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Water Impact Statement

Characterizing the sewer microbiome is of interest for protecting public health and interpreting 
wastewater-based epidemiology data.  Our sewer investigation indicated microbial community 
and antibiotic resistance varied by matrix and season.  NDM-1, a resistance gene of high health 
importance, was frequently observed in sewer sediments and rarely in sewage, indicating the 
potential relevance of in-sewer processes for select microbial agents.  
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8 Abstract

9 The sewer environment is a potential hotspot for the proliferation of antibiotic resistance genes 

10 (ARGs) and other hazardous microbial agents.  Understanding the potential for ARG 

11 proliferation and retardation and/or accumulation in sewer sediments is of interest for protecting 

12 the health of sewage workers and the broader community in the event of sewer overflows as well 

13 as for interpreting sewage epidemiology data.  To better understand this understudied 

14 environment for antibiotic resistance, a field survey was conducted to identify the factors that 

15 may control ARGs in sewer sediments and sewage.  qPCR was performed for select ARGs and 

16 amplicon sequencing was performed for paired samples from combined and separate sanitary 

17 sewer systems.  Metagenomic sequencing was performed on combined sewer sediments.  The 

18 relative abundances of sul1, tet(O), tet(W), ermF, and vanA were higher in wastewater compared 

19 to sewer sediments, while NDM-1 was greater in sewer sediment and ermF was similar between 

20 the two matrices.  NDM-1 was observed in sewer sediment but rarely above detection in 

21 wastewater in this study.  This may indicate that larger/more frequent wastewater samples are 

22 needed for detection and/or that retardation and/or accumulation in sewage sediment may need to 

23 be considered when interpreting wastewater-based epidemiology data for ARGs.  Random forest 

24 analyses indicated that season and conductivity were important variables and to a lesser extent so 

25 were pH, TSS, heavy metals, and sewer type for explaining the variance of the ARGs.  These 
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26 variables explained the 19-61% of the variance of sul1, tet(O), tet(G), and tet(W) quantified in 

27 wastewater.  These variables performed less well for explaining the variance in sewer sediments 

28 (0.2-24%).  Sewer sediment and wastewater had distinct microbial community structures and 

29 biomarkers for each are described.  Metagenomics indicated that a high diversity of ARGs, 

30 including several of medical importance, were observed in the combined sewer sediment.  This 

31 work provides insight into the complex sewer microbiome and the potential hazard posed by 

32 different sewer matrices.  

33 Keywords:  ARG, combined sewer, heavy metals, amplicon sequencing, metagenomics, sewage
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34 1. Introduction

35 Antibiotic resistance is a public health threat and a comprehensive risk assessment requires an 

36 understanding of the fate of antibiotic resistance genes (ARGs) from environmental hotspots.1  

37 The potential role of sewage collection systems as one such hotspot is of interest, particularly 

38 given the risk posed by separate sanitary and combined sewer overflows (CSOs).  In cities with 

39 combined sewer infrastructure, overflow events contribute to waterborne-disease outbreaks2 and 

40 present a risk to public health by serving as a source of pathogens3 and antibiotic resistant genes 

41 and bacteria.4, 5  Understanding the potential for growth, retardation of transport, decay, 

42 horizontal gene transfer, and selection for antibiotic resistant microbes in sewers is of interest 

43 also for protecting the health of sewage workers, mitigating the impacts of sewer overflows, and 

44 interpreting sewage epidemiology data.6  

45 More remains to be understood about the biological processes that occur in sewer deposits and 

46 their potential effects on the fate of antibiotic resistant bacteria.  Microbes are present in 

47 wastewater, sewer biofilms,7 and wastewater solids that settle during conveyance and collect at 

48 joints or other discontinuities in the sewer system.8  The activity of microbes in sewers is 

49 apparent from studies of microbially induced corrosion,9 dichlorination of polychlorinated 

50 biphenyls,10, 11 and growth of fecal indicators in storm sewer sediments.12  Retardation of 

51 pathogen transport during conveyance has also been indicated by a controlled release of 

52 inactivated polio virus.13  However, limited efforts have been made to understand the factors that 

53 affect antibiotic resistant bacteria and their genes in sewer systems, particularly in the sewer 

54 sediment matrix.  Observations of antibiotic concentrations above the predicted no-effect levels 

55 in sewers indicate the potential for selection.6  However, a study simulating a hospital sewer line 

56 carrying  fluoroquinolone antibiotics indicated that despite accumulation of these drugs, there 
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57 was no evidence of  selection for fluoroquinolone resistance.14 This observation was potentially 

58 due to sorption resulting in lower bioavailability and selection pressure.  In contrast, correlations 

59 between some antimicrobial residues and heavy metals have been reported for select antibiotic 

60 resistances in wastewater influent [e.g., ciprofloxacin resistance with ciprofloxacin and arsenic 

61 concentrations15].

62 The aims of this study are to (1) quantify the loading and describe the diversity of ARGs in 

63 sewer sediments, (2) compare the loading of ARGs in sewer sediments to the wastewater being 

64 conveyed by the sewers, and (3) understand what factors are associated with elevated ARG loads 

65 in both matrices.  To achieve these aims, a field survey was conducted collecting sewer 

66 sediments and wastewater from combined and separate sanitary sewer systems for different 

67 seasons (fall/winter versus summer).  qPCR for select ARGs was performed on both matrices.  

68 Metagenomic sequencing (whole genome shotgun sequencing) was performed on the combined 

69 sewer sediment samples to better understand the diversity of ARGs present in this understudied 

70 matrix.  Wastewater and sewer sediment quality data were collected and analyses including 

71 machine learning (i.e., random forest) were performed to determine the factors explaining the 

72 variance in ARG data and related to elevated ARGs relative abundances.  The results of this 

73 study provide insight into the hazard posed by the sewer environment.  Results can also provide 

74 insight into the impact of solids settling during conveyance on interpretation of sewage 

75 epidemiology data and the potential hazard imposed by the release of different matrices during 

76 overflow events.    

77 2.  Materials and methods

78 2.1 Sewer Sediment and Wastewater Sampling 
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79 A total of sixty samples were collected across five different sewers systems during two sampling 

80 campaigns.  Sewer sediments and post-screen wastewater influent (i.e., two matrices) were each 

81 collected in triplicate. The collection systems all include municipal wastewater and have health 

82 care facilities in the catchment.  The treatment facilities were all > 100 MGD design flow.  To 

83 compare seasons, sampling was performed for Fall/Winter between September 2016 and January 

84 2016 and for Summer between June 2017 and September 2017.  Sewer sediment sampling 

85 locations were selected based on the presence of solids deposition sufficient to collect ~1 L, 

86 which varied by system, location and sampling day.  Samples were collected from a variety of 

87 accumulation points in the sewer systems as described in Table 1.  When possible, different 

88 locations within a given sewer system were selected for different sampling events.  Samples 

89 from each system were collected during baseflow conditions at least one week apart.  Sewer 

90 systems were labeled C1-C3 for the three combined sewer systems and S1-S2 for the two 

91 separate sanitary sewer systems sampled.  On the same day of sediment sampling, a 24-hr time 

92 paced composite wastewater influent sample (2 L, collected via autosampler) was also collected 

93 from the corresponding downstream wastewater treatment plant.  (In one exception, combined 

94 sewer system C3 wastewater was collected one day after sediment samples due to precipitation 

95 that may have influenced the planned 24-hr composite sample.)  Field blanks consisting of 

96 autoclaved deionized water left open for the duration of sediment sampling were collected during 

97 each sampling season then preserved and analyzed using the same biomolecular techniques as 

98 the field samples.  Samples were preserved in sterile sample containers on ice during transport to 

99 the lab where they were immediately processed.  

100 2.1 Chemical Characterization of Field Samples
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101 Sewer sediment samples were sieved < 2 mm and subsamples were analyzed for moisture 

102 content, pH, conductivity, particle size analysis, and select heavy metals.  Moisture content was 

103 measured by drying aliquots to constant weight.  Sediment pH and conductivity were measured 

104 according to standard methods.16, 17  All chemical analyses were conducted in duplicate for 20% 

105 of samples for QA/QC.  Particle size analysis was conducted by a sieve method.  For each 

106 sample with sufficient volume, approximately 200-650 g of sediment were dried at ~100 ºC 

107 overnight to achieve constant mass.  Samples were homogenized with a mortar and pestle and 

108 sieved through a series of stacked stainless-steel U.S. Standard sieves numbered 35, 60, 120, and 

109 230 (ASTM E-11 Certified), which correspond to aperture sizes 500, 250, 125 and 63 µm.  The 

110 stack was placed on a mechanical shaker for approximately 10 min and the dry mass passing 

111 through each sieve was measured.  The fraction > 63 µm would be classified as sand and the 

112 fraction < 63 µm would be classified silt/clay if these samples were from soil.  Biomass is 

113 expected to associate with the latter fraction. 

114 Conductivity, pH, oxidation-reduction potential, total suspended solids (TSS) and volatile 

115 suspended solids (VSS) in wastewater samples were measured with a multimeter (Orion Star 

116 A329, Thermo Scientific) according to standard methods.18, 19  Chemical oxygen demand (COD) 

117 was analyzed according to Hach Method 8000 with Hach COD vials (20-1500 mg/L range) and a 

118 DR2700 spectrophotometer (Hach, Loveland, CO).  Sediment and wastewater samples were 

119 submitted to an outside lab (TestAmerica, Edison, NJ) for analysis of total arsenic, cadmium, 

120 copper, and nickel according to EPA Method SW846 6010C.20  These metals were selected 

121 given that they have previously been associated with selection for antibiotic resistance in 

122 environmental matrices and bacterial cultures.21-25  Metal concentrations are reported on a dry 

123 weight basis.
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124 2.3 Biomolecular analyses  

125 DNA was extracted from the field blanks, wastewater, and sewer sediment samples for qPCR, 

126 amplicon sequencing and (for select sewer sediment samples) metagenomic sequencing.  

127 Wastewater samples (~150 mL) and field blanks were concentrated on 0.22 µm nitrocellulose 

128 filters (Millipore Corporation, Billerica, MA).  Filters or sieved sediment aliquots (~0.5 g wet 

129 weight), were added to DNA lysing tubes and stored at -20°C prior to DNA extraction.  DNA 

130 extractions were conducted using a commercial kit (FastDNA Spin Kit for Soil, MP 

131 Biomedicals, Solon, OH) following the manufacturer’s directions.  qPCR was performed for 

132 select ARG [sul1,26 tet(G),27 tet(W),28 tet(O),28 ermF,29 NDM-1,30 vanA31] and 16S rRNA gene 

133 copies for total bacterial population.32  These sulfonamide and tetracycline resistance genes were 

134 selected because they are commonly observed in environmental matrices.  NDM-1 was 

135 investigated because Carbapenem-resistant Enterobacteriaceae are classified as an “urgent 

136 threat” by the US CDC33 and NDM-1 has emerged in multidrug resistant clinical infections, 

137 raising alarm.34 vanA is also a medically important gene because it encodes for resistance to 

138 vancomycin, considered a drug of last resort for antibiotic resistant infections.  For sul1, tet(G), 

139 tet(W), tet(O), ermF, vanA, and 16S rRNA, a standard SybrGreen (5 µL SsoFast EvaGreen, 

140 BioRad, Hercules, CA) chemistry with 0.4 µM forward and reverse primers, and 1 µL diluted 

141 (1:100) DNA extract in a 10 µL reaction was used.  For NDM-1, a standard TaqMan protocol (5 

142 µL SsoFast Probes Mix, BioRad, Hercules, CA) with 0.72 µM forward and reverse primers, 0.22 

143 µM probe, and 1 µL diluted DNA extract in a 10 µL reaction was used.  QA/QC on the qPCR 

144 included a no-template control on each plate, a seven-point calibration curve, and melt curve 

145 and/or gel electrophoresis to verify the specificity of qPCR products.  qPCR calibration curve R2 

146 and efficiency values were 0.99 ± 0.01 and 87 ± 11 %, respectively.  The limits of quantification 
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147 (LOQs) based on the lowest standard on the curve and factoring in dilutions were approximately 

148 2.0 × 106 copies/g and 6.7 × 104 copies/mL for sediment and wastewater, respectively.  All 

149 sample results were within the LOQs or not detected except for two vanA results which were 

150 below the LOQ and therefore unquantifiable. 

151 Amplicon sequencing was conducted to understand if differences were observed between sewer 

152 types/matrices that could be linked to ARG abundance and to define prominent community 

153 members in the different matrices.  Amplicon sequencing (Illumina MiSeq, 300 bp, paired end) 

154 was performed on samples from both matrices targeting the V3-4 region of the 16S rRNA gene 

155 at a commercial lab (MrDNA, Shallowater, TX).  A total of 40 samples were submitted for 

156 amplicon sequencing: two samples from each wastewater and sewer sediment per season (from 

157 the second and third fall/winter sampling events and first and second summer sampling events) 

158 for each of the five sewer systems.  Sequences were analyzed using Quantitative Insights Into 

159 Microbial Ecology (QIIME) version 1.9 run through Oracle Virtual Box VM and the Rutgers 

160 School of Engineering High Performance Computing Cluster.  Sequences were trimmed using 

161 Trimmomatic35 and stitched using PandaSeq.36  Sequences were otherwise analyzed following 

162 the tutorial for next generation sequencing.37  Briefly, after extracting barcodes 

163 (barcode_extract.py), samples were demultiplexed and quality filtered (split_libraries_fastq.py), 

164 chimeras were removed (identify_chimeric_seqs.py), followed by assigned operational 

165 taxonomic units (OTUs, pick_de_novo_otus.py).  Samples were rarefied at 55,029, the minimum 

166 number of sequences observed per sample.  Rarefaction curves were generated using the mothur 

167 (v1.35.1) rarefaction.single function for order level OTU tables generated in QIIME (Fig. S1).  

168 Sequences are available in the NCBI database under Accession Numbers (SAMN10356326-

169 SAMN10356393).  
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170 Metagenomic sequencing was performed on six sewer sediment samples to provide a deeper 

171 understanding of the diversity of ARGs observed in sewer sediments.  For each combined sewer 

172 system, sediment DNA from two fall/winter sampling events were pooled and two summer 

173 sampling events were pooled to create one pooled sample representing each season.  Pooled 

174 samples were submitted for Illumina HiSeq sequencing (MRDNA, Shallowater, TX).  Libraries 

175 were prepared using Nextera DNA sample preparation kits (Illumina, San Diego, CA) following 

176 the manufacturer’s user guide, pooled, diluted, and sequenced paired-end (150 bp) for 300 

177 cycles.  Sequences were analyzed using the MG-RAST pipeline.38  Pipeline options included 

178 removal of artificial replicates produced by sequencing artifacts (dereplication), screening and 

179 removal of H. sapiens sequences (H.sapiens), and dynamic trimming for sequences with 5 bp 

180 below a 15 phred score.  To investigate the presence of antibiotic resistance mechanisms, genes 

181 called as proteins in MG-RAST were queried against the Comprehensive Antibiotic Resistance 

182 Database [CARD39 version 3.0.2] using BlastX with an E-value cutoff of 10−5.40 The threshold 

183 for amino acid identity was ≥90% and sequence alignment set to ≥25 amino acids.41, 42  Resulting 

184 sequences were normalized to total clean reads (sequences passing quality control which 

185 included dereplication and trimming described above) per sample, reported as parts per million 

186 [(ARG reads / total clean reads) x 106]. Sequences are available under accession numbers  

187 [Reviewer Token: https://www.mg-

188 rast.org/mgmain.html?mgpage=token&token=CbYyXYsUBH07ly69t_mpBoq09dFvoLsWO2FC

189 u9cYuMJs6t4b2l Accession Numbers upon public release] (paired forward and reverse runs) in 

190 the MG-RAST database.

191

192 2.4  Statistical analyses  
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193 Statistical tests were performed in R. qPCR data were log-normalized before analysis.  A random 

194 forest regression model (randomForest package) was used to determine the factors effecting the 

195 observed ARG concentrations in wastewater or sediment and the relative importance of the 

196 factors for each matrix. When a factor resulted in a negative mean square error (MSE) increase, 

197 the analysis was repeated excluding that factor as suggested by Mendez (2011).43  Next, 

198 PERMANOVA (vegan package) was performed to test for differences in ARG relative 

199 abundances (ARG copies / 16S rRNA gene copies, allowing for cross-matrix comparisons) due 

200 to matrix, season, and/or sewer type.  PERMANOVA was also used to test for differences in 

201 chemical parameters in a given matrix between season and sewer type (comparisons were not 

202 made between matrices for the chemical parameters because the units were not necessarily 

203 consistent).  Arsenic and cadmium sediment concentrations were Box Cox transformed prior to 

204 analysis because concentrations were below detection in 20% of the samples.  Next, correlations 

205 between ARGs (gene copies per g dry weight) and metals (concentration, dry weight), 

206 conductivity, or the < 63 µm sediment fraction were tested using Spearman rank tests.  

207 To investigate whether shifts in community structure could be attributed to various sample 

208 characteristics, a Bray-Curtis similarity matrix was calculated on log-normalized subsampled 

209 (N= 55,029 sequences) OTU data at the class level followed by cluster analysis with a 

210 SIMPROF test and non-metric multidimensional scaling (nMDS) in PRIMER 7.  ANOSIM was 

211 used to test for significance of community shifts (α<0.05) between and across season, sewer 

212 type, and matrix.  Richness of each sample, described as the number of OTUs observed for 

213 rarefaction at 55,029 reads was compared across season, matrix, and sewer type using a 

214 Wilcoxon rank sum test.  The same test was used to compare Shannon Diversity indices between 
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215 samples.  Additionally, the linear discriminant analysis effect size (LEfSe) tool44 was used to 

216 identify biomarkers for the different matrices using the default settings.  

217 Network analyses were performed as previously described45 on  the metagenome data to explore 

218 connections between ARG concentrations and the microbial community.  Briefly, 16S rRNA 

219 gene taxonomy was obtained from the metagenomic data in MG-RAST using contigLCA and 

220 filtered for OTUs with abundance >0.5% in at least one sample.  Next a matrix of pairwise t-tests 

221 was performed (psych package corr.test) with a BH correction for multiple comparisons.  Results 

222 were plotted (igraph) using only data that resulted in an adjusted p-value <0.01 and rho>0.8.  

223 Diversity indices were calculated for the annotated ARGs including Shannon Diversity, 

224 Richness, Evenness, and inverse Simpson.  The indices were compared across season and sewer 

225 system by a Friedman test.  

226

227 3. Results

228 ARGs in Sewer Sediment and Wastewater and Explanatory Factors

229 qPCR was performed for select ARGs in paired wastewater and sewer sediment samples 

230 collected from combined and separate sanitary sewer systems across two seasons (Fig. 1).  To 

231 describe the ARG relative abundance, PERMANOVA was performed for the descriptive factors 

232 (matrix, season, and sewer type) across wastewater and sewer sediment.  Matrix (wastewater 

233 versus sewer sediment) resulted in significantly different relative abundances of sul1, tet(O), 

234 tet(W), ermF, and vanA (all p<0.002) with wastewater having the higher relative abundances of 

235 these ARGs and sewer sediment having a higher relative abundance of NDM-1 (p=0.001).  

236 Season was associated with differences in select ARG relative abundances.  Higher sul1 and 
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237 tet(G) relative abundances were observed in winter/fall compared to the summer (both p<0.001) 

238 and higher tet(O) and vanA relative abundances were observed in the summer (both p<0.026).  

239 Sewer type resulted in different relative abundances of sul1, NDM-1, and tet(G), and vanA (all 

240 p<0.043), with some interactions by season.  For example, sul1 and tet(G) were in greater 

241 relative abundance for the combined sewer sediment and wastewater in the winter/fall.  In the 

242 summer the relative abundance of these genes varied by sewer type but not consistently: higher 

243 relative abundances in separate sanitary sewer sediment than combined sewer sediment for tet(G) 

244 and the opposite for sul1 in sewer sediment.  NDM-1, which was only consistently above 

245 detection in the sewer sediments, where it was observed at greater relative abundances in the 

246 combined sewer sediment than separate sewer sediment for both seasons.  When ARGs in the 

247 sewer sediment were compared on a dry weight basis (i.e., gene copies per g sediment) rather 

248 than 16S rRNA normalized, the separate sanitary sewer had higher concentrations of sul1, ermF, 

249 tet(G), and tet(W) (all p<0.006, Fig. S2).  (Seasonal patterns for ARGs in sewer sediment on a 

250 dry weight basis were similar to those described above for 16S rRNA gene copy normalized 

251 ARGs.)  

252 Several potentially explanatory chemical parameters were measured in wastewater and sewer 

253 sediment (Table 2 and Fig. S3).  In wastewater, differences between combined and separate 

254 sanitary sewers were observed for conductivity and ORP (both p=0.023) but not the other water 

255 quality parameters.  Conductivity and ORP were lower in the separate sanitary sewer 

256 wastewater.  For sewer sediment, significant differences were observed between combined and 

257 separate sanitary sewers for pH (p=0.029), conductivity (p=0.027), copper (p=0.027), and arsenic 

258 (p=0.006).  Copper and conductivity were higher in the separate sewer sediments while pH and 

259 arsenic were higher in the combined sewer sediments.  Arsenic was also higher in sewer 
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260 sediment samples collected in the summer (p=0.02).  Nickel was rarely observed in either matrix.  

261 No other differences were observed by sewer type or by season.  

262 Correlations were tested between the heavy metal content of sewer sediments and wastewaters to 

263 provide insight into their potential to associate with ARGs.  Further, antibiotic resistance has 

264 been correlated with heavy metals in other environments.22, 23, 46  For wastewater, positive 

265 correlations were observed between tet(W), tet(O), and ermF concentrations (gene copies per 

266 volume) and arsenic (Spearman’s r>0.39; p<0.03), and between ermF (gene copies per volume) 

267 and nickel (Spearman’s r=0.37; p=0.04).  In sewer sediment, a moderate positive correlation was 

268 observed between tet(G) (gene copies per g dry mass) and copper (Spearman’s r = 0.45; p=0.01) 

269 and total metals measured (Spearman’s r = 0.40; p=0.03), driven by copper’s higher 

270 concentrations compared to the other metals.  A weak positive correlation was observed between 

271 NDM-1 in sewer sediment and copper on a 16S rRNA-normalized basis (Spearman’s r = 0.38; p 

272 = 0.04).  Weak positive correlations were also observed between vanA copies/g and copper and 

273 vanA copies/g and total metals (Spearman’s r = 0.42 and 0.39; p < 0.03). Negative correlations 

274 were observed between tet(O) (gene copies per g dry mass) and arsenic, cadmium, and nickel 

275 (Spearman’s r < -0.46; p < 0.01).

276 Given that sewer sediments can be released to receiving surface water bodies during sewer 

277 overflows, the association of heavy metals with different sewer sediment particle size fractions 

278 (Fig. S4) was explored.  Correlations between heavy metals and the <63 µm size fractions in 

279 sewer sediment were tested, given this fraction may be expected to sorb metals and allow for 

280 release to surface water during sewer overflow events.  Positive correlations were observed 

281 between the fraction of <63 µM particles in the different sewer systems and the four metals 

282 analyzed (Spearman’s r = 0.46-0.76; all p<0.04).  Regression analysis indicated a strong linear 
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283 relationship between arsenic and the < 63µm size fraction (R2=0.84) and less linearity for the 

284 other metals (R2=0.17-0.22).  

285 Relative Importance of Sewer Factors

286 The random forest regression was used to determine predictive factors for ARG relative 

287 abundance in sewer sediment and wastewater samples (Fig. 2).  Random forest analysis can help 

288 identify important variables related to the response variable, provide insight into the 

289 discriminative ability of individual predictor variables, and identify a small number of variables 

290 sufficient for good prediction of the response variable.47-49  Performing the random forest 

291 analysis on an individual matrix and the including all the factors measured for that matrix 

292 showed that at least three times the variance was explained for sul1, tet(G), and tet(W) in 

293 wastewater compared to sediment (Fig. 2).  (The analysis was not performed for NDM-1 in 

294 wastewater given that the gene was observed in only four samples for that matrix.)  After 

295 removing variables that resulted in negative MSE, the remaining wastewater variables explained 

296 a small (tet(W) 19.01% and tet(O) 20.0%) to moderate (sul1 53.1% and tet(W) 60.91%) amount 

297 of the variance in the relative abundance of these genes.  Among the remaining variables, season 

298 was the most important factor (indicated by the greatest increase in MSE) followed by 

299 conductivity and sewer type (results are shown in Table 2) for sul1.  Season and conductivity 

300 were the most important factors for tet(G), and tet(W), while copper was the most important 

301 factor for tet(O).  Other contributing variables were pH, COD, TSS, VSS, arsenic, nickel, and/or 

302 sewer type.  

303 The variables for the sediment random forests explained a small amount of the variance for sul1 

304 (13.9%), tet(G) (18.4%), tet(O) (24.2%), and tet(W) (0.23%).  Conductivity followed by season 

305 were the most important factors for sul1 and tet(G), while conductivity was most important for 
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306 tet(O) and pH was most important for tet(W).  Other contributing variables for explaining the 

307 variance of ARGs in sewer sediment were metals, moisture, and/or sewer type.  Random forest 

308 performed poorly for explaining the variance in ermF and vanA relative abundances in both 

309 matrices and poorly for NDM-1 in sediments.  Overall, this analysis suggested gene-to-gene 

310 differences and matrix effects in the estimative power of the parameters tested.

311 Combined Sewer Sediment ARGs via Metagenomics

312 To provide an understanding of the diversity of ARGs in combined sewer sediments, samples 

313 from the three combined sewers were analyzed with metagenomic (whole genome shotgun) 

314 sequencing.  Sequences were annotated for ARGs and the associated antibiotic drug classes and 

315 mechanisms using CARD.  There were 659-882 ARGs annotated per sample and a Shannon 

316 diversity index of 4.94 to 5.10, richness ranged from 68.1 to 89.1, evenness from 0.74 to 0.76, 

317 and an inverse Simpson of 0.98-0.99, with no significant differences by sewer or season (all 

318 p>0.08).  Cluster analysis on the ARG profiles indicated clustering by sewer system for C1 at 

319 91.2% similarity and C3 with 88.8% similarity (Fig. 3a).  Significant differences in the clustering 

320 by ARG profile were observed between the sewer systems and for C2 between the seasons (all 

321 p=0.01, SIMPROF).  The most prevalent drug classes observed were multidrug (35±3% of 

322 annotations), macrolide (13±1%), and tetracycline (10±1%).  Antibiotic efflux was the most 

323 commonly annotated resistance mechanism (60-65% of ARG annotations) followed by antibiotic 

324 target alteration (16-21%) and antibiotic target protection (10-11%) (Fig. S5).  All of the ARGs 

325 that were detected with qPCR were detected in the metagenomes.  Of interest given the relevance 

326 for public health, mcr-1 (encoding for colistin resistance) was detected in five out of six 

327 combined sewer sediment samples at 0.5 to 2.3ppm of total reads.  mecA (encoding for 
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328 methicillin resistant S. aureus at 6-8 ppm of total reads) and vanA (encoding for vancomycin 

329 resistance at 9-33 ppm of total reads) were observed in all the combined sewer sediment samples.  

330 Microbial Community Analysis via Amplicon Sequencing and Metagenomics

331 Microbial community analysis was performed on the amplicon sequencing data to determine if 

332 there were differences in community structure between matrix, season, and/or sewer type, given 

333 that these could help explain any observed differences in ARG relative abundances.  As 

334 expected, the microbial community structure differed by matrix: wastewater was significantly 

335 different from sewer sediment (p=0.001, ANOSIM).  Richness, determined by number of 

336 observed OTUs, was lower in wastewater compared to sewer sediments (138 ± 19 vs 183 ± 61 

337 OTUs per sample; p=3.9×10-4).  Shannon diversity index was similar in the two matrices: 2.6 ± 

338 0.3 for wastewater and 2.9 ± 0.4 for sewer sediment.  The wastewater samples clustered with 

339 greater than 70.4% similarity and eight of the out ten sample pairings collected from the same 

340 system in the same season (seasonal replicates), clustered without significant differences (all 

341 p>0.063).  The sewer sediment samples clustered with 47.2% similarity and only four of the ten 

342 seasonal replicate pairs clustered without significant difference (all p=1.0).  Sewer sediments 

343 collected from S2 clustered more closely with wastewater (70.4% similarity) than the other 

344 sewer sediments.  Sewer sediments from C3 formed a separate cluster from the other sewer 

345 sediments, the C3 cluster had 60.5% similarity.  Neither microbial community structure (both 

346 p>0.20; ANOSIM) nor richness (both p>0.25) were significantly different across season or sewer 

347 type.  

348 Dominant microbial classes in the amplicon sequencing data for wastewater and sewer sediment 

349 were also evaluated.  Classes that were detected at abundances >0.01 are summarized in Fig. 4.  

350 Actinobacteria, Bacteroidia, Flavobacteriia, Bacilli, Clostridia, and classes of Proteobacteria 
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351 were detected most frequently across samples.  Archaea and various classes from the Chloroflexi 

352 phylum were detected in sewer sediment but not in wastewater samples.  LEfSE biomarker 

353 analysis of wastewater and sewer sediment revealed different biomarkers for the matrices.  

354 Wastewater was characterized primarily by Proteobacteria, Gammaproteobacteria, and 

355 Epsilonproteobacteria.  Sewer sediment was characterized primarily by Archaea, Euryarchaeota, 

356 and Bacteroidia.  The three matrices did not have any biomarkers in common above a linear 

357 discriminant analysis (LDA) score of 3 (Fig. S6).  

358 Network analysis was performed on the combined sewer metagenome data.  Linkages were 

359 determined between the relative abundance of ARG annotations based on the CARD database 

360 and genus level 16S rRNA gene annotations resulting from the MG-RAST analysis (Fig. S7).   

361 Among the remaining genera were those that contain pathogens and/or opportunistic pathogens 

362 (along with commensal organisms) including Aeromonas, Bacillus, Bacteroides, among others.  

363 The majority of the antibiotic resistance mechanism remaining were for efflux followed by target 

364 alternation and target protection.  Most genera had linkage to a single ARG therefore ARGs 

365 expected to be seen together, e.g., those located in a single operon, were not observed as linked 

366 to the same genera.
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367 4. Discussion

368 Loading and Diversity of ARGs in Sewer Sediments and Compared to Wastewater

369 ARGs (sul1, tet(G), tet(O), tet(W), ermF, and vanA) were observed in all sewer sediment 

370 samples at similar or lower relative abundances compared to wastewater, while NDM-1 was 

371 observed in sewer sediment samples and rarely above detection in wastewater.  Sewer sediment 

372 and wastewater ARGs are related given the exchange of solids between the two matrices: solids 

373 from wastewater can settle at junctions and locations of low flow and settled solids may erode 

374 and be re-suspended during high flow and CSO events.50, 51  These results suggest that sul1, 

375 tet(G), tet(O), tet(W), and ermF, and vanA ARGs quantified here did not necessarily accumulate 

376 in sewer sediment compared to the wastewater reaching the treatment plant.  NDM-1 was more 

377 commonly observed in the sewer sediment, potentially due to preferential partitioning, selection 

378 within the sediment, decay within the wastewater during conveyance, or temporal differences 

379 between the sediment measured (representing accumulation over a period of days or longer) and 

380 the 24-hr composite influent samples.  For NDM-1 this may indicate a potential hazard for this 

381 gene and matrix combination.  NDM-1 is a gene of high risk given that multiple hosts can use 

382 the gene to confer resistance and it has been found on broad range plasmids.52-55  NDM-1 has 

383 previously been observed in wastewater, hospital wastewater, and surface waters receiving 

384 wastewater effluent and feces.56-59  Interestingly, samples collected from C3, the sediment 

385 stockpile in the CSO detention tank that is sometimes dry, exhibited consistent ARG abundances 

386 with the other sewer sediments that are consistently in contact with wastewater.  Thus, there is 

387 evidence that ARGs persist in sewer sediments even without constant exchanges with the mobile 

388 bed load and wastewater matrix.  
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389 Of particular interest is the abundance and diversity of ARGs in combined sewer sediments 

390 given the likelihood of release to surface water environment without treatment.  Combined sewer 

391 sediments contained a diverse range of ARGs, with more than double the Shannon diversity 

392 indices for metagenomes from polluted surface water sediments [2.07-2.8960] were analyzed 

393 using a similar pipeline and an older version of CARD.  Across three combined sewer systems, 

394 multidrug resistance and efflux pumps were the most prevalent antibiotic resistance mechanisms, 

395 similar to unimpacted estuarine sediments.61  The most prevalent drug classes observed in sewer 

396 sediments were multidrug, tetracycline, and macrolide.  This observation is similar to the 

397 dominant drug classes reported for wastewater metagenomes.  Multidrug resistance was a 

398 dominant drug class annotated (20.2%) in WWTP influent in Hong Kong along with tetracycline 

399 (23.1%) and aminoglycoside (14.8%).62  In municipal wastewater in China, the most prevalent 

400 ARGs in order of abundance were to tetracycline, β-lactams, macrolides, aminoglycosides, and 

401 multidrug.63  In contrast to sewer sediments, anthropogenically impacted river sediments ARG 

402 annotations were dominated by the aminoglycoside and multidrug,60 amphenicol, macrolide, 

403 tetracycline [compared to unimpacted sediment64], and sulfonamide, fluoroquinolone, and 

404 aminoglycoside resistance genes.61  

405 Factors Associated with Elevated ARGs in Sewer Sediment and Wastewater

406 To better understand factors associated with elevated ARGs in the sewer environment, a random 

407 forest regression was performed to determine variables that helped explain the variance in the 

408 relative abundance of the genes measured by qPCR.  The analysis indicated a small to moderate 

409 amount of the variance in wastewater sul1, tet(G), tet(O), and tet(W) was explained primarily by 

410 season and conductivity with contributions as well from pH, TSS, metals, and sewer type.  In 

411 contrast, the variables included in the random forest explained little to a small amount of the 
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412 variance of these ARGs in sewer sediment with the most important factors again being 

413 conductivity and season with contributions as well from pH, metals, moisture, and sewer type.  

414 Wastewater is a better studied matrix than sewer sediments and it is possible other factors not 

415 measured here may be important for driving the sewer sediment ARG loading.  Examples may 

416 include sewer sediment age, concentrations of other selecting agents (e.g., sorbed antibiotics), 

417 and/or exchange rates with nutrients or selecting factors in the mobile bed load.

418 Seasonal differences between ARGs were observed. Overall higher concentrations were seen in 

419 the fall and winter for sul1, tet(G) and tet(W).  The seasonal variations observed are not thought 

420 to be due to changes in sewer water temperature, which was not previously shown to impact the 

421 sewage microbiome.65  Antibiotic use is up to three times higher in winter66 and may be an 

422 ultimate cause of observed differences given that antibiotics use has been correlated to clinical 

423 antibiotic resistant infections.67 

424 It was hypothesized that ARGs would be similar in the wastewaters from different sewer systems 

425 given that they were collected during periods without rain.  We also hypothesized that ARG 

426 concentrations would be different in the sewer sediments from combined versus separate sewer 

427 systems given that combined sewers would be expected to convey more stormwater (although, 

428 separate systems are subject to varying amounts of infiltration and inflow).  Based on the random 

429 forest analysis of 16S rRNA gene copy normalized ARGs there was some contribution of the 

430 sewer system to both the wastewater and sewer sediment, although there were interactions with 

431 other factors and inconsistent patterns of which system type contained higher levels.  While 

432 differences were not necessarily consistent between sewer systems for ARGs normalized to 16S 

433 rRNA gene copies, concentrations (on a dry weight basis) of all ARGs genes in separate sewer 
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434 system sediments were higher than in combined sewer system sediments.  This can be explained 

435 by the higher moisture content of the separate sewer system sediments collected.  

436 Metals were of interest because antibiotic resistance has been associated with heavy metals in 

437 wastewater68 and other environments.22, 23, 46  The only significant positive correlations between 

438 heavy metals and ARGs were for tet(G) and NDM-1 versus copper in sewer sediments.  The 

439 positive correlation for tet(G) could be due to coselection, as suggested by previous reports of 

440 plasmids carrying both copper and tetracycline resistance.69  Otherwise, the metal concentrations 

441 detected in this study may not have been high enough to trigger coselection for antibiotic 

442 resistance.21, 24   Correlations between metals and silt/clay indicate that sorption may be an 

443 important mechanism for metals retained in sewer sediment.  Metals were detected less 

444 frequently in wastewater than sediment samples.  Only copper was detected consistently in the 

445 wastewater samples and correlations were not observed between it and the ARGs measured with 

446 qPCR.

447 Microbial Community Analysis via Amplicon Sequencing and Metagenomics

448 Microbial communities were studied in parallel with analysis of ARGs because differences in 

449 ARGs could be attributable to different microbial community members present in different 

450 matrixes particularly if these are associated with different characteristic or intrinsic resistances.70  

451 Significantly different microbial community structures were observed in sewer sediments 

452 compared to wastewater.  The sewer sediment microbial community was most similar to the 

453 wastewater community in S2, which was collected from a wet well.  The sewer sediment least 

454 similar to wastewater and other samples came from system C3 which were collected from a CSO 

455 retention basin stock pile.  Therefore, the fact that these samples were not in consistent contact 

456 with wastewater and the mobile bed load may have resulted in a shift in the microbial 
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457 community structure given that the paired wastewater samples from this system had much 

458 greater similarity to wastewater samples from other systems.   The sewer sediment samples were 

459 less similar to one another than the wastewater samples, which was potentially a function of 

460 differences in sampling (wastewater was collected as 24-hr composites, sewer sediments were 

461 collected as composites from a single point of accumulation within the sewer system and likely 

462 represent a greater range of time, although aging the sewer sediment was beyond the scope of 

463 this project).  Interestingly, the sewer sediment microbial community from combined sewer 

464 systems did not necessarily cluster separately from that of the separate sewer sediment.  This is 

465 despite the fact that the combined sewer sediments potentially had greater inputs from the storm 

466 water microbial community in addition to wastewater compared to separate sewer sediment.  

467 This may be due to resuspension of sewer sediments during storms (thus not allowing for 

468 sufficient deposition of storm water sediments), infiltration and inflow in separate sewers 

469 resulting in a similar contribution of stormwater microbes, and/or the greater microbial loading 

470 and diversity in wastewater compared to stormwater thereby obscuring any stormwater sediment 

471 signal in the combined sewers.

472 Implications for Sewer Operations, CSOs, and Interpreting Sewage Epidemiology Data 

473 The data collected here is of interest for understanding the potential hazard presented by the 

474 different sewer matrices during overflows and maintenance as well as for interpreting sewage 

475 epidemiology data.  With respect to sewage overflows, sewer sediments contained ARGs and 

476 heavy metals that can be released to the environment if mobilized and not treated during wet 

477 weather flows.  The association of metals with solids indicates that end-of-pipe treatment 

478 methods that remove settleable solids have the potential to remove these contaminants from the 

479 effluent during CSO events.71  The detection of ARGs in sewer sediments at abundances similar 
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480 to or higher than wastewater highlights that sewer sediments can be a source of microbial 

481 contaminants released during CSO events.  The relative importance of these matrices may be a 

482 function of the volume of each matrix and potential differences in fate and transport upon release 

483 to surface water.  Based on comparison of data from different seasons, the ARG hazard from 

484 release of wastewater and sewer sediments is similar or higher during fall and winter compared 

485 to summer.  However, in the summer, downstream factors such as warmer water temperature in 

486 summer can still promote outbreaks of water-borne bacteria72 and the higher likelihood of 

487 contact during recreation in the summer should be taken into consideration to assess the overall 

488 hazard posed by sewer overflows. 

489 The presence of ARGs in the sewer sediments indicates that a portion of ARGs in wastewater are 

490 retarded during transport, which was expected based on previous research monitoring viruses.13  

491 A diverse range of ARGs were present in combined sewer sediments and several ARGs of 

492 medical importance were observed including NDM-1, which was quantified using qPCR.  

493 Although it was assumed that sediment deposition would be widespread, accumulation of sewer 

494 sediment was not always observed.  Numerous manhole locations (systems C1 and C2) were 

495 rejected because sediment was not found at the bottom of the pipe, while on the same day in the 

496 vicinity, accumulation was appreciable.  Systems with sewer solids accumulation that perform 

497 maintenance (e.g., jetting) will mobilize these ARGs and the associated heavy metals.  More 

498 information about the genetic context and host70 as well as any potential differences in exposure 

499 rates to the two matrices during maintenance would be necessary to compare the relative risk 

500 posed by the different matrices.  Further study would also be needed to understand if and how 

501 retardation of ARGs in sewer sediments may impact the interpretation of sewage epidemiology 

502 data for different systems.  Based on this study, sewer sediment was more likely to have NDM-1 

Page 24 of 38Environmental Science: Water Research & Technology



24

503 at detectable levels.  This indicates that either large sample sizes or more frequent sampling 

504 would be needed for wastewater, otherwise the burden of this gene could be underestimated in 

505 wastewater-based epidemiological studies focuses on wastewater without considering retardation 

506 or preferential accumulation in sewer sediments.

507  5. Conclusions 

508 This research provides insight towards understanding an understudied potential hotspot for 

509 ARGs: sewers.  Sewer sediments were found to contain NDM-1 more frequently than 

510 wastewater but not the other ARGs quantified in this study: wastewater contained a higher 

511 relative abundance of sul1, tet(G), and tet(W).  The chemical parameters measured and factors 

512 considered for this study explained the variance of some of these genes moderately well in 

513 wastewater but at most a small portion of the variance in sewer sediments.  Important variables 

514 for ARGs in wastewater included season and conductivity, followed by pH, TSS, metals, and 

515 sewer type.  The microbial community structures were different between the two matrices, which 

516 may explain some differences in these ARGs relative abundances.  Metagenomic results 

517 indicated that the sewer system was more important than season for the ARG profiles observed 

518 in combined sewer sediments.  A high diversity of ARGs were observed and several ARGs of 

519 medical importance were observed, highlighting a potential hazard.  This work can help inform 

520 mitigation strategies for sewer overflows and preventative sewer maintenance.  Observations of 

521 ARGs and heavy metals in sewer sediments indicate that there is retardation during transport and 

522 their potential for release during sewer overflows if these sediments are eroded.  The fact that 

523 NDM-1 was above detection in sewer sediments and few wastewater samples may indicate 

524 potential retardation/preferential accumulation in sewer sediments or temporal variation in the 

525 wastewater that was captured in settled sediment not apparent in the 24-hr wastewater 
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526 composites that should be considered when interpreting wastewater-based epidemiology data for 

527 ARGs.  A better understanding of system hydraulics and other factors such as exposure rates to 

528 the different matrices for sewage workers and the public as well as genetic context and host of 

529 the ARGs would help inform the potential risk posed by sewer sediments and the need to account 

530 for the impact of settling/resuspension on interpretation of sewage epidemiology data.  Future 

531 studies may wish to include wastewater sampling within the sewer pipe, seek better information 

532 on the accumulation rate and age of sewer sediments (not available here), and include monitoring 

533 for a broader range of ARGs.

534 Acknowledgements

535 Thanks to our utility partners for providing wastewater samples and access to sewer sampling 

536 locations.  Funding for this project was provided by a grant from the National Science 

537 Foundation (grant number 1510461).  Additional support was provided by the Eagleton 

538 Fellowship Program to AE and NIH Bridges to the Doctorate Program (grant number 

539 R25GM058389). 

Page 26 of 38Environmental Science: Water Research & Technology

https://www.sciencedirect.com/science/article/pii/S0048969718346813#gts0025


26

540 References

541 1. N. J. Ashbolt, A. Amézquita, T. Backhaus, P. Borriello, K. K. Brandt, P. Collignon, A. Coors, R. 
542 Finley, W. H. Gaze and T. Heberer, Human health risk assessment (HHRA) for environmental 
543 development and transfer of antibiotic resistance, Environ Health Perspect, 2013, 121, 993.

544 2. J. A. E. ten Veldhuis, F. H. L. R. Clemens, G. Sterk and B. R. Berends, Microbial risks associated 
545 with exposure to pathogens in contaminated urban flood water, Water Res, 2010, 44, 2910-2918.

546 3. E. Donovan, K. Unice, J. D. Roberts, M. Harris and B. Finley, Risk of gastrointestinal disease 
547 associated with exposure to pathogens in the water of the Lower Passaic River, Appl Environ 
548 Microbiol, 2008, 74, 994-1003.

549 4. S. Young, A. Juhl and G. D. O'Mullan, Antibiotic-resistant bacteria in the Hudson River Estuary 
550 linked to wet weather sewage contamination, J Water Health, 2013, 11, 297-310.

551 5. A. Eramo, H. Delos Reyes and N. L. Fahrenfeld, Partitioning of antibiotic resistance genes and 
552 fecal indicators varies intra and inter-storm during combined sewer overflows, Front Microbiol, 
553 2017a, 8, 1-13.

554 6. N. Fahrenfeld and K. J. Bisceglia, Emerging investigators series: sewer surveillance for 
555 monitoring antibiotic use and prevalence of antibiotic resistance: urban sewer epidemiology, 
556 Environ. Sci.: Water Res. Technol., 2016, 2, 788-799.

557 7. R. Crabtree, Sediments in Sewers, Water and Environment Journal, 1989, 3, 569-578.

558 8. R. Ashley and R. Crabtree, Sediment origins, deposition and build-up in combined sewer 
559 systems, Water Sci Technol, 1992, 34, 1-12.

560 9. R. L. Islander, J. S. Devinny, F. Mansfeld, A. Postyn and H. Shih, Microbial ecology of crown 
561 corrosion in sewers, J Environ Eng, 1991, 117, 751-770.

562 10. L. A. Rodenburg, S. Du, D. E. Fennell and G. J. Cavallo, Evidence for widespread dechlorination 
563 of polychlorinated biphenyls in groundwater, landfills, and wastewater collection systems, 
564 Environ Sci Technol, 2010, 44, 7534-7540.

565 11. V. Krumins, W. Sun, J. Guo, S. Capozzi, D. E. Fennell and L. A. Rodenburg, Sewer sediment 
566 bacterial communities suggest potential to transform persistent organic pollutants, Water Environ. 
567 Res., 2018, 90, 2022-2029.

568 12. R. P. Marino and J. J. Gannon, Survival of fecal coliforms and fecal streptococci in storm drain 
569 sediment, Water Res., 1991, 25, 1089-1098.

570 13. T. Hovi, M. Stenvik, H. Partanen and A. Kangas, Poliovirus surveillance by examining sewage 
571 specimens. Quantitative recovery of virus after introduction into sewerage at remote upstream 
572 location, Epidemiol. Infect., 2001, 127, 101-106.

573 14. P.-Å. Jarnheimer, J. Ottoson, R. Lindberg, T.-A. Stenström, M. Johansson, M. Tysklind, M.-M. 
574 Winner and B. Olsen, Fluoroquinolone antibiotics in a hospital sewage line; Occurrence, 
575 distribution and impact on bacterial resistance, Scand. J. Infect. Dis., 2004, 36, 752-755.

576 15. A. R. Varela, S. André, O. C. Nunes and C. M. Manaia, Insights into the relationship between 
577 antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant 
578 system, Water Res., 2014, 54, 327-336.

579 16. United States Department of Agriculture, Diagnosis and improvement of saline and alkali soils.  
580 1954, Agricