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Owing to the discovery and upsurge of engineered carbon nanomaterials (CNMs) in 2000s and 
2010s, researchers witnessed the flooding of scientific literature by articles demonstrating the 
adsorption of synthetic organic compounds (SOCs) by CNMs. Because of this rapid expansion, 
predictive modelling for adsorption of SOCs by CNMs was made possible in early 2010s. Due to the 
application potential of engineered CNMs in water treatment and necessity to understand their 
interactions with SOCs and potential health and environmental implications after their release to 
the natural aquatic systems, these models are essential. The broad predictive capabilities of linear 
solvation energy relations models also offer a powerful framework to better understand the 
interaction of organic molecules with surfaces.
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28 Abstract

29

30 The production of carbon nanomaterials has been increasing due to their outstanding 
31 properties and innovation potential in various industrial applications. Hence, their discharge 
32 into the aquatic environment from point and non-point sources is inevitable. Therefore, the 
33 natural and built aquatic environments that contain thousands of synthetic organic 
34 contaminants, would facilitate adsorptive interaction between synthetic organic molecules and 
35 carbon nanomaterial surfaces. Today’s literature rapidly developed to contain a great number 
36 of adsorption data for synthetic organic compounds onto carbon nanomaterials. The 
37 availability of adsorption data enables generation of structure-activity relationships by 
38 utilizing adsorbate and adsorbent characteristics in simple/controlled aquatic solutions. These 
39 models not only create practical predictive tools but also provide mechanistic insights about 
40 intermolecular interactions between organic molecules and carbon nanomaterials. This review 
41 analyzes 86 linear solvation energy relationship models published in the last decade. Our 
42 work summarizes and compares key independent variables associated with adsorbate 
43 properties (e.g., molecular size, H-bonding ability, polarizability) and identifies critical 
44 factors for selecting dependent variables (e.g., adsorbent characteristics, saturation 
45 concentration). The study also discusses intermolecular interactions unraveled by the 
46 modeling efforts at different adsorbate concentrations. This work aims providing an analysis 
47 of literature to identify key gaps in today’s model training efforts and list guiding principles 
48 for ongoing and future linear solvation energy relationship studies.

49

50 Keywords: Adsorption, Carbon Nanomaterials, Linear Solvation Energy Relationship, LSER, 
51 Predictive Model, QSAR 
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60 1. General aspects of LSER model development for adsorption of synthetic organic 
61 compounds by engineered carbon nanomaterials

62 Engineered carbon nanomaterials (CNM) are graphitic nano-structures (e.g., graphene 
63 nanosheets, carbon nanotubes) with outstanding thermal, dielectric, mechanical, and chemical 
64 properties [1, 2]. Due to their aptitude in a wide array of industrial applications, they are being 
65 produced with an increasing rate [3]. Their upsurge in production makes their eventual release 
66 into the natural aquatic environmental almost inevitable. Once released into the environment, 
67 CNMs would interact with over 80,000 synthetic organic compounds (SOC) in either natural or 
68 built aquatic systems. In addition, CNMs share the same graphitic backbones with traditional 
69 carbonaceous adsorbents and they form bundles (aggregates) in water that resemble the porous 
70 activated carbon (AC) particles. Therefore, CNMs are often compared to traditional adsorbents 
71 and are tailored to remove SOCs selectively and efficiently from water. Hence, CNM have been 
72 accepted as promising adsorbents with versatile physicochemical properties. It is imperative to 
73 investigate the adsorption of SOCs by CNMs and eventually generate structure-activity 
74 relationships to cut the time, cost and labor requirements for adsorption experiments. These 
75 models would also provide mechanistic insights into the SOC-CNM interactions and enable 
76 application of CNMs in water treatment by decoding the complex adsorptive interactions in 
77 engineered systems. 

78 Since Kamlet and co-workers’ published their seminal work in 1985; numerous 
79 quantitative structure-activity relationship (QSAR) models have been developed for adsorption 
80 of SOCs by AC in aquatic backgrounds [4-16]. These statistical models are trained to predict 
81 partitioning of SOCs onto ACs and they assist decoding molecular-level adsorption interactions. 
82 Owing to the discovery and upsurge of “Nobel Prize decorated” engineered CNMs in 2000s and 
83 2010s; researchers witnessed the flooding of scientific literature by articles demonstrating the 
84 adsorption of SOCs by CNMs (e.g., carbon nanotubes [17-32] and graphene nanosheets [33, 
85 34]). As a consequence of the rapid expansion of the literature, QSAR modeling for adsorption 
86 of SOCs by CNMs was made possible in early 2010s.

87 Multiple mechanisms of varying relative importance have been proposed to control the 
88 adsorption of SOCs by carbonaceous adsorbents. The quantification of these individual 
89 contributions is a challenging task, and it can partially be addressed by QSAR modeling. QSAR 
90 modeling that utilizes solvation theory is an accepted approach. These specific approaches are 
91 referred as linear free energy relationship (LFER) or linear solvation energy relationships 
92 (LSER) in the literature [35-37]. To train an LSER model, solvatochromic descriptors are 
93 utilized and each descriptor can assist explaining adsorptive interactions between the adsorbate, 
94 adsorbent surface, and the solvent. The first LSER model for adsorption of organic compounds 
95 by multi-walled carbon nanotubes (MWCNT) was published in 2010 by Nature Nanotechnology 
96 [30]. Since this first article, dozens of LSER equations were developed for several CNM types 
97 for a multitude of SOCs at different saturation concentrations. Figure 1 shows the milestones and 
98 a timeline of the LSER modeling literature.
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99
100 Figure 1. Timeline of LSER modeling studies in the last decade [23-34, 38].

101 A typical LSER model (eq. 1) uses predetermined set of adsorbate properties i.e., Abraham 
102 solvatochromic parameters as independent variables [39-44] and adsorption coefficient as the 
103 independent variable. The independent parameters are established based on the solvation theory 
104 because of the mechanistic association of solvation and adsorption [35-37].

105 Log Ki = aA + bB + vV + pP + rR + c                                                 [eq. 1]

106 Here, ‘K’ is the adsorption coefficient at saturation concentration of ‘i’ obtained by taking the 
107 ratio of solid phase concentration to aqueous phase concentration (qe/Ce) at equilibrium. 
108 Parameter ‘A’ and ‘B’ indicate hydrogen bond donating and accepting ability, respectively, ‘V’ 
109 represents the molecular volume or McGowan’s volume, ‘P’ is the polarizability/dipolarity, ‘R’ 
110 stands for the excess molar refraction, ‘c’ is the regression constant and ‘a’, ‘b’, ‘v’, ‘p’, and ‘r’ 
111 are regression coefficients [45]. Regression coefficients indicate relative influence of each 
112 parameters on adsorption. Positive and negative values of coefficient indicate direct and inverse 
113 proportionality, respectively.

114 LSER model development workflow includes the compilation of available adsorption 
115 data (i.e., either experimental data collection or data mining from published isotherms), 
116 collection of solvatochromic parameters of the adsorbate molecules, categorization of the 
117 datasets with respect to adsorbent properties (e.g., graphenes vs. carbon nanotube dataset), 
118 adsorbate properties (e.g., aliphatic vs. aromatic datasets), and aquatic matrix (e.g., distilled 
119 water vs. natural organic matter solution). Once the datasets are formed, modeling hypotheses 
120 can be tested by generating models via multiple linear regression. This workflow and details of 
121 dataset generation has been previously published elsewhere [46]. LSER model development is a 
122 vigilant balance between data fitting and prediction strength. An efficient predictive model aims 
123 for the (i) minimization of least squared errors (good data fitting ability) and, (ii) maximization 
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124 of operational width and predictive strength. According to the Topliss and Costello rule [47], to 
125 minimize the risk of chance correlations, the ratio of training set SOCs to descriptors should be 
126 at least 5:1. Furthermore, this requirement is sometimes violated, when the similar SOCs (a very 
127 narrow range of logCsw, logKow or molar volume) are selected [26, 27]. In addition to the 
128 statistical validity, a strong predictive model is expected to provide mechanistic insights to the 
129 adsorption mechanisms by attempting to identify/quantify the intermolecular interactions 
130 between adsorbate molecules and adsorbent surfaces. This article (i) summarizes the LSER 
131 development efforts for adsorption of SOCs by carbon nanomaterials in the past decade, (ii) 
132 critically reviews the ongoing debates in the field and (iii) provide future research 
133 recommendations. This review is the first article that surveys the recent literature to provide a 
134 framework and workflow for the elements of LSER model development in the field to the best of 
135 our knowledge. This study also presents a perspective to merge findings of the last decade and 
136 guide future work using the existing knowledge presented on a unified platform.

137 2. Selecting independent variables

138 There are 86 LSER models published in 14 articles in the last decade capturing 
139 adsorption of organic pollutants by CNMs predominantly aromatic SOCs [21-34]. Figure 2a 
140 shows a summary of parameters (i.e., highest statistical significance within the model) for 
141 adsorption of SOCs by CNMs. Their coefficients are shown in Figure 2b as a box and whiskers 
142 plot. Majority of the models reported V parameter as the most prevalent independent variable in 
143 the LSER equations with an average coefficient of 2.70±1.78. Despite the variability of 
144 compound and adsorbent properties, the effect of molecular size (V) has been repeatedly reported 
145 to be the controlling molecular property for adsorption that is positively correlated. This was 
146 attributed to the energy requirement of adsorbates for cavity formation among water molecules 
147 with increasing molecular size causing stronger hydrophobic repulsion from water onto carbon 
148 surfaces. In addition, as molecular sizes increase, non-specific attraction (e.g., van der Waals 
149 Forces) can contribute to the adsorption of molecules by carbon nanomaterials. To date, there are 
150 no models distinguishing the two intermolecular interactions from each other. Additional 
151 experimental work suppressing hydrophobic repulsion via utilization of different solvent may be 
152 conducted to gain more insight to the molecular size effect on adsorption. 

153 Hydrogen bond accepting property (B) is reported as the most predominant parameter in 
154 LSER equations in 30% of the studies with an average coefficient of -2.90±3.21, which is 
155 inversely proportional to adsorption as indicated by its negative coefficient. This indicates 
156 molecules with higher basicity showing stronger tendencies to form hydrogen bonding with 
157 water owing to the acidic property of water defined by Bronsted concept. Thus, hydrogen bond 
158 accepting molecules have less participation onto the carbon surface. However, 84% of the 
159 models that report B as the most predominant parameter are trained either by solely aliphatic 
160 molecules or datasets that contain aliphatic molecules. Therefore, the selection of adsorbate 
161 molecules for LSER training can skew the model parameters, which will be discussed in the 
162 following section. Aliphatic molecules tested in literature are usually short chain hydrocarbons 
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163 (2-4 C) and their molecular sizes do not cover a wide range to provide a fair comparison with 
164 aromatic molecules. Literature lacks comprehensive LSER models for adsorption of aliphatic 
165 molecules by CNMs.

166 Hydrogen bond donating property (A), polarizability (P), and refractive index (R) were 
167 relatively less significant with average coefficients -0.70±1.29, 0.54±1.37 and, 0.64±1.50. 
168 Although, solvation theory prescribes a set of independent variables, there are multiple 
169 interpretations of LSER modeling where less significant parameters are excluded. Some of the 
170 studies only consider a subset of statistically significant LSER parameters per statistical analysis. 
171 Regardless of the analytical approach, picking the independent variables either by excluding 
172 insignificant parameters (elimination), or by adding parameters (stepwise or forward addition) 
173 play a critical role on model development. It is debatable whether to remove or keep these 
174 insignificant terms because, insignificant variables also capture the subtle intermolecular 
175 interactions on adsorption. In addition, level of statistical significance (usually α=0.95 or 0.99) is 
176 an important consideration and can create subjectivity. Therefore, models with and without the 
177 accepted statistically insignificant parameters must be compared side-by-side in order to 
178 objectively show the influence of these parameters. In addition, exclusion of insignificant 
179 parameters can result in inflated significance of the model coefficients potentially skewing the 
180 results.

181 The refractive index (R) parameter was removed from some models that contain only 
182 aromatic molecules due to triviality of excess molar refraction caused by shielded sigma 
183 electrons inside π electron clouds [17, 18, 24]. However, later studies reported that the 
184 contribution of R parameter depends on solute saturation concentration as well as the adsorbent 
185 type [26]. Influence of R parameter comprises induction of dipoles and polarizable aromatic 
186 molecules may show a statistically significant impact on adsorption [29]. In addition, some 
187 studies have reported that the type of adsorbent (multi-walled vs. single-walled carbon 
188 nanotubes) indicated different importance of R parameter [28,31]. Despite the variability of 
189 significant parameters, R parameter has not been reported to be the most predominant term in 
190 LSER models so far [28].

191
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192 Figure 2. Summary of all predominant LSER parameters based on all reported 86 LSER 
193 equations (on left), their coefficient ranges as box, and whiskers plot (on right). 

194

195 3. Dataset generation and pre-processing prior to model development

196 To date dozens of articles reported adsorption of 140 organic molecules’ by carbon 
197 nanomaterials [33]. The virtual limit of LSER model development is availability of published 
198 adsorption data unless researchers undertake experimental data generation. Further, collection, 
199 indexing and selection of the data to be utilized in LSER equation is a tedious task. There are 
200 two components of the dataset: (i) independent variables i.e., solvatochromic descriptors and (ii) 
201 dependent variables i.e., adsorption descriptors. The compilation of independent variables are 
202 rather simple owing to the advances in computation chemistry software (e.g., ACD ADME 
203 Suite) [21-34]. However, the collection and pre-processing of adsorption descriptors is a time 
204 consuming task. Data is usually reported as adsorption isotherms and equilibrium (or pseudo-
205 equilibrium) saturation concentration, which depends on the initial concentration. Therefore, 
206 extracting the data from the published data (e.g., isotherms) at the desired saturation 
207 concentration needs to be performed within the actual experimental range to minimize 
208 extrapolation-based errors.

209 The intermolecular interactions that are governing the adsorption of SOCs by CNMs 
210 profoundly depend on compound properties. Combining different classes of compounds (e.g., 
211 aromatic and aliphatic compounds, ionizable vs. non-ionizable) in one dataset may increase the 
212 operating range of the model; however, the model linearity and parameter interpretation vigor 
213 would be compromised. Therefore, modeling efforts must embrace subsets of the database that 
214 are categorized with a meaningful approach. Although there are several approaches to classify 
215 SOCs (e.g., size, polarity, formal charge, polarizability, and aromaticity); adsorbate molecule’s 
216 size and complexity are critical categorization metrics for three reasons. First, size of a molecule 
217 dictates non-specific attractive force between the compound and the surface. Larger molecules 
218 generally have more time-varying uneven electron distribution within molecule’s structure that 
219 enables interactions with adjacent molecules, which increases the intensity of intermolecular 
220 forces. Similarly, larger molecules require more energy to partition in water (unless hydrogen 
221 bonding functional groups exist in its structure) causing larger cavity formation energies in 
222 water. Second, large and more complex molecules contain more functional groups (e.g., 
223 carboxylic acids, ketones, phenolic groups, amines) than small and simple molecular structures. 
224 The complexity of the molecular structure complicates the intermolecular interactions from a 
225 modeling perspective i.e., hydrogen bonding, molecule-molecule interactions. Therefore, size 
226 dictated cut-offs may enable LSER models for adsorption of SOCs by CNMs. Third, SOC 
227 adsorption strictly depends on the physical accessibility of molecules into the final sorption sites 
228 in the pore structures, thus similar size molecules will have similar pore access. Although, 
229 molecular complexity and size is an essential metric for categorization, researchers need to 
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230 consider other physicochemical SOC classifications based on their datasets prior to presenting 
231 their models. Because, some molecules have the ability to configure their structure and pack in 
232 narrow pores, on the contrary, rigid and stable molecules lack this ability. In addition, if an 
233 ionizable molecule is included in the LSER model, the degree of protonation at the 
234 corresponding solution pH must then be taken into account to properly assess molecular 
235 properties.

