-Octyl 4.20 0.250 
PS-Octyl 5.70 0.035 
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expected for each material combination, we select the most representative experimental response 

(from data across multiple processing conditions) for tuning the scale factors. These assumptions, 

while necessarily containing approximations on material response, are sufficient to demonstrate 

the nanocomposite design process. Notably, this study does not attempt to calibrate the interphase 

separately for each  processing condition although we acknowledge such calibration across 

processing conditions or a predictive model of interphase properties should be explored in the 

future, towards the physical validation of a predicted design and can possibly be done using data 

available in NanoMine (Module 1). Table 1 lists dielectric properties of pure polymers obtained in 

spectroscopy experiments and scaled interphase properties obtained by manual tuning for each 

material combination. These calibrated interphase properties are then used in the design process to 

assign appropriate interphase values for each design iteration according to material composition.  

 

3.4 Machine Learning for Breakdown Strength Prediction (Module 4) 

Dielectric breakdown of nanocomposites is a complex phenomenon and requires atomic 

scale simulations to decode the complex interactions occurring in the interphase. As current 

atomistic models are immature, we use a random forest [40] model trained on experimental data 

for rapid evaluation of 𝑈𝑈𝑑𝑑 as a function of material design variables during optimization. Random 

forest technique was chosen due to its ability to handle mixed-variables, superior computational 

efficiency and minimal possibility of overfitting. Training data comprised 𝑈𝑈𝑑𝑑 measurement 

 
Figure 3: (A) Prediction accuracy of the random forest trained to predict breakdown strength. 
(B) Estimate of predictor importance deduced by random forest model. The larger the 
importance estimate for a predictor, the stronger its influence on breakdown strength. 
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(expressed in kV/mm) of 51 samples at 60 Hz. Predictors used for predicting 𝑈𝑈𝑑𝑑 are the two 

qualitative (polymer type, surface modification type) and one quantitative (𝜃𝜃) design variables. A 

10-fold cross validation study revealed that the random forest model with 500 trees predicts 𝑈𝑈𝑑𝑑 

accurately with a relative root mean square error of 0.38 and re-substitution 𝑅𝑅2 = 0.92 (Fig. 3(A)). 

We observe the dataset to form two clusters; a PMMA based low 𝑈𝑈𝑑𝑑 cluster and a PS based high 

𝑈𝑈𝑑𝑑 cluster. The strong influence of polymer is also confirmed by its large predictor importance 

estimate derived from the random forest model as shown in Fig. 3(B).  

 

3.5 Latent Variable GP Modelling for Mixed-Variable Problems (Module 5) 

One of the key components of BO is a statistical model that predicts the material properties 

from design variables and quantifies lack-of-data uncertainty. While Gaussian Processes (GP) are 

frequently used in BO, the standard GP methods were developed under the premise that all input 

variables are quantitative, which does not hold for concurrent composition and microstructure 

design of nanocomposite with two qualitative variables. We recently proposed using LVGP [26, 

27] that maps the levels of the qualitative factor(s) to a set of numerical values for some latent 

quantitative variable(s). As illustrated in Fig. 4, our method is based on the belief that any 

qualitative factor must correspond to some underlying high-dimensional quantitative physical 

attributes that fully characterize that factor. Estimating the numerical latent variable values for the 

levels of the factor is essentially finding a mapping from the underlying high-dimensional space 

to the latent space, although we do not construct the mapping explicitly. The latent variables do 

 
 

Figure 4: Illustration of high-dimensional underlying space of an arbitrary qualitative factor 
and the mapped latent space. The factor has levels 𝑙𝑙1, 𝑙𝑙2, and 𝑙𝑙3, and is fully characterized by 
physical attributes 𝑣𝑣1, 𝑣𝑣2,…. The mapping 𝑔𝑔:𝒗𝒗 → 𝒛𝒛 is implicitly constructed and found during 
the estimation of the latent variable values {𝒛𝒛(𝑙𝑙1), 𝒛𝒛(𝑙𝑙2), 𝒛𝒛(𝑙𝑙3)}.  
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not have explicit physical meanings, but they provide an inherent structure for the levels of the 

factor(s), which leads to substantial insight into the effects of the qualitative factors. For 

clarification, the latent variables are only used internally inside LVGP models. When LVGP models 

are used for predictions, they still take mixed-variable inputs in the original mixed-variable input 

spaces. 

To describe the LVGP approach, the input variables are denoted as 𝒘𝒘 = (𝒙𝒙, 𝒕𝒕), where 𝒙𝒙 =

�𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝� represents 𝑝𝑝 quantitative variables and 𝒕𝒕 = �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑞𝑞� is the vector of 𝑞𝑞 

qualitative variables. With 𝑖𝑖 = 1,2, … , 𝑞𝑞, the qualitative variable 𝑡𝑡𝑖𝑖 has 𝑚𝑚𝑖𝑖 levels {𝑙𝑙1
(𝑖𝑖), 𝑙𝑙2

(𝑖𝑖), … , 𝑙𝑙𝑖𝑖𝑖𝑖
(𝑖𝑖)}. 

The nanocomposite design problem under study has one quantitative variable (dispersion 

parameter 𝜃𝜃), while the choice of polymer and surface modification are modeled as two qualitative 

variables with two (PMMA, PS) and three (Octyl, Chloro, Amino) levels respectively.  

The output variable is denoted as 𝑦𝑦, and a set of data points of input-output pairs are noted 

as {(𝒘𝒘1, 𝑦𝑦1), … , (𝒘𝒘𝑁𝑁, 𝑦𝑦𝑁𝑁)} . In context of nanocomposites, the output variable can be one of the 

three dielectric properties. Then, consider the GP model 

 𝑌𝑌(⋅) = 𝜇𝜇 + 𝐺𝐺(⋅), (9) 

where 𝜇𝜇 is the constant prior mean, and 𝐺𝐺(∙) is a zero-mean GP with covariance function 𝑘𝑘(∙,∙) =

𝜎𝜎2𝑟𝑟(∙,∙ |𝝋𝝋). 𝜎𝜎2 is the prior variance of the GP, and 𝑟𝑟(∙,∙ |𝝋𝝋) is the correlation function 

parameterized with 𝝋𝝋. The true model 𝑦𝑦(∙) is regarded as a realization of the GP 𝑌𝑌(∙). Once the 

form of the correlation function 𝑟𝑟(∙,∙ |𝝋𝝋) is specified, the hyperparameters (𝜇𝜇,𝜎𝜎2,𝝋𝝋) can be 

estimated through maximum likelihood estimation (MLE) or other principles such as minimizing 

cross-validation errors. If the independent variables of the correction function 𝑟𝑟(∙,∙ |𝝋𝝋) are only 

the continuous variables 𝒙𝒙, one can use the popular Gaussian correlation function  

 𝑟𝑟(𝒙𝒙,𝒙𝒙′|𝝋𝝋) = 𝑒𝑒𝑥𝑥𝑝𝑝 �−�𝜑𝜑𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)2
𝑝𝑝

𝑖𝑖=1

�, (10) 

which quantifies the correlation between 𝐺𝐺(𝒙𝒙) and 𝐺𝐺(𝒙𝒙′) for any input locations 𝒙𝒙 =

�𝑥𝑥1, … , 𝑥𝑥𝑝𝑝� and 𝒙𝒙′ = �𝑥𝑥1′ , … , 𝑥𝑥𝑝𝑝′ � based on their 2-norm distance scaled by 𝝋𝝋. However, in the 

mixed-variable problem, it is not straightforward to incorporate the qualitative variable 𝒕𝒕 in such 

a correlation function, as the difference 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖′ is undefined. The LVGP model handles this by 

mapping the qualitative variables 𝒕𝒕 to quantitative ones. 
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In LVGP models, the 𝑚𝑚𝑖𝑖 levels of the qualitative variable 𝑡𝑡𝑖𝑖 are mapped to 𝑚𝑚𝑖𝑖 latent 

numerical vectors {𝒛𝒛(𝑖𝑖)�𝑙𝑙1
(𝑖𝑖)�, … , 𝒛𝒛(𝑖𝑖)�𝑙𝑙𝑖𝑖𝑖𝑖

(𝑖𝑖)�} of a latent variable vector 𝒛𝒛(𝑖𝑖) ∈ ℝ𝑑𝑑, where 𝑑𝑑 is the 

dimensionality of 𝒛𝒛(𝑖𝑖). Modelers are free to choose the value of 𝑑𝑑 as a modeling parameter, 

although setting 𝑑𝑑 = 2 has been shown to be advisable for most problems. The original mixed-

type input variables 𝒘𝒘 = (𝒙𝒙, 𝒕𝒕) are thus mapped to purely continuous variables 

�𝒙𝒙, 𝒛𝒛(1)(𝑡𝑡1), … , 𝒛𝒛(𝑞𝑞)(𝑡𝑡𝑞𝑞)�. A correlation function like Eq. (10) can be subsequently constructed as 

 
𝑟𝑟(𝒘𝒘,𝒘𝒘ʹ�𝝋𝝋,𝒁𝒁) = 𝑒𝑒𝑥𝑥𝑝𝑝 �−�𝜑𝜑𝑖𝑖�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖ʹ�

2
𝑝𝑝

𝑖𝑖=1

−��𝒛𝒛(𝑖𝑖)(𝑡𝑡𝑖𝑖) − 𝒛𝒛(𝑖𝑖)�𝑡𝑡𝑖𝑖ʹ��2
2

𝑞𝑞

𝑖𝑖=1

�, (11) 

where 𝒁𝒁 is the collection of all the latent parameters 

{𝒛𝒛(1)�𝑙𝑙1
(1)�, … , 𝒛𝒛(1)�𝑙𝑙𝑖𝑖1

(1)�, 𝒛𝒛(2)�𝑙𝑙1
(2)�, … , 𝒛𝒛(𝑞𝑞) �𝑙𝑙𝑖𝑖𝑞𝑞

(𝑞𝑞)�. With this correlation structure, 

hyperparameters (𝜇𝜇,𝜎𝜎2,𝝋𝝋,𝒁𝒁) are obtained by MLE as in standard GP modelling. More details of 

this procedure and examples can be found in Zhang et.al [26].  

LVGP serves as the machine learning model predicting the optimization objective(s) from 

the design variables i.e. Step I of the BO procedure described in Section 2. We use LVGP models 

with two-dimensional latent space representation for all optimization results reported in Section 4. 

Uncertainty quantification provided by LVGP is used accomplish Step II of the BO procedure as 

described below. 

 

3.6 Bayesian Optimization (Module 5) 

To meet the demand for electrical insulation, our goal is to identify nanocomposites with 

high 𝑈𝑈𝑑𝑑, low 𝜖𝜖 and low 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. The design space consists of three variables, two qualitative and one 

quantitative, as summarized in Table 2. The choice of polymer and surface modification are 

qualitative variables with two (PS, PMMA) and three (Octyl, Chloro, Amino) levels respectively. 

Dispersion is a quantitative variable with bounds identified using SDF in Section 3.2. We present 

Table 2: Summary of design variables used in case study 

Variable Type Range/Levels 
Polymer Type (𝑷𝑷) Qualitative {𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃,𝑃𝑃𝑆𝑆} 

Surface Modification Type (𝑺𝑺) Qualitative {𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙,𝑂𝑂𝑂𝑂𝑡𝑡𝑦𝑦𝑙𝑙,𝑃𝑃𝑚𝑚𝑖𝑖𝑡𝑡𝑙𝑙} 
Filler Dispersion (𝜽𝜽) Quantitative [1.49,46.85] 
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both single and multicriteria BO strategies for this case study, using the same set of design 

variables with different objective formulations.  

For single criterion BO, we formulate an objective function that weighs all three 

normalized properties (indicated by *) equally and adds/subtracts each property depending on 

whether it needs to be minimized (maximized):  

 

min
s∈S,p∈P,m∈M

tanδ∗ + ϵ∗ − Ud
∗   

𝑆𝑆: {𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙,𝑂𝑂𝑂𝑂𝑡𝑡𝑦𝑦𝑙𝑙,𝑃𝑃𝑚𝑚𝑖𝑖𝑡𝑡𝑙𝑙} 

𝑃𝑃: {𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃,𝑃𝑃𝑆𝑆} 

𝑀𝑀:𝑚𝑚𝑖𝑖𝑂𝑂𝑟𝑟𝑙𝑙𝑚𝑚𝑡𝑡𝑟𝑟𝑚𝑚𝑂𝑂𝑡𝑡𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 1.49 ≤ 𝜃𝜃 ≤ 46.85, 

(12) 

where objective is to be minimized over a design space consisting of all possible combinations of 

surface modification (𝑆𝑆), polymers (𝑃𝑃) and microstructures (𝑀𝑀). LVGP modeling is used to model 

the objective function with design variables 𝑆𝑆, 𝑃𝑃 & 𝑀𝑀 as inputs. Expected improvement [41] is 

used as the acquisition function due to its ability to balance exploration and exploitation of design 

space, thus converging to optimum rapidly. Eq. (12) can be modified by adding weights to each 

property expressing designer’s priority for optimizing one property over the others. For example, 

maximizing 𝑈𝑈𝑑𝑑 can be prioritized by assigning a weight factor of 10 in the objective function: 

 min
s∈S,p∈P,m∈M

tanδ∗ + ϵ∗ − 10Ud
∗   (13) 

where 𝑆𝑆, 𝑃𝑃 and 𝑀𝑀 are the same as in Eq. (12). The modification of objective function subsequently 

affects the location of optimum in mixed-variable design space and will be discussed in Sec. 4.1. 

Multicriteria optimization aims to find candidate designs lying on the Pareto frontier [49] 

– a characteristic boundary comprising designs where no criteria can be improved without the 

deterioration of others. The general multicriteria optimization problem can be formulated as 

 𝑚𝑚𝑖𝑖𝑡𝑡
𝒘𝒘∈𝑊𝑊

{𝑦𝑦1(𝒘𝒘),𝑦𝑦2(𝒘𝒘), . . . , 𝑦𝑦𝑠𝑠(𝒘𝒘)}, (14) 

where 𝒘𝒘 is the design input, 𝑊𝑊 is the design space, 𝑚𝑚 is the number of criterion, and 

{𝑦𝑦1(∙),𝑦𝑦2(∙), … , 𝑦𝑦𝑠𝑠(∙)} is the set of the criterions that share the same design inputs. To identify the 

Pareto frontier for Eq. (14) numerically, the criteria are evaluated at a certain number of design 

inputs. Of all the evaluated design points, one selects the set of design points that are not dominated 

by any others. Here, a design point 𝒘𝒘 is not dominated by another one 𝒘𝒘′ if there exists at least 

one 𝑖𝑖 ∈ {1,2, … , 𝑚𝑚} such that 𝑦𝑦𝑖𝑖(𝒘𝒘) < 𝑦𝑦𝑖𝑖(𝒘𝒘′). This set of design points is regarded as a 

representation of the true Pareto set. 
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To implement the BO approach for the multicriteria problem in Eq. (14), we use the 

expected maximin improvement (EMI) [42] acquisition function described as follows.  Let the 

current Pareto set be composed of input set 𝑃𝑃𝑊𝑊 = {𝒘𝒘1,𝒘𝒘2, … ,𝒘𝒘𝑘𝑘} and output set 𝑃𝑃𝑌𝑌 =

{𝒚𝒚1,𝒚𝒚2, … ,𝒚𝒚𝑘𝑘}, where 𝑘𝑘 is the number of points in the Pareto set and 𝒚𝒚𝑖𝑖 =

[𝑦𝑦1(𝒘𝒘𝑖𝑖),𝑦𝑦2(𝒘𝒘𝑖𝑖), … ,𝑦𝑦𝑠𝑠(𝒘𝒘𝑖𝑖)]𝑇𝑇, 𝑖𝑖 = 1,2, … ,𝑘𝑘. For any given new input 𝒘𝒘0, the corresponding 

outputs are predicted by the LVGP models as 𝒀𝒀0(𝒘𝒘0) = [𝑌𝑌1(𝒘𝒘0),𝑌𝑌2(𝒘𝒘0), … ,𝑌𝑌𝑠𝑠(𝒘𝒘0)]𝑇𝑇, where 

𝑌𝑌𝑗𝑗(𝒘𝒘0), 𝑗𝑗 = 1,2, … , 𝑚𝑚 is a random variable. To quantify how much the random outputs 𝒀𝒀0(𝒘𝒘0) 

would improve the current Pareto set, we use the minimax improvement metric 

 𝐼𝐼�𝒀𝒀0(𝒘𝒘0)� = 𝑚𝑚𝑖𝑖𝑡𝑡
𝒘𝒘𝑖𝑖∈𝑃𝑃𝑊𝑊

�𝑚𝑚𝑡𝑡𝑥𝑥 ��𝑦𝑦𝑗𝑗(𝒘𝒘𝑖𝑖) − 𝑌𝑌𝑗𝑗(𝒘𝒘0)�
𝑗𝑗=1
𝑠𝑠 ∪ {0}��, (15) 

which is also a random variable. The larger the value of 𝐼𝐼�𝒀𝒀0(𝒘𝒘0)� is, the more improvement the 

output 𝒀𝒀0(𝒘𝒘0) is considered to make. 

With this formula, if the output 𝒀𝒀0(𝒘𝒘0) would be dominated by at least one point in the 

current Pareto set, then 𝐼𝐼(𝒀𝒀0(𝒘𝒘0)) = 0, which means no improvement. Otherwise, 𝐼𝐼(𝒀𝒀0(𝒘𝒘0)) 

would be a positive value quantifying the improvement. The value of 𝐼𝐼(𝒀𝒀0(𝒙𝒙0)) is illustrated by a 

two-criteria example case in Fig. 5, with one of the candidate points being 𝐼𝐼(𝒀𝒀0) = 0 and the other 

two points with a positive value 𝐼𝐼(𝒀𝒀0). 

The criterion for choosing the new evaluation input 𝒘𝒘0
∗  is to maximize the expected value 

of improvement given in Eq. (15), i.e., 

 𝒘𝒘0
∗ = 𝑡𝑡𝑟𝑟𝑔𝑔𝑚𝑚𝑡𝑡𝑥𝑥

𝒘𝒘0∈𝑊𝑊
𝐸𝐸(𝐼𝐼(𝒀𝒀0(𝒘𝒘0))). (16) 

 
Figure 5: Values of the improvement metric 𝐼𝐼(𝒀𝒀0) in a sampling process with two criteria. 
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When the original problem (Eq. (14)) has mixed-variable input space 𝑊𝑊, Eq. (16) is a 

mixed-variable optimization problem. To solve Eq. (16), we use a zero-order optimization strategy, 

where we generate a large set of candidate points in the input space, and then choose the one with 

the largest EMI as 𝒘𝒘0
∗ . For evaluating the expectation in Eq. (16), we use Monte Carlo simulation, 

as the analytical formula for EMI is too complex when 𝑚𝑚 ≥ 3, which is the case for nanocomposite 

design problem discussed here. 

With three dielectric properties of interest, Eq. (14) is adapted for multicriteria 

nanocomposite design as follows: 

 

 

min
s∈S,p∈P,m∈M

tanδ, ϵ,−Ud , 

𝑆𝑆: {𝐶𝐶ℎ𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙,𝑂𝑂𝑂𝑂𝑡𝑡𝑦𝑦𝑙𝑙,𝑃𝑃𝑚𝑚𝑖𝑖𝑡𝑡𝑙𝑙} 

𝑃𝑃: {𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃,𝑃𝑃𝑆𝑆} 

𝑀𝑀:𝑚𝑚𝑖𝑖𝑂𝑂𝑟𝑟𝑙𝑙𝑚𝑚𝑡𝑡𝑟𝑟𝑚𝑚𝑂𝑂𝑡𝑡𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 1.49 ≤ 𝜃𝜃 ≤ 46.85, 

(17) 

Where the variables have the same meaning as in Eq. (12). We use three independent LVGP models 

to predict the three dielectric properties from design variables 𝑆𝑆, 𝑃𝑃 and 𝑀𝑀. 
 

4. Optimization Results and Discussion 
We performed 35 and 70 iterations of BO for single and multicriteria formulations 

respectively, as specified by Eq. (12) and Eq. (17) respectively. Each BO is initiated with 30 

random initial samples where the values of quantitative variable {𝜃𝜃} are generated by Latin 

hypercube design and qualitative variables, polymer and surface modification type are sampled 

uniformly.  

4.1 Results from single criterion Bayesian Optimization 

We performed ten replicates of single criterion BO and each replicate is initiated with 30 random 

samples. We observed that all replicates consistently converge to optimal design with the objective 

value being −0.562, which corresponds to the design { 𝜃𝜃 = 1.49,𝑃𝑃 = 𝑃𝑃𝑆𝑆, 𝑆𝑆 = 𝑂𝑂𝑂𝑂𝑡𝑡𝑦𝑦𝑙𝑙} with 

material properties 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.0018, 𝜖𝜖 = 2.211 and 𝑈𝑈𝑑𝑑 = 127.67 𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖

. Fig. 6(A) shows 

optimization history for one replicate and depicts evolution of design during optimization. We 

observe that octyl-modified Silica nanoparticles in PS with low dispersion is ideal to meet our 

requirements of high 𝑈𝑈𝑑𝑑, low 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝜖𝜖. These findings are consistent with our previous 

investigations that found 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝜖𝜖 increase with dispersion. Not surprisingly, the choice of 
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polymer has a significant impact on the objective as indicated by Fig. 6(B). All PMMA based 

designs have large objective values compared to PS based designs. As a consequence, only 16 

PMMA designs were evaluated in total (15 of which were provided in the dataset used for 

initialization) and BO strongly favored evaluation of PS based designs. We also notice that the 

objective value of optimum design (-0.562) shows a 75.9% improvement over pure PS properties 

(-0.319). 

To demonstrate the efficacy of BO in identifying the optimal designs for problems with 

limited computational budget, we compare its performance against Genetic Algorithm (GA) [50]. 

MATLAB’s implementation of GA for mixed integer optimization was used in this study and 

applied to problem formulation defined by Eq. (12). For a fair comparison with BO, GA was 

configured to terminate after 65 objective function evaluations (seven generations with a 

 
Figure 6: (A)Optimization history for single criterion BO that converged to objective = -0.562 
along with three designs evaluated in the process (B) Distribution of evaluated designs, grouped 
by polymer type. Dashed lines denote objective values for PS & PMMA polymers (C) 
Comparison of ten replicates of BO and GA for single criterion optimization 
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population size of eight). Fig. 6(C) compares the optimal designs identified by 10 replicates of GA 

versus BO. We see that regardless of initial samples provided, BO can consistently converge to the 

optimum design while GA is highly susceptible to the initial population. This shows that the BO 

strategy of utilizing LVGP model uncertainty quantification to intelligently select new designs for 

evaluation makes it robust and faster at approaching global optimum compared with other 

algorithms that do not use this information.  

We also performed optimization using Eq. (13) where 𝑈𝑈𝑑𝑑 is assigned a weight factor of 10. 

In this case, BO converged to design { 𝜃𝜃 = 13.52,𝑃𝑃 = 𝑃𝑃𝑆𝑆, 𝑆𝑆 = 𝑃𝑃𝑚𝑚𝑖𝑖𝑡𝑡𝑙𝑙} with material properties 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.0055, 𝜖𝜖 = 2.888 and 𝑈𝑈𝑑𝑑 = 134.601 𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖

 . In comparison to optimal design found using 

Eq. (12), this design has higher 𝑈𝑈𝑑𝑑 at the expense of higher 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝜖𝜖 due to more disperse 

nanoparticles. This exercise demonstrates that approaching a multicriteria design problem using a 

single criterion optimization technique is sensitive to formulation of objective function. 

 

4.2 Results from Multicriteria Bayesian Optimization (MBO) 

70 iterations of MBO were performed starting with 30 random initial samples. Three 

independent LVGP models are used to evaluate the three criteria. Fig. 7 displays the 2D latent 

space for two categorical variables – choices of polymer and surface modification for the LVGP 

models used in multicriteria optimization. LVGP constrains the first category (PMMA for 

polymers, Octyl for surface modification) to the origin and second category (PS for polymer, 

Chloro for surface modification) to the z1 axis. The Euclidean distance between categories is used 

to calculate the correlation function as indicated in Eq. (11). 
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 Fig. 8 plots the random initial samples and 16 designs that were identified on the Pareto 

front. A noticeable feature in this plot is that the initial samples create two clusters corresponding 

to two polymers under consideration. The cluster located in the low 𝑈𝑈𝑑𝑑, high 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝜖𝜖 region 

(top left corner in Fig.8) exclusively contains PMMA based samples and is not favorable to meet 

the design criteria. This is consistent with the findings in Fig. 6(B). On the other hand, PS-based 

samples have higher 𝑈𝑈𝑑𝑑, lower 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝜖𝜖; suggesting that they are better suited for electrical 

insulation application compared to PMMA samples. This is also reflected in the fact that designs 

 
Figure 7: Visualization of latent variables for polymer and surface modification variables. Each 
row represents the latent variables estimated by the LVGP model used for corresponding 
property.    
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evaluated by MBO are predominantly PS based. Notice that the Pareto front obtained by MBO 

shows significant improvement with regard to random initial samples and thus underlines the 

capability of uncertainty driven MBO to locate improved designs.  The two optimal designs 

identified by single criterion BO are located in different regions of the Pareto front. While we had 

to repeat single criterion BO with different objective formulations, one simulation of MBO 

discovers these designs automatically to present the modeler with a diverse set of designs for 

consideration. 

The influence of design variables on dielectric properties via Fig. 9, which displays the 

properties of 16 Pareto front identified by MBO. Compared to pure PS properties, PS based 

nanocomposites have higher dielectric properties values. These properties are also positively 

correlated to 𝜃𝜃; they increase as dispersion increases. However, the rate of increases decreases 

beyond 𝜃𝜃~15. While Chloro modification is ideal for minimizing 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, it also contributes to 

higher 𝜖𝜖. On the other hand, designs with Octyl and Amino surface modifications have lower 𝜖𝜖 but 

higher 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as compared to those with Chloro surface modification. Thus, we see a tradeoff 

between the three properties of interest. Selecting one among the several Pareto front designs for 

 
 
Figure 8: Summary of 70 iterations of Multicriteria Bayesian Optimization. SC12 and SC13 
denote optimal single criterion solutions identified from Eq. (12) and Eq. (13) respectively.  
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detailed analysis and testing depends on the modeler’s preference based on the application, how 

the material is deployed, and device level performance.   

Once the optimal design is identified, the corresponding processing condition can be 

obtained by mapping the optimized design variables to processing energy using the PS relationship 

established in our previous work [45]:  

 If̅iller = f(matrix) sinh2(2 WPF WFF − 1)log (Eγ + 1) + ⁄ 𝐶𝐶0, (18) 

where If̅iller is the normalized interphase area, f(matrix) and C0 are polymer dependent constants, 

WPF WFF⁄  is the filler-matrix compatibility descriptors and Eγ is the processing energy descriptor 

that we seek.  For illustration, we choose the design (b) in Fig. 8, favoring high breakdown strength, 

as our optimal solution. Microstructure reconstruction corresponding to 𝜃𝜃 = 11.92 was performed 

and 𝐼𝐼�̅�𝑓𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 was found to be 0.189. For PS, 𝑓𝑓(matrix) and C0 are 0.00995 and 0.08798 respectively. 

For octyl-modified silica nanoparticles dispersed in PS,  WPF WFF⁄ = 1.15. Plugging these values 

 
Figure 9: Influence of design variables on dielectric properties of nanocomposites on Pareto 
front. Dashed lines indicate property of polymer only system. 
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in Eq. (18) leads to Eγ = 32.77 𝐽𝐽/𝑔𝑔. Thus, we can identify designs satisfying application specific 

material properties and deduce processing parameter necessary for manufacturing. 

5. CONCLUSIONS 
 This article presented a data-centric mixed-variable Bayesian Optimization framework for 

design of polymer nanocomposite with both qualitative and quantitative variables. Initiated by a 

nanocomposite database, our framework integrated empirical data with state-of-the-art techniques 

in interphase calibration, SDF based MCR for dimensionality reduction, and FEA-based structure-

property simulations. Experimental property measurements are also leveraged for training machine 

learning models to predict material properties when theory based simulation models are lacking. 

Going beyond traditional BO implementations for quantitative design variables, mixed-variable 

modelling enabled by LVGP models allowed us to parsimoniously incorporate qualitative variables 

in a BO based design process. This capability is critical to accomplish concurrent composition and 

microstructure design which is inherently a mixed-variable optimization problem. Since functional 

materials must often meet multiple performance criteria, we extended LVGP based BO to 

multicriteria optimization using the expected maximin improvement acquisition function. 

 The efficacy of our data-centric framework was demonstrated through a case study focused 

on insulating nanocomposite design. The design formulation for single and multicriteria BO was 

presented using two qualitative (types of polymer and surface modification) and one quantitative 

(filler dispersion) variables. Modifying the weight assigned to breakdown strength demonstrated 

that single criterion BO is sensitive to objective formulation and does not have a unique solution 

when applied to multicriteria problems. On the other hand, multicriteria BO provides a variety of 

designs representing tradeoffs among dielectric properties, allowing the modeler to select a 

solution based on their preference. Processing energy required for fabrication of optimal design 

was evaluated using processing to structure mapping, to complete the bi-directional traversal 

across PSP paradigms and demonstrate the material genome approach to material design. While 

LVGP based BO is applicable to any engineering design problem, the unique ability to facilitate 

concurrent optimization of composition and microstructure w.r.t. one or more properties, makes it 

a powerful tool for materials design. 

 In the future, developing accurate simulation models based on Molecular Dynamics and 

Density Functional Theory is necessary for understanding and evaluating material properties such 

as dielectric breakdown strength and interphase behavior. Additionally, we are continuously 
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expanding NanoMine, the polymer nanocomposite data repository, by introducing standardized 

data curation workflows, data visualization capability and sophisticated interphase calibration and 

FEA tools described in this article. Several MCR methods including SDF are currently available 

in NanoMine‡. We envision NanoMine to drive the widespread adoption of data centric design 

methodology in the nanocomposite community. 
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