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Design, System, Application

Metal-organic frameworks (MOFs) are attractive adsorbent materials for carbon capture applications due to their high capacity for CO2 and 
tunability. MOF screening is generally performed either by inspecting the isotherms or by using derived adsorbent metrics such as the 
working capacity, the selectivity, and other figures of merit and performance indicators. However, these metrics do not consider inherent 
aspects of the process such as the adsorption dynamics and temperature variations, which could shift the adsorption equilibrium and affect 
the performance of MOFs in pressure swing adsorption (PSA) cycles. In this work, we use a rigorous PSA model along with optimization tools 
to perform economic analysis and investigate a set of 15 MOFs that have been suggested as promising for carbon capture in the literature. 
We ranked the MOFs for several PSA cycle configurations based on their economic performance and compared these ranked lists with a 
ranking based on the derived metrics. Such a comparison suggests that some metrics can lead to misleading results in the adsorbent 
performance. According to the economic analysis, UTSA-16, Cu-TDPAT, Zn-MOF-74, Ti-MIL-91, and SIFSIX-3-Ni were optimal candidates for 
post-combustion carbon capture. Our results confirm that including detailed process modelling and optimization in the screening adsorbent 
workflow is critical for the design and selection of MOF adsorbents.
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Process-Level Modelling and Optimization to Evaluate Metal-
Organic Frameworks for Post-Combustion Capture of CO2

Daison Yancy-Caballero,a Karson T. Leperi,a Benjamin J. Bucior,a Rachelle K. Richardson,d Timur 
Islamoglu,b Omar K. Farha,a,b  Fengqi You,*c and Randall Q. Snurr*a

Many metal-organic framework (MOF) materials have been reported in the literature as promising for carbon capture 
applications based on isotherm data or simple adsorbent metrics. However, adsorption process conditions are often 
neglected in these evaluations. In this study, we performed process-level simulation and optimization of pressure swing 
adsoprtion processes on a set of promising MOFs reported in the literature for post-combustion carbon capture. Zeolite 13X 
was also included as a benchmark material. We examined the ability of the MOFs to achieve the Department of Energy goals 
of 90% CO2 purity and 90% CO2 recovery by employing process-level optimization using three different cycle configurations:  
a modified Skarstrom cycle, a five-step cycle, and a fractionated vacuum swing adsorption cycle. Then, we ranked the MOFs 
based on their economic performance by looking at the productivity and energy requirements for each cycle. We compared 
this ranking of the MOFs with the rankings provided by other metrics and found that the adsorbent rankings suggested by 
simplified metrics may differ significantly from the rankings predicted by detailed process optimization. The economic 
optimization analysis suggests that the best performing MOFs from those analyzed here are UTSA-16, Cu-TDPAT, Zn-MOF-
74, Ti-MIL-91, and SIFSIX-3-Ni.  Looking at the connection between process performance and material propertries, we found 
that high CO2 working capacity, small pore size, and large difference between the heat of adsorption of CO2 and N2 promote 
CO2 capture ability based on this small data set. We synthesized one of the top performing MOFs, SIFSIX-3-Ni, and measured 
its CO2 and N2 adsorption isotherms. The measured isotherms allowed us to estimate the N2 heat of adsorption for SIFSIX-
3-Ni, which was not previously available and was required for the process-level modelling. 

Design, System, Application
Metal-organic frameworks (MOFs) are attractive adsorbent materials for carbon capture applications due to their high capacity for CO2 and 
their tunability. MOF screening is generally performed either by inspecting the isotherms or by using derived adsorbent metrics such as the 
working capacity, the selectivity, and other figures of merit and performance indicators. However, these metrics do not consider inherent 
aspects of the process such as the adsorption dynamics and temperature variations, which could shift the adsorption equilibrium and affect 
the performance of MOFs in pressure swing adsorption (PSA) cycles. In this work, we use a rigorous PSA model along with optimization tools 
to perform economic analysis and investigate a set of 15 MOFs that have been suggested as promising for carbon capture in the literature. 
We ranked the MOFs for several PSA cycle configurations based on their economic performance and compared these ranked lists with a 
ranking based on the derived metrics. Such a comparison suggests that some metrics can lead to misleading results in the adsorbent 
performance. According to the economic analysis, UTSA-16, Cu-TDPAT, Zn-MOF-74, Ti-MIL-91, and SIFSIX-3-Ni were optimal candidates for 
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post-combustion carbon capture. Our results confirm that including detailed process modelling and optimization in the screening adsorbent 
workflow is critical for the design and selection of MOF adsorbents.

Introduction
Carbon capture and sequestration (CCS) can significantly 

reduce the CO2 emissions from existing coal- and gas-fired 
power plants. CCS is composed of three steps:  1) capture of CO2 
from a point source, 2) compression and transport of the 
captured CO2, and 3) storage of CO2 in geological formations. 
Adsorption-based processes are attractive for the capture step, 
as they tend to have lower costs than other traditional 
separation methods.1 To lower the expected costs of CO2 
capture, it is necessary to develop high performance adsorbent 
materials and to optimize the separation process in which those 
materials are used.

The choice of adsorbent plays an essential role in 
adsorption-based carbon capture.2 Metal-organic frameworks 
(MOFs) are a class of adsorbent materials that have attracted 
significant interest over the last few decades due to their high 
capacity for various gases and their tunability for different 
applications. Thousands of MOFs have been synthesized for a 
variety of applications, such as gas separation and storage,3–5 
catalysis,6,7 and destruction of chemical warfare agents.8,9 Over 
the years, numerous MOFs have been synthesized and reported 
as promising for CCS applications.10 In general, MOFs are 
reported as promising for CCS based on high CO2 working 
capacity or high CO2/N2 selectivity at adsorption conditions 
without considering the process conditions or the cycle 
configuration in which the material would be used.11–13 

Since there is often a tradeoff between the working capacity 
and selectivity, other derived metrics have been proposed for 
preliminary evaluation of adsorbents for pressure swing 
adsorption (PSA). Metrics such as the PSA sorbent selection 
parameter,14 the adsorbent figure of merit,14,15 the adsorbent 
performance indicator,16 and the separation factor17 require 
only equilibrium adsorption isotherms as inputs. Most of these 
metrics incorporate the working capacities and selectivities at 
adsorption and desorption conditions, and some, such as the 
adsorbent performance indicator proposed by Wiersum et al.,16 
also include the heat of adsorption of CO2. Some studies have 
used these derived metrics to find correlations between 
separation performance and the structural properties of 
adsorbents and to guide the design of MOFs with good 
performance for CO2 capture. Wu et al.18 used this approach to 
show that the CO2/N2 selectivity is highly dependent on the 
difference of the isosteric heats of adsorption of N2 and CO2 
(ΔQst

0) and the porosity, concluding that increasing ΔQst
0 and 

decreasing the porosity is an important design rule to develop 
top performing MOFs for CO2 capture. Wilmer et al.19 used 
derived metrics to analyse the structure-performance relation 
of 139,000 hypothetical MOFs using molecular simulation to 
provide the adsorption data. They suggested that the most 
promising MOFs for CO2 separation from flue gas should have a 
surface area less than 1000 m2/g, a pore-limiting diameter 
between 4 Å and 7 Å, a Qst

 of CO2 between 25 and 40 kJ/mol, 

and a porosity between 0.3 and 0.4. Similar results were 
reported recently by Altintas et al.20 who screened another 
MOF database to identify the best materials for CO2 capture. 
They investigated the relationships between pore size, porosity, 
surface area, density, lattice structure, metal type, and some of 
the adsorbent metrics mentioned above.

Many derived metrics have been based on intuition, and 
their reliability for ranking materials is not well understood. 
Recently, Leperi et al.21 ran process-level modeling and 
optimization on 190 materials and used the results to develop a 
general evaluation metric (GEM) for evaluating sorbents for CO2 
capture by PSA. They studied a fractionated vacuum pressure 
swing adsorption (FVPSA) cycle for post-combustion CO2 
capture. Their GEM requires only the working capacities of CO2 
and N2, the selectivity at desorption conditions, and the heat of 
adsorption of N2 as inputs. Leperi et al.21 showed that the new 
metric outperforms other metrics reported in the literature for 
ranking MOFs in terms of the cost of CO2 capture and ability to 
meet purity and recovery goals. Another metric for PSA that was 
derived from process-level modeling was presented by 
Balashankar et al.22 They reported a classification metric based 
on process optimization of a vacuum swing adsorption (VSA) 
cycle to identify adsorbents satisfying purity and recovery 
constraints. They also presented and validated an approach to 
estimate the process energy consumption. With the presented 
metrics, they screened thousands of adsorbents, including 
those in the NIST/ARPA-E adsorbent database,23 and identified 
the MOFs USTA-16 and [NC2H8]4Cu5-(BTT)3xG, the zeolite GIS, 
and the microporous organic polymer C24H21N3, as promising 
materials for post-combustion carbon capture in terms of 
minimum energy requirements. 

The integration of process modelling and economic 
optimization directly into the screening of adsorbent materials 
is an alternative approach that could be attractive.21,24–28 
Process modelling and optimization for PSA requires solving 
complex and coupled algebraic and partial differential 
equations, so evaluating a larger number of materials may 
require considerable computing resources. However, process 
optimization is needed to account for the effects of the cycle 
configuration, the dynamics of adsorption, and heat transfer 
and to guarantee that purity and recovery requirements are 
satisfied. Following this approach, Maring et al.11 proposed a 
simplified model of a VSA cycle to evaluate the performance of 
four different adsorbents in post-combustion CO2 capture. In 
this study, Maring et al.11 suggested an optimal value of the heat 
of adsorption of CO2 between 35 and 45 kJ/mol and claimed 
that the N2 heat of adsorption is less important when evaluating 
the performance in a CO2 capture process. They also 
determined that the surface area has a limit beyond which an 
increase is detrimental for the performance and that existing 
metrics to evaluate adsorbent performance can be misleading 
because these metrics do not account for thermal effects. 
Danaci et al.26 evaluated 25 different adsorbents among MOFs, 
zeolites, and activated carbon for different CO2 capture 
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scenarios in a three-step VSA cycle using performance 
constraints (CO2 purity, CO2 recovery, and cost). Danaci et al. 
included detailed economic modelling as an important aspect in 
the performance evaluation of a material, using a simplified 
process model (0-D equilibrium model) that assumed that the 
adsorbed phase is always at equilibrium with the gas phase. 
Using their method, they reported that UTSA-16 was the most 
performing MOF for post combustion capture, while Mg-MOF-
74 performed poorly.

In the same context, Rajagopalan et al.24 employed process 
optimization on a 4-step PSA cycle with light product 
pressurization to evaluate the performance of four different 
adsorbents (Mg-MOF-74, UTSA-16, zeolite 13X, and a specific 
coconut shell activated carbon) for post-combustion carbon 
capture in terms of productivity and energy consumption. The 
cycle configuration chosen in this work was shown previously to 
have advantages for low energy requirements in post-
combustion CO2 capture.29,30 Rajagopalan et al.24 evaluated the 
efficacy of several PSA metrics by comparing these with their 
process optimization results. They found that most traditional 
metrics work fairly well in identifying the poor performance of 
the activated carbon. However, all of the tested metrics failed 
to rank properly the other three studied adsorbents, and results 
from the metrics were not correlated with the performance that 
they found in process optimization. One important discovery 
from their work was the importance of low working capacity of 
N2 as a good predictor of the process performance. This was 
also reported by Leperi et al.21

Balashankar and Rajendran27 used detailed process 
optimization of a VSA cycle to screen zeolite materials and 
identify promising candidates able to reduce the parasitic 
energy in carbon capture applications. They reported 16 
promising zeolites that outperformed zeolite 13X in both 
productivity and energy consumption and suggested optimal 
ranges for the heat of adsorption of CO2 (32 to 42 kJ/mol) and 
N2 (8 to 17 kJ/mol) that minimize energy consumption. 

The objective of this work is to use process-level simulation 
and optimization to investigate the performance of fifteen 
MOFs that were reported in the literature as promising for post-
combustion CO2 capture. Zeolite 13X was also included as a 
benchmark material for CCS. A novel contribution of this study 
is that we examined multiple PSA cycle configurations to assess 
the effect of cycle configuration on the relative performance of 
the materials. Thus, we first evaluated each MOF in three 
different cycle configurations (a modified Skarstrom cycle, a 
five-step cycle, and a fractionated vacuum swing adsorption 
cycle) to evaluate whether the MOF can achieve the 
Department of Energy (DOE) goals for CCS of 90% CO2 purity and 
90% CO2 recovery. For each MOF that can achieve the goals, we 
then maximized the productivity and minimized the energy 
requirements to compare their economic performance in each 
PSA cycle. We also ranked the selected MOFs by some common 
metrics reported in the literature and then compared these 
rankings with the rankings coming from the detailed economic 
optimization. Performance/structure relationships were also 
investigated. For the material that was reported to have the 
highest selectivity, SIFSIX-3-Ni, we measured the CO2 and N2 

isotherms at multiple temperatures, so that we could obtain the 
N2 heat of adsorption, which is needed for process modelling 
and in some of the derived metrics. 

Methods

Adsorbent Isotherm Fitting

For this study, experimental CO2 and N2 isotherms along with 
heat of adsorption data were gathered for the 15 MOFs listed in 
Table 1, along with zeolite 13X. The isotherms were obtained 
from the literature, except those for the SIFSIX-3-Ni, which were 
obtained as a part of this work. For all MOFs, the pure-
component CO2 isotherms were fitted to the dual-site Langmuir 
model, and the pure-component N2 isotherms were fitted to the 
single-site Langmuir model.29 The isotherm parameters are 
presented in Table S3, and the fitted isotherms in the pressure 
range used in optimization along with the experimental data for 
all adsorbents are presented in Figures S1-S15. 

To model the competitive isotherms of the two gases, we 
assumed that the stronger adsorbing CO2 site, designated as 
site 1, only adsorbs CO2, while CO2 and N2 compete for the 
weaker site 2:

(2)𝑞 ∗
𝑐𝑜2 =

𝑞1
𝑠𝑎𝑡, 𝐶𝑂2 ∙ 𝐵1

𝐶𝑂2 ∙ 𝑃𝐶𝑂2

1 + 𝐵1
𝐶𝑂2 ∙ 𝑃𝐶𝑂2

+
𝑞2

𝑠𝑎𝑡, 𝐶𝑂2 ∙ 𝐵2
𝐶𝑂2 ∙ 𝑃𝐶𝑂2

1 + 𝐵2
𝐶𝑂2 ∙ 𝑃𝐶𝑂2 + 𝐵2

𝑁2 ∙ 𝑃𝑁2
  

(3)𝑞 ∗
𝑁2 =

𝑞2
𝑠𝑎𝑡, 𝑁2 ∙ 𝐵2

𝑁2 ∙ 𝑃𝑁2

1 + 𝐵2
𝐶𝑂2 ∙ 𝑃𝐶𝑂2 + 𝐵2

𝑁2 ∙ 𝑃𝑁2

where  and  are the saturation loading and isotherm 𝑞𝑠
𝑠𝑎𝑡, 𝑖 𝐵𝑠

𝑖

parameter of component i for site s, respectively. To account for 
the temperature effects on the CO2 and N2 loading, Arrhenius 
equations were fitted for the isotherm parameters:

(4)𝐵𝑠
𝑖 = 𝑏𝑠

𝑖 𝑒𝑥𝑝 [ ―𝛥𝑈𝑠
𝑖

𝑅𝑇 ]
where  is the internal energy of adsorption of component i.𝛥𝑈𝑠

𝑖
One problem that arose while collecting the isotherm data 

was the lack of data reported in the MOF literature for the N2 
heats of adsorption. While most researchers recognize the 
importance of CO2 heat of adsorption on the economic 
feasibility of MOFs for CCS applications and report the data, N2 
heat of adsorption data is often not reported. For MOFs with no 
N2 heat of adsorption data reported, we assumed the heat of 
adsorption to be 12 kJ/mol, which is a reasonable assumption 
according to other studies in the literature.22 To justify this 
assumption, we performed a sensitivity analysis on the impact 
that the N2 heat of adsorption has on the maximum CO2 purity 
and recovery performance of the MOF. The results are reported 
in Figure S16. We can see that the largest variation in the 
maximum CO2 purity was for NTU-105, which increased around 
14% when varying the N2 heat of adsorption within a reasonable 
range from 6 to 18 kJ/mol. One important aspect to be 
highlighted from the sensitivity analysis is that the MOF’s ability 
to achieve the purity and recovery goals did not change with the 
variation of the N2 heat of adsorption.

Page 4 of 19Molecular Systems Design & Engineering



ARTICLE Journal Name

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Synthesis of SIFSIX-3-Ni and Sorption Analysis

Pyrazine (72.0 g, 0.90 mol) was added to a solution of nickel 
nitrate hexahydrate Ni(NO3)2 6 H2O (130.8 g, 0.45 mol) and 
ammonium hexafluorosilicate (NH4)2SiF6 (80.0 g, 0.45 mol) in 
400 mL water in a 1-L media bottle. The resulting solution was 
heated in an oven at 90˚C and allowed to solvothermally react 
for 48 h. The mother liquor was decanted and the crystalline 
powder was washed with water (1 x 200 mL) for 1 hour. The 
powder was then washed with hot methanol (7 x 100 mL) over 
5 days. The product was dried under vacuum (0.01 Torr) for 24 
h at 150˚C. Finally, 58.26 g of product was obtained with a yield 
of 35.9%. 

To evaluate the sorption behavior, nitrogen and carbon 
dioxide isotherm measurements at different temperatures 
were carried out on a Micromeritics ASAP 2020. The sample was 
activated at 150 °C under vacuum for 24 h on a Micromeritics 
Smart VacPrep instrument.

PSA Modelling

The PSA model is composed of a set of partial differential 
algebraic equations (PDAE) describing mass, energy, and 
momentum balances, and it is coupled with the linear driving 
force model, and the dual-site competitive Langmuir isotherm 
shown in eqs. (1)-(2). The PSA model incorporates the following 
assumptions for the packed bed column: 1) there is axially 
dispersed plug flow in the column, 2) the gas phase is 
represented by the ideal gas law, 2) the gas and the solid phases 
are in thermal equilibrium, 3) the pressure drop along the 
column is well described by the Ergun equation, and 4) the void 
fraction and particle size remain constant along the column. The 
detailed formulation of the PSA model and the parameters used 
in simulations and optimizations can be found in the 
supplementary information, and in our previous work.31 The 
PSA model was discretized using the finite volume method with 
the weighted essentially non-oscillatory (WENO) scheme,32 and 
then the resulting ODE system was solved in MATLAB with the 
ode15s solver.33  We used a uni-bed approach to simulate the 
PSA cycles, where the same bed is used to simulate the different 
steps in the cycle in sequence until cyclic steady state is 
achieved, when the final conditions (molar loadings, mole 
fractions, pressure, and temperature) in the last step match the 
initial conditions in the first step within a tolerance of 10-4 in the 
dimensionless variable. In addition, to ensure no accumulation 
in the column, the ratio of the gas entering the column to the 
gas exiting the column over the entire cycle needs to match 
within a tolerance of 5x10-3. Explicit boundary conditions were 
imposed to define each PSA step as suggested in the 
literature.29 The MATLAB codes used to simulate and optimize 
the PSA systems using NSGA-II are available on GitHub 
(https://github.com/PEESEgroup/PSA).

PSA Cycles

In this study, we considered three cycle configurations: a 
modified Skarstrom cycle,34 a fractionated vacuum swing 
adsorption (FVSA) cycle,29 and a five-step cycle,34 as shown in 
Figure 1. The modified Skarstrom cycle consists of the following 

steps: (1) pressurization, (2) adsorption, (3) heavy reflux, (4) 
counter-current depressurization, and (5) light reflux. The cycle 
starts with the bed, initially at the low pressure (PL), being 
pressurized up to the adsorption pressure (PH) using the flue gas 
feed. After the pressurization step, the top end of the column is 
opened, and the feed gas is fed through, allowing for the 
adsorption step, where CO2 is concentrated at the front of the 
column, while N2 leaves through the other end of the column. 
After a predetermined time, the gas flowing into the column is 
switched from the flue gas to heavy product collected during 
the light reflux step. Since this heavy product has a higher 
concentration of CO2 than the feed gas, this step further 
increases the concentration of CO2 at the entrance of the 
column. At the end of the heavy reflux step, the end of the 
column is closed, and the pressure at the entrance of the 
column is dropped to PL in the counter-current depressurization 
step. During this step the emissions from the entrance are 
collected as the CO2 product. Once the bed is fully 
depressurized, some of the light product produced during the 
feed step is fed into the top of the column. As mentioned above, 
a fraction of the heavy product produced in this step is used as 
the feed gas during the heavy reflux step. While this reflux 
reduces the amount of CO2 collected during the cycle, it does 
significantly enhance the maximum CO2 purity that can be 
achieved with different adsorbents and has been shown in 
previous investigations to be promising.34 

The FVSA cycle consists of the following steps: (1) 
pressurization, (2) adsorption, (3) co-current depressurization, 
and (4) counter-current depressurization. This cycle begins with 
the pressurization step, in which the pressure in the column is 
increased from the lower pressure (PL) to the adsorption 
pressure (PH) using the flue gas feed. Then, the top of the 
column is opened, and the adsorption step takes place. After 
some time, the bottom inlet of the column is closed, and 
vacuum is pulled from the top of the column, reducing the 
pressure to an intermediate value (PI) in the co-current 
depressurization step. This step is used to further remove N2 
from the column, increasing the purity of the final CO2 product. 
Once PI has been reached, the top of the column is closed, and 
the pressure at the bottom of the column is dropped back to PL, 
which is the start of the counter-current depressurization step. 
It is during this final step that the CO2 is collected.

The five step cycle consists of the following steps: (1) light 
product pressurization, (2) adsorption, (3) heavy reflux, (4) co-
current depressurization, and (5) counter-current 
depressurization. This cycle starts with the bed being 
pressurized from the lower pressure (PL) to the adsorption 
pressure (PH), using the effluent from the adsorption step, 
which is fed in reverse direction into the top end of the column. 
After the light product pressurization step, the feeding of the 
effluent from the adsorption step is interrupted, and the inlet 
of the column is opened to allow the flue gas to flow into the 
column in the adsorption step. After that, the gas flowing into 
the column is switched from the flue gas to the heavy product 
collected during the counter-current depressurization step, 
which causes an increase in the CO2 concentration at the 
entrance of the column. After the heavy reflux step, the inlet of 
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the column is closed, and vacuum is pulled from the top of the 
column, reducing the pressure to PI in the co-current 
depressurization step, and removing N2 from the column. 
Finally, the top end of the column is closed, and the pressure at 
the entrance is further reduced to PL in the counter-current 
depressurization step, in which the CO2 is collected. 

Optimization Technique

In analyzing the capabilities of the different adsorbents, it is 
necessary to optimize the operating parameters of the different 
PSA cycles to determine the maximum CO2 purity and recovery, 
along with maximum productivity and minimum energy 
requirement for each MOF and zeolite. We used the non-
dominated sorting genetic algorithm (NSGA-II)35 for the 
optimizations of the cycles. In this study, we performed two 
separate optimizations: process-level optimization and 
economic-level optimization. For the process-level 
optimization, we maximized the CO2 purity and recovery to 
identify the MOFs that can achieve the DOE’s goal of 90% CO2 
purity and recovery. The CO2 purity and recovery for each cycle 
configuration are defined as follows:

(5)Purity =
Moles of CO2 in the product
Total moles in the product × 100%

(6)Recovery =
Moles of CO2 in the product

Moles of CO2 fed into the cycle × 100%

For the process-level optimization, we used a population of 
10 times of the total number of decision variables for the NSGA-
II algorithm and ran it for 60 generations. The decision variables 
along with upper and lower bounds are listed in Table 2 for each 
PSA cycle considered in this study. For the first optimization 
problem, we were only interested in knowing whether the 
MOFs can achieve the goal without needing high-level accuracy. 
Hence, we used a coarse-level discretization for this stage of the 
optimization, dividing the column into 10 finite volume 
elements, which was an acceptable number of finite volumes to 
achieve a fair accuracy in reasonable computation time. The 
process-level optimization can be formulated as follows:

(7)

max CO2 Purity                                                               
s.t. PDAE model                                                            

CO2 Recovery ≥ 90%                                         
PH ≥ PI                                                                       
PI ≥ PL                                                                       
L

D ≥ 3                                                                     
LB ≤ L, PH, PI, PL, tfeed, vfeed, αLR,αHR ≤ UB   

where PH  is the higher or adsorption pressure, PL is the lower or 
desorption pressure, PI is the intermediate pressure used in the 
co-current depressurization step in the FVSA cycle, LB and UB 
are lower and upper bounds imposed on the decision variables 
(see Table 2). tfeed and vfeed are the time and the inlet velocity of 
the adsorption (“feed”) step, respectively. The L/D constraint 
was used to avoid excessively large column diameters 
compared to column length due to practical operation 
considerations. We also noticed that without imposing this 
constraint, we obtained large column diameters corresponding 

to small values of L/D between 0.7-1.18, which caused a slight 
decrease in the productivity. 

After the MOFs that can achieve the DOE’s goals were 
identified, we performed economic optimization for minimizing 
the energy requirement and maximizing the productivity. The 
energy requirement and productivity are calculated as follows:

(8)Productivity[mol CO2

kg ⋅ s ] =
Moles of CO2 in the product

Mass of adsorbent ×  cycle time

 (9)Energy Req.[ kWh
ton CO2] =

Energy required for all steps
mass of CO2 collected in the product per cycle

The economic optimization was performed in two stages. We 
first performed a coarse-level optimization, dividing the column 
into 10 finite volume elements, and ran this optimization for 
100 generations with a population of 10 times the number of 
decision variables. The NSGA-II for this second optimization 
problem was initialized with the final results from the process-
level optimization. After running the coarse-level optimization, 
we performed a finer level optimization with 30 finite volume 
elements, initializing with the coarse-level optimization results. 
We still used a population of 10 times of the total number of 
decision variables for this optimization, but we ran the NSGA-II 
for only 30 generations. The economic optimization model can 
be represented as follows:

(10)

max Productivity                                                            
min Energy Requirement                                            
s.t. PDAE model                                                            

CO2 Purity ≥ 90%                                                 
CO2 Recovery ≥ 90%                                           
PH ≥ PI                                                                      
PI ≥ PL                                                                      
L

D ≥ 3                                                                    
LB ≤ L, PH, PI, PL, tfeed, vfeed, αLR,αHR ≤ UB 

Results

Purity/Recovery Maximization

We first examined the results from maximizing CO2 purity 
and recovery for the sixteen adsorbents listed in Table 1. The 
Pareto curves representing the best combination of 
purity/recovery achievable by each adsorbent are shown in 
Figure 2 (a-c) for the three different cycles. As seen from the 
figure, there is a large range in performance among the sixteen 
adsorbents for each cycle. At the low end of the performance, 
we can see that MOF-177 and NTU-105 can only purify the CO2 
product up to 51% in the five step cycle. For the other two cycles 
the highest CO2 purity achieved is even lower (see Tables S4, S6, 
and S8 for the highest CO2 purity achieved for the sixteen 
adsorbents in the three PSA cycles). As discussed further below, 
the poor performance of MOF-177 and NTU-105 seems to 
correlate with their large surface areas (~4600 and ~3500 m2/g, 
respectively) and low crystal densities (0.43 and 0.59 g/cm3, 
respectively).36,37 A large surface area and open pore structure 
are beneficial for applications that need large saturation 
capacities at high pressures (such as hydrogen storage) but 
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hinder the performance of MOF-177 and NTU-105 at the low 
operating pressure of CO2 capture. 

At the other end of the performance spectrum, there are 
several MOFs that can achieve the CO2 purity goal of 90% while 
recovering 90% of the CO2. The number of MOFs able to achieve 
these purity/recovery targets varied with the cycle 
configuration, with 8 MOFs able to meet the targets for the 
modified Skarstrom cycle, 5 for the FVSA cycle, and 6 for the 
five-step cycle. Along with zeolite 13X, which can achieve the 
goals in all of the studied cycles, we found that UTSA-16, Cu-
TDPAT, Ti-MIL-91, Zn-MOF-74, and SIFSIX-Ni-3 met or exceeded 
the purity and recovery goals in all three cycles. We can see that 
UTSA-16 outperformed zeolite 13X in all cycles in terms of 
purity/recovery and that Cu-TDPAT has similar performance to 
zeolite 13X in the FVSA and five step cycle. In addition to these 
MOFs, Ni-MOF-74, Mg-MOF-74, and SIFSIX-2-Cu-i were also 
able to meet the purity and recovery targets in the modified 
Skarstrom cycle and Mg-MOF-74 in the five step cycle. 

In addition to the optimization results presented in Figure 2 
that guarantee a minimum CO2 recovery of 90%, we also ran the 
process optimizations imposing a CO2 recovery constraint of 
95% to investigate the effect that a higher recovery has on the 
ability of MOFs to achieve the targets. The resulting 
purity/recovery Pareto curves are presented in Figure S17. We 
see that most of the same materials that met the goals in the 
previous case were able to meet the goals now, but with a 
decrease in the purity, which is considerable for the FVSA and 
the five-step cycle (see Tables S5, S7, and S9). Such a decrease 
in purity is not desirable for carbon capture, as sometimes the 
CCS purity requirements are imposed to 95%.25,38,39

Economic Analysis and Comparison with Other Metrics

The process-level optimization results provide valuable 
information on the capabilities of the adsorbents to achieve the 
CO2 purity and recovery goals. However, the economic 
performance of the adsorbents is quite important for their 
large-scale applications in CCS. Thus, we carried out an 
economic analysis on those adsorbents that met purity and 
recovery targets in the different cycles. In this analysis, we use 
the adsorbent productivity and energy requirement as proxies 
for the economic cost. In the economic analysis, the best 
performing materials have the lowest energy requirements, 
minimizing the electricity needed to capture the CO2, combined 
with the highest productivity, minimizing the amount of 
material needed to capture the CO2 from a given flue gas 
stream. The results from the economic optimization are shown 
in Figure 3 (a-c) for the three cycles. In this optimization, we set 
a constraint that all points have a CO2 purity and recovery above 
90%, so that all points meet the CCS goals.

For each cycle, Figure 3 shows a clear difference in the 
performance of the different MOFs at higher productivities. At 
low productivity and low energy, the different MOFs appear to 
converge in their behavior. This is clearly seen in Figure 3a and 
hinted at in Figures 3b and 3c. For example, Figure 3 shows a 
common point of low productivity and energy of ~130-140 
kWh/ton CO2 for the modified Skarstrom cycle, and ~150-250 
kWh/ton CO2 for the five-step cycle. This common low energy 

and low productivity point is less perceptible for the FVSA cycle, 
but it is clear that the energy requirement is significantly higher 
for this cycle. The optimal decision variables that correspond to 
the Pareto points in Figure 3 can be found in Tables S10, S12 and 
S14 for the highest productivities, and in Tables S11, S13 and 
S15 for the low productivity and low energy points. We can 
conclude that among the three cycles, the modified Skarstrom 
cycle and five-step cycle are better choices than the FVSA cycle, 
as they present the lowest energy requirements for a given 
productivity. The higher energy consumption in the FVSA could 
be explained by examining the cycle steps in the three cycle 
configurations (Figure 1). We can see that the FVSA cycle has 
two key depressurization steps that contribute more to energy 
consumption, and even though the five step cycle also has these 
two depressurization steps, it saves energy by including a light 
product pressurization step. In addition, the FVSA cycle has the 
highest PH values and the lowest depressurization pressures 
among the three cycles (see Tables S12-S13), which also 
contribute to the high energy consumption.

To rank the materials based on the economic optimizations, we 
take advantage of the fact that the fronts for the different materials 
in Figure 3 are generally parallel to one another. This allows us, 
conceptually, to start at the lower right corner of each graph and 
move toward the upper left corner, ranking the materials as we go. 
In practice, we chose several points along the y-axis in Figure 3 in a 
range of 250-350 KWh/ton CO2 captured for the modified Skarstrom 
cycle and the five-step cycle, and 450-550 KWh/ton CO2 captured for 
the FVSA cycle. We then ranked the materials based on the 
productivities at these points. Table 3 shows that the ranking is 
different for each cycle (right 3 columns of Table 3, with best MOFs 
on the top). However, there are strong similarities. For example, 
UTSA-16, Cu-TDPAT, and zeolite 13X are the top three performing 
materials in all 3 cycles. 

Table 3 also shows the ranking of the 16 materials according to 
common metrics used in the literature, namely the working capacity 
of CO2 (WC), the CO2 selectivity (α), the sorbent selection parameter 
(S), the adsorbent performance indicator (API), the adsorbent figure 
of merit (AFM), the separation factor (SF), and the general evaluation 
metric (GEM). These metrics are defined in Table 4, and the 
numerical values of the metrics for each material are presented in 
Table S16. Table 3 shows that in some cases the rankings from the 
traditional metrics can be misleading. For example, Co-MOF-74 and 
UiO-66(OH)2 are ranked among the top 7 materials by the WC and 
API2 although these MOFs are not able to achieve the CO2 purity and 
recovery requirements as demonstrated in the process-level 
modeling and optimization. Among the derived metrics used in this 
work, only the GEM is able to predict the top three performing 
materials according to the economic ranking of the different PSA 
cycles. This reflects the fact that the GEM was trained and derived 
based on economic process optimization.21 

Nonetheless, most metrics identified some materials that 
perform well for carbon capture. For example, SIFSIX-3-Ni was 
ranked as the top performing material by several metrics, and this 
material is among the top 7 for all three of the studied cycles. 
Similarly, UTSA-16, Cu-TDPAT, and zeolite 13X, which were the top 
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performing materials in the three cycles, were included in the top 7 
materials according to many of the derived metrics. Also, the metrics, 
in general, are good at identifying the low-performing materials such 
as MOF-177 and ZIF-8. In summary, we can say that the derived 
metrics in the literature can be useful but should be used carefully, 
and process optimizations should still be included in the evaluation 
of adsorbent performance when possible. Testing of the simple 
metrics on larger sets of adsorbents would be an interesting topic for 
further study.

Connecting Material Properties and Process Performance

UTSA-16, Cu-TDPAT, Zn-MOF-74, Ti-MIL-91, and SIFSIX-3-Ni are 
predicted to meet the purity and recovery targets for all three cycles 
considered in this work. We examined their material properties and 
isotherms and compared them to lower performing materials to 
better understand what material properties lead to good 
performance in CO2 capture. Table 1 shows that the top performing 
MOFs all have surface areas lower than 1200 m2/g with the exception 
of Cu-TDPAT, which has a surface area of 1940 m2/g. Surface area is 
usually loosely correlated with pore size, but the correlation between 
surface area or pore size and CO2 adsorption is not straightforward.19 
The good performance of Cu-TDPAT could be related to its small 
pores (largest cavity diameter, LCD = 5.3 Å) and to the large 
difference between the heats of adsorption of CO2 and N2 (ΔQst

0 = 23 
kJ/mol). The other top performing MOFs, UTSA-16, Ti-MIL-91, and 
SIFSIX-3-Ni also have low LCD and high ΔQst

0. The various forms of 
MOF-74 considered here have larger pores than most of the other 
MOFs in Table 1, but they have high ΔQst

0, which lead to generally 
good performance. All of the poor performing MOFs have either a 

high surface area and/or a high LCD and/or a low ΔQst
0. 

The CO2 and N2 isotherms for the top performing MOFs UTSA-16, 
Cu-TDPAT, Zn-MOF-74, Ti-MIL-91, and SIFSIX-3-Ni along with zeolite 
13X are plotted in Figure 4. For comparison, the isotherms for six of 
the worst performing materials (Co-MOF-74, Cu-BTTRi, NTU-105, 
MOF-177, ZIF-8, and Sc2BDC3) are shown in Figure 5. The materials in 
Figure 4 generally show higher CO2 uptake and lower N2 uptake than 
those in Figure 5. However, the shape of the isotherm also plays a 
role, especially in determining the working capacity. We define the 
working capacity in this work as

(11)𝑊𝐶𝑖 = 𝑁𝑎𝑑𝑠,𝑖 ― 𝑁𝑑𝑒𝑠,𝑖

where  and  are the uptake of component i at 𝑁𝑎𝑑𝑠,𝑖 𝑁𝑑𝑒𝑠,𝑖

specified adsorption and desorption conditions, respectively. 
The desorption loading was calculated for a 90:10 CO2:N2 
stream at 0.1 bar and 313 K, which is representative of the 
outlet stream in a VSA process. For the adsorption loading, we 
calculated the working capacity for two streams. First, we 
considered the flue gas feed with a composition of 15:85 CO2:N2 
at 1 bar and 313 K. Second, we looked at a 90:10 CO2:N2 stream 
under the same pressure and temperature, since the CO2 gas-
phase mole fraction in the column could increase due to the 
heavy reflux step included in two of the cycles. The working 
capacities are given in Table 5 along with the selectivities for the 
top six materials. Among the top materials, SIFSIX-3-Ni has the 
highest selectivity but shows a much lower CO2 working 

capacity than the other materials, especially for the 90:10 
CO2:N2 adsorption conditions. The low working capacity of 
SIFSIX-3-Ni is due to the steepness of its CO2 isotherm at low 
pressures and leads to the relatively low performance of SIFSIX-
3-Ni in the process economics modeling (Table 3 right columns). 
The steep isotherm of SIFSIX-3-Ni is in contrast to the top two 
performing MOFs UTSA-16 and Cu-TDPAT, which have a high 
CO2 uptake at 1 bar, with a gradual increase in the CO2 uptake 
over the pressure range. Although the CO2 working capacity of 
a material should be directly related to the amount of CO2 that 
a given mass of adsorbent can cycle through over a given time, 
it can be seen that Zn-MOF-74 has a CO2 working capacity 
around 35% higher than Cu-TDPAT, but looking at the ranking 
based on the three cycles in Table 3, Cu-TDPAT outperformed 
Zn-MOF-74, indicating that the use of only the working capacity 
to identify the best materials is not sufficient. 

SIFSIX-3-Ni Analysis

Five of the metrics considered in this work predicted SIFSIX-
3-Ni to be the top performing material. It shows the highest 
CO2/N2 selectivity, and it is a highly stable MOF with a relatively 
easy and scalable synthesis procedure, which are important for 
large-scale application. Since the experimental N2 heat of 
adsorption for this MOF was not available in the literature, we 
synthesized it and performed variable-temperature isotherm 
measurements for CO2 and N2.

The sorption isotherms for SIFSIX-3-Ni are reported in Tables 
S17-S21 and plotted in Figure S18 along with the fitted 
isotherms. With the sorption data at different temperatures 
collected in this work, we estimated a N2 heat of adsorption of 
21 kJ/mol. Note that this value differs from the value initially 
assumed of 12 kJ/mol for some MOFs, including SIFSIX-3-Ni, 
when experimental data were unavailable. This value is also 
beyond the range used in the sensitivity analysis presented in 
the supplementary material (6-18 kJ/mol). Although all results 
presented in this work for SIFSIX-3-Ni are based on the 
experimental N2 heat of adsorption, we compared the 
productivity/energy Pareto curves of SIFSIX-3-Ni using the 
assumed value and the experimental one  to measure the effect 
that the N2 heat of adsorption has on the economic results. 
Thus, Figure 6 shows the energy/productivity Pareto fronts for 
SIFSIX-3-Ni with N2 heats of adsorption of 12 and 21 kJ/mol. 
There is a small but clear difference in the curves for all three 
cycles using a value of 21 kJ/mol versus 12 kJ/mol, which seems 
to be greater at higher productivities. This result suggests that 
the optimal energy/productivity Pareto fronts presented for Cu-
TDPAT, Zn-MOF-74, and SIFSIX-2-Cu-i could shift somewhat if 
more accurate values of N2 heat of adsorption are used, but the 
general trends and rankings are unlikely to change.

Another point to highlight is that SIFSIX-3-Ni does not 
present very different values for the heats of adsorption of CO2 

(35 kJ/mol) and N2 (21 kJ/mol), although it is commonly 
accepted in the literature that high CO2 selectivity is favored by 
a large difference of the isosteric heats of adsorption of CO2 and 
N2.18 This could be a possible reason to explain the relatively 
poor position of SIFSIX-3-Ni in the ranking from the different 
PSA cycles compared to other top performing MOFs such as 
UTSA-16 and Cu-TDPAT which exhibit higher differences in the 
heats of adsorption of the two components. We note that 
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another MOF with a small difference in the isosteric heats of 
adsorption of CO2 and N2 is Mg-MOF-74, which has similar 
performance and ranking as SIFSIX-3-Ni.

Conclusions 
In this work, we selected 15 MOFs that were reported in the 

literature as promising candidates for carbon capture applications 
and tested them using process-level modelling of three pressure-
swing adsorption cycles: a modified Skarstrom cycle, a fractionated 
vacuum swing adsorption (FVSA) cycle, and a five-step cycle. For each 
cycle we conducted both process-level optimization and economic-
level analysis.  From the process-level analysis, we found that only 8 
of the examined MOFs were able to achieve a CO2 purity and 
recovery of 90% (the DOE goals for CCS) for the modified Skarstrom 
cycle; 5 for the FVSA cycle; and 6 for the five-step cycle. Zeolite 13X 
met the purity and recovery targets in all cycles. Economic analysis 
was then conducted on the MOFs able to achieve the purity and 
recovery targets by examining the tradeoff between productivity and 
energy requirement. From these results, the modified Skarstrom 
cycle and the five step cycle were found to have lower energy 
requirements for a given productivity compared to the FVSA cycle. 
Based on the economic optimization results, the following MOFs 
were predicted to be the most promising for carbon capture among 
the materials studied here: UTSA-16, Cu-TDPAT, Zn-MOF-74, Ti-MIL-
91, and SIFSIX-3-Ni. Based on this small data set, the top materials 
tend to have high CO2 working capacity, small pore diameter, and a 
large difference between the heats of adsorption of CO2 and N2. 
Rankings from PSA modeling were compared to those using simple 
sorbent evaluation metrics from the literature. We found that the 
metrics in the literature can be useful as a pre-screening filter for 
identifying materials from large data sets but should be used 
carefully, and PSA process optimization should still be included in the 
evaluations of adsorbent performance when possible.
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Tables

Table 1. MOFs investigated in this study along with structural properties and references for the experimental CO2 and N2 isotherms and 
heats of adsorption.

Qst
0 (kJ/mol)

MOF
BET Area 

(m2/g)

Pore Volume 
(cm3/g) PLD (Å) LCD (Å)

CO2 N2
Isotherm Reference

Co-MOF-74 1325 0.52 10.8 11.5 35 19 Cho et al.40 
Cu-BTTRi 1770 0.71 10.5 11.3 25 6 Demessence et al.41 
Cu-TDPAT 1940 0.93 3.6 5.3 35 12 Zhang et al.42 
Mg-MOF-74 1640 0.57 11.1 11.9 36 13 Marring et al.11 
MOF-177 4690 1.59 9.9 11.2 14 10 Mason et al.43 
Ni-MOF-74 1220 0.48 10.7 11.5 38 14 Bae and Long44 and Yu et al.45

NTU-105 3545 1.33 6.9 18.5 26 12 Wang et al.46 
Sc2BDC3 595 0.25 3.0 4.0 27 18 Pillai et al.47 
SIFSIX-2-Cu-i 735 0.26 3.8 4.8 32 12 Nugent et al.48 
SIFSIX-3-Ni 365 0.15 3.1 3.9 35 21 This work
Ti-MIL-91 380 0.14 3.6 4.7 42 19 Benoit et al.49 
UTSA-16 625 0.31 4.2 7.2 41 12 Masala et al.50 and Xiang et al.51 
UiO-66(OH)2 1230 0.56 3.8 8.9 30 13 Hu et al.52

ZIF-8 1025 0.54 3.4 11.4 19 10 Zhang et al.53

Zn-MOF-74 1175 0.58 11.1 11.9 30 12 Xiang et al.51

Zeolite 13X 685 0.30 7.0 11.0 36 16 Krishnamurthy et al.54

BET area and pore volume were taken from the isotherm references. Pore-limiting diameter (PLD) and largest cavity diameter (LCD) of 
adsorbents were estimated using the Zeo++ software.55

Table 2. Decision variables with bounds used in process and economic optimizations for the different PSA cycles

L [m] PH [bar] PL [bar] PI [bar] tfeed [s] vfeed [m/s] αLR
*

 [-] αHR
**

 [-]
Modified Skarstrom cycle 1 – 7 1 – 10 0.1 – 0.5 –  10 – 1000 0.1 – 2 0.01 – 0.99 0 – 1
FVSA cycle 1 – 7 1 – 10 0.1 – 0.5 0.11 – 3 10 – 1000 0.1 – 2 – –  
Five Step Cycle 1 – 7 1 – 10 0.1 – 0.5 0.11 – 3 10 – 1000 0.1 – 2 – 0 – 1

* light reflux ratio (fraction of the light product in the adsorption step that is sent to the light reflux step), ** heavy reflux ratio (fraction of 
the heavy product in the light reflux step or the counter-current depressurization step that is sent to the heavy reflux step)
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Table 3. Ranking of materials using some traditional metrics and using economic level process optimization for three cycle configurations*

WC α S API1 API2 AFM1 AFM2 SF GEM Mod. 
Skars.

5-Step 
Cycle FVSA

                
1 

Ni-MOF-
74

SIFSIX-3-
Ni

SIFSIX-3-
Ni

Mg-
MOF-74

Mg-MOF-
74

SIFSIX-3-
Ni

SIFSIX-3-
Ni

SIFSIX-3-
Ni UTSA-16 Zeolite 

13X UTSA-16 Cu-
TDPAT

                
2 

Mg-MOF-
74

Zeolite 
13X

Zeolite 
13X

Zeolite 
13X

Ni-MOF-
74

Zeolite 
13X

Zeolite 
13X UTSA-16 Cu-

TDPAT Cu-TDPAT Zeolite 
13X UTSA-16

                
3 

Co-MOF-
74

Mg-
MOF-74 UTSA-16 SIFSIX-3-

Ni UTSA-16 Mg-MOF-
74 UTSA-16 Zeolite 

13X
Zeolite 
13X UTSA-16 Cu-TDPAT Zeolite 

13X
                
4 

UiO-
66(OH)2

UTSA-16 Cu-
TDPAT

Ni-MOF-
74

Zeolite 
13X

Ni-MOF-
74

Cu-
TDPAT

Ni-MOF-
74

SIFSIX-3-
Ni

Ni-MOF-
74 Ti-MIL-91 Zn-MOF-

74
                
5 UTSA-16 Cu-

TDPAT
Ni-MOF-
74 UTSA-16 SIFSIX-2-

Cu-i UTSA-16 Ni-MOF-
74

Cu-
TDPAT

Ti-MIL-
91

Mg-MOF-
74

Zn-MOF-
74

Ti-MIL-
91

                
6 

SIFSIX-2-
Cu-i

Ni-MOF-
74

Mg-
MOF-74

Cu-
TDPAT

Co-MOF-
74 Cu-TDPAT Mg-

MOF-74
Ti-MIL-
91

Zn-MOF-
74

SIFSIX-2-
Cu-i

SIFSIX-3-
Ni

SIFSIX-3-
Ni

                
7 

Zn-MOF-
74

Ti-MIL-
91

Ti-MIL-
91

SIFSIX-2-
Cu-i

UiO-
66(OH)2

SIFSIX-2-
Cu-i

Ti-MIL-
91

Mg-
MOF-74

SIFSIX-2-
Cu-i

SIFSIX-3-
Ni

Mg-MOF-
74

                
8 

Zeolite 
13X

SIFSIX-2-
Cu-i

SIFSIX-2-
Cu-i

Zn-MOF-
74

Zn-MOF-
74

Zn-MOF-
74

SIFSIX-2-
Cu-i

SIFSIX-2-
Cu-i

Ni-MOF-
74

Zn-MOF-
74

                
9 

Cu-
TDPAT

Zn-MOF-
74

Zn-MOF-
74

UiO-
66(OH)2

Cu-TDPAT Ti-MIL-91 Zn-MOF-
74

Zn-MOF-
74 Sc2BDC3 Ti-MIL-91

              
10 Ti-MIL-91 Sc2BDC3 Sc2BDC3 Ti-MIL-

91 Ti-MIL-91 UiO-
66(OH)2

Sc2BDC3 Sc2BDC3 Mg-
MOF-74

              
11 Cu-BTTRi UiO-

66(OH)2

UiO-
66(OH)2

Co-MOF-
74

SIFSIX-3-
Ni

Co-MOF-
74

UiO-
66(OH)2

UiO-
66(OH)2

Cu-BTTRi

              
12 NTU-105 Co-

MOF-74
Co-MOF-
74 Cu-BTTRi Cu-BTTRi Cu-BTTRi Co-MOF-

74
Co-MOF-
74

UiO-
66(OH)2

              
13 

SIFSIX-3-
Ni

Cu-
BTTRi Cu-BTTRi NTU-105 NTU-105 NTU-105 Cu-BTTRi Cu-BTTRi ZIF-8

              
14 MOF-177 NTU-

105 NTU-105 Sc2BDC3 MOF-177 Sc2BDC3 NTU-105 NTU-105 Co-MOF-
74

              
15 ZIF-8 ZIF-8 ZIF-8 MOF-177 Sc2BDC3 MOF-177 ZIF-8 ZIF-8 NTU-105

              
16 Sc2BDC3 MOF-

177
MOF-
177 ZIF-8 ZIF-8 ZIF-8 MOF-177 MOF-177 MOF-177

* Working capacity of CO2 (WC), Selectivity (α), Sorbent Selection Parameter (S), Adsorbent Performance Indicator (API1 and API2), Adsorbent Figure of Merit 
(AFM1 and AFM2), Separation Factor (SF), General Evaluation Metric (GEM)
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Table 4. Traditional metrics used in literature to evaluate the performance of adsorbent materials*

Adsorbent Metric Definition Reference

PSA Sorbent Selection 
Parameter 𝑆 = 𝛼𝑎𝑑𝑠

𝑊𝐶1

𝑊𝐶2
Rege and Yang14

Adsorbent Performance 
Indicator 𝐴𝑃𝐼1 =

(𝛼𝑎𝑑𝑠 ― 1)𝑊𝐶1

|𝛥𝐻𝑎𝑑𝑠,1| Wiersum et al.16

Adsorbent Performance 
Indicator 𝐴𝑃𝐼2 =

(𝛼𝑎𝑑𝑠 ― 1)0.5𝑊𝐶1
2

|𝛥𝐻𝑎𝑑𝑠,1|
Wiersum et al.16

Adsorbent Figure of Merit 𝐴𝐹𝑀1 = 𝑊𝐶1
𝛼2

𝑎𝑑𝑠

𝛼𝑑𝑒𝑠
Notaro et al.15

Adsorbent Figure of Merit 𝐴𝐹𝑀2 =
𝑊𝐶1

𝑊𝐶2

𝛼2
𝑎𝑑𝑠

𝛼𝑑𝑒𝑠
Rege and Yang14

Separation Factor 1 2

2 1

WC y
SF

WC y
 Pirngruber et al.17

General Evaluation Metric
1

2, mod

0.971.32 0.25
,2des ads

WC
GEM

WC H


 
Leperi et al.21

* Subscripts 1 and 2 represent component 1 (CO2) and component 2 (N2). The working capacities, WC, are defined in eq. (10). αads is the selectivity at adsorption 
conditions for component 1 over component 2, which was calculated considering a gas stream of 15:85 CO2:N2 at 1 bar and 313 K. αdes is the selectivity at 
desorption conditions for component 1 over component 2, which was calculated considering a gas stream of 90:10 CO2:N2 at 0.1 bar and 313 K. WC2, mod is 
defined as max(WC2, 0.01). The mole fraction of component i in the gas phase is denoted yi.

Table 5. Working capacities and selectivities of top six adsorbents.  

Adsorbent WCCO2 [mol/kg]*
  WCCO2 [mol/kg]**

  SelectivityCO2
***

 

UTSA-16 0.49 2.60 246
Zn-MOF-74 0.40 3.30 63
Zeolite 13X 0.32 1.51 61
Cu-TDPAT 0.26 2.61 214
Ti-MIL-91 0.21 1.78 92
SIFSIX-3-Ni 0.10 0.46 2848

*working capacity under adsorption conditions with a gas composition of 15% CO2 and 85% N2 at 1 bar pressure and 313 K.  **working capacity under 
adsorption conditions with a gas composition of 90% CO2 and 10% N2 at 1 bar pressure and 313 K. Desorption conditions are based on a gas composition of 
90% CO2 and 10% N2 at 0.1 bar pressure and 313 K in all cases. *** selectivity of CO2 is calculated under adsorption conditions with a gas stream of 15:85 
CO2:N2 at 1 bar and 313 K.
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Figures

Figure 1. Schematics of the (a) modified Skarstrom cycle, (b) FVSA cycle, and (c) five-step cycle used in this study. Note that each schematic displays the 
ordering of the steps for a single column. So, one column first runs the pressurization step, followed by the adsorption step, etc. 
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Figure 2. Purity / Recovery Pareto fronts for the 15 MOFs and zeolite 13X. (a) Modified Skarstrom cycle. (b) Fractionated vacuum swing adsorption cycle 
(FVSA). (c) five-step cycle. Of the 16 adsorbents tested, only 9 were able to achieve the DOE’s goals for CO2 capture (90% purity and 90% recovery) for the 
modified Skarstrom cycle, only 6 for the FVSA, and only 7 for the five-step cycle. 
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Figure 3. The energy / productivity Pareto fronts for the adsorbents capable of achieving the DOE’s purity and recovery goals for each cycle. 
a) Modified Skarstrom cycle, b) fractionated vacuum swing adsorption cycle (FVSA), c) five-step cycle. 
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Figure 4. Pure component isotherms of the six top performing materials for (a) CO2 and (b) N2 at 313 K. 

Figure 5. Pure component isotherms of six of the worst performing materials for (a) CO2 and (b) N2 at 313 K.

Figure 6. Comparison of the energy/productivity Pareto fronts for SIFSIX-3-Ni with N2 heat of adsorption of 12 kJ/mol (open symbols) and 
21 kJ/mol (closed symbols) for the modified Skarstrom cycle (green), the FVSA cycle (yellow), and the five step cycle (blue).
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