236 The aqueous concentration of the adsorbate is another critical factor that influences LSER 
237 modeling. Molecules in a dilute solution are assumed not to interact with each other regardless of 
238 molecular level thermodynamic considerations simply due to extremely low likelihood of 
239 molecules to coincide in bulk solution (Figure 3a). Therefore, the adsorption interactions are 
240 limited to (i) attractive forces between the molecules and the adsorbent surface e.g., non-specific 
241 attraction, H-bonding, electrostatic attraction, π-π bonding (ii) repulsive forces between the 
242 solvent and the molecules e.g., hydrophobic repulsion, salting out. On the other hand, saturated 
243 solutions exert additional molecule-molecule interactions in solution or on the surface (Figure 
244 3b). Therefore, complex intermolecular interactions are likely to be captured by solvatochromic 
245 parameters changing the model parameters significantly. The most adequate approach to take the 
246 potential bias of saturation concentration into account would be comparing LSER equations at 
247 same aqueous concentration; however, the compounds used in LSER equations display a very 
248 wide range of solubility (from 1x10-1 to 5x105 mg/L). Considering the orders of magnitude 
249 difference in solubility of SOCs, it is unlikely to find an overlapping (pseudo-)equilibrium 
250 concentration. Therefore, it is typical to normalize the equilibrium concentration with respect to 
251 solubility of the compound and report adsorption affinity (KD) at a fixed percent solubility 
252 concentration (e.g., adsorption affinity at 1% of compound solubility: qe/Ce at 1% solubility = 
253 KD, 0.01).

254

255

Dilute Solution Saturated Solution

Adsorbent SurfaceAdsorbent Surface

Adsorbate molecule

Intermolecular interactions

Adsorbent surface

1 1

2

3

4

256 Figure 3. Intermolecular interactions in dilute and saturated solutions: (1) adsorbate molecule - 
257 surface interactions (2) adsorbate-adsorbate interactions in bulk solution (3) adsorbed molecule – 
258 dissolved molecule interactions (4) interaction of adsorbed molecules 

259
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260 4. Effect of CNM properties on LSER modeling

261 Despite the lack of adsorbent properties in quintessential LSER modeling, it is clear that 
262 CNM properties play a defining role for adsorption. There are several approaches to account for 
263 the impact of adsorbent in LSER modeling. The first and foremost is realizing the effects of 
264 predominant nanomaterial properties on adsorption such as specific surface area, pore volume, 
265 pore size distribution, outer diameter, length, number of graphene layer. Specific surface area 
266 measurement is generally conducted by N2 adsorption onto the adsorbent in bulk phase under 
267 vacuum at 77 K and subsequently the data is modeled according to Brunauer–Emmett–Teller gas 
268 adsorption theory [48]. Although aqueous phase adsorption conditions are much different from 
269 those of N2 gas adsorption, the standardized surface area measurement is considered as the 
270 benchmark tool by most researchers. Preliminary efforts indicated that normalizing the MWCNT 
271 adsorption descriptors by specific surface area had no impact on LSER modeling for low SOC 
272 concentration models (e.g., 0.02% of Cs) [23]. This can be attributed to LSER adsorption 
273 descriptors capturing adsorption affinity at dilute conditions rather than adsorption capacity, for 
274 which surface area is used as a surrogate parameter [23]. In other words, availability of total 
275 surface area is not critical for adsorption of a small number of SOC molecules. Instead, other 
276 physical features of CNMs may be influential on adsorption. For example, at low concentrations 
277 (1 μg/L), larger diameter MWCNTs were shown to adsorb more phenanthrene molecules than 
278 smaller diameter MWCNTs per unit surface area [49]; however, this relationship disappears at 
279 higher SOC concentration (>100 μg/L). This observation was attributed to the lower surface 
280 curvature (or large diameter) of MWCNTs thermodynamically enabling stronger π- π 
281 interactions with flat and polyaromatic phenanthrene molecules via better alignment and 
282 stacking. Overall, these observations indicate that surface area normalization to account for the 
283 differences of CNMs in LSER modeling may not be necessary for particularly low SOC 
284 concentrations. Similar to specific surface area, total pore volume or a defined sub-fraction of 
285 pore volume (e.g., pores smaller than 2 nm or micropores) can also be used as an indicator for 
286 adsorption. However, the same argument persists for the inability of pore volume to assess LSER 
287 modeling at low SOC concentrations. Previous work indicated that SWCNTs tend to form tighter 
288 aggregates than MWCNTs due to stronger non-specific interparticle attraction, creating 
289 microporous SWCNT bundles in water [50]. Difference between SWCNT and MWCNT are 
290 structural are not mechanistically captured in a single LSER; therefore, the approach taken in the 
291 scientific community has been historically to develop models for general classes of CNMs such 
292 as SWCNTs, MWCNTs, graphenes, and graphene oxides. This resulted in an increase the model 
293 linearity and strength of models within the prediction domain.

294 In addition to physical characteristics, there are also chemical properties of CNMs that 
295 influence the LSER modeling. The surface chemistry is described by a variety of parameters 
296 such as total surface oxygen content (elemental analysis), oxygen-containing functional groups 
297 (Boehm titration), pH point of zero charge (pHpzc), and water vapor adsorption, which aim to 
298 indicate the surface polarity. The surface polarity increases the intermolecular H-bonding 
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299 interactions between CNM surfaces and water molecules creating clusters of water on the surface 
300 minimizing the interactions of hydrophobic SOCs with the surface. Other efforts indicated that 
301 the CNM functional groups cause increased π-π electron donor-acceptor interactions due to 
302 localization of π electrons on the graphitic surfaces especially for aromatic SOCs [51]. In 
303 addition, increased H-bonding interaction between polar functional groups of SOCs and CNM 
304 surfaces were reported [52, 53]. More recently, incident impact of air bubbles on favorable polar 
305 interactions for adsorption of amphiphilic molecules by CNTs were demonstrated [54]. 
306 Therefore, adsorptive interactions strongly rely on the surface chemistry of CNMs and are 
307 important to account for in LSER models. The relative contribution of H-bond donating and 
308 accepting abilities of molecules are captured in LSER models but no mechanistic approach is 
309 widely accepted for capturing the same ability of CNM adsorbents. Since the distinguishing 
310 factor between ‘pristine’ and ‘oxidized’ CNMs is the overall oxygen content, researchers define 
311 the practical cutoff values for adsorbents’ oxygen content (e.g., <5wt.% oxygen) to classify 
312 them. The “pristine” CNMs contain minute amounts of oxygen on the imperfections of the basal 
313 plane, wrinkles, folds, edges and corners; therefore, during LSER modeling, a common approach 
314 is creating subsets of CNMs with different oxygen content improve the model fit and prediction 
315 ability [23]. Although the model captures the polar interactions, CNM physical structure is 
316 intertwined with the surface chemistry. In contrast to rigid and traditional graphitic adsorbents 
317 (e.g., activated carbons), higher surface polarity may result in looser aggregation of CNTs or 
318 larger sheet-sheet distances for graphenes [50, 55, 56]. Further, new approaches that couples 
319 surface chemistry and physical properties of CNMs can be developed to unravel the adsorptive 
320 interactions of SOCs with functionalized CNMs [57].

321

322 5. Summary and recommendations for future work

323 Various engineering applications, technology development opportunities and/or scientific 
324 curiosity motivated our field to create the critical mass for developing statistical predictive 
325 models for adsorption of SOCs by CNMs. This literature survey summarizes the recent findings 
326 while researchers pursue their debates about “creating the perfect model” for adsorption of 
327 synthetic organic contaminants by carbon nanomaterials. Whether the perfect model exists or 
328 not, it is evident that the studies significantly contributed to our current understanding of this 
329 research area.

330 Today’s literature largely focuses on LSER models for carbon nanotubes and graphene 
331 derivatives. Although, the chemical interactions of the SOCs and all carbon adsorbents will have 
332 similarities in water, physical properties of carbon adsorbent (e.g., chirality, end groups, 
333 morphology, and defects) and their aggregation must be systematically investigated. Although, 
334 the final form of nanomaterial micro-assemblies in water is difficult-to-predict, it will be utterly 
335 different from their bulk phase bundle structures. Researchers must recognize that the surface 
336 area measurement of CNMs are generally determined under nitrogen gas ambient at 77 K via 
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337 BET and DFT models. Detected surface area and pore structure may not be accurate in water 
338 because of the aggregation behavior of nanomaterials. Therefore, researchers need to reveal the 
339 aggregation mechanism of CNMs in water and its relationship to adsorptive interactions. 

340 Moving forward, a better understanding of how LSER models are changing in function of 
341 the surface chemistry and morphology of the carbon surface will be important in predicting the 
342 adsorption capacity of a broader range of carbon nanostructure. Previous studies have shown that 
343 properties such as tube curvature, oxygen content, and type of oxygen functionalization can all 
344 affect the affinity of organic contaminants to carbon nanomaterials [49, 58-60]. How these 
345 different properties affect the predictive capacity of LSER models is still not completely 
346 understood. A recent study on LSER development for graphenes and carbon nanotubes showed 
347 that while the main solvation descriptors of importance remained unchanged, the relative 
348 importance of each parameter in the LSER model differed in function of the carbon 
349 nanostructure [33]. Right now, LSER models are ill-equipped to describe how the adsorbent 
350 properties can change the LSER model prediction. To address this knowledge gap, a systematic 
351 approach studying well-characterized nanostructures of progressively varying properties could 
352 identify the boundaries where the properties of the carbon nanomaterials start to significantly 
353 affect the predictive capacity of the LSER models.

354 Another challenge in hand is the missing bridge between predictive models that are 
355 developed in distilled and deionized waters or similar simplified aquatic matrices and real-world 
356 applications. The community must focus on developing or affirming predictive models in 
357 complex ambient (controlled or uncontrolled) to address the real-world application of these 
358 models. As our understanding of LSER models for CNMs becomes more and more complete, 
359 there will be opportunities for designing other ultrahigh surface area nano-adsorbents. These 
360 novel and promising adsorbent materials would employ LSER models and guide material 
361 development for their efficient use for contaminant removal. While mechanistic model 
362 development studies focus on compiling and collecting experimental data, strategies beyond 
363 multiple linear regression such as support vector machine and artificial neural networks [24, 61] 
364 will be capable of improving the models. These traditional tools will further be improved within 
365 the context of artificial intelligence and machine learning algorithms if integrated into the 
366 developing “big data” vision. Therefore, researchers are encouraged to provide their 
367 experimental data and detailed information in the supporting information section of their 
368 publications and support the growing efforts of connecting user-fed databases globally. The 
369 improvement of quantifiable metrics for model success must always be complemented with 
370 mechanistic models to gain insights into intermolecular interactions between SOCs and CNMs.

371 Providing a better predictive capability for the adsorption of organic contaminants on 
372 surfaces can have important implications for the fate and transport of organic contaminants in the 
373 environment and improve engineered water treatment systems if we can address the existing 
374 research gaps. The broad predictive capabilities of LSER models offer a powerful framework to 
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375 better understand the interaction of organic molecules with surfaces and develop appropriate 
376 remediation or control strategies.
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Log K =  aA +  bB +  vV +  pP +  rR + c
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The LSER models for adsorption of SOCs by CNMs profoundly depend on compound properties, 
adsorbent characteristics and the background solution.
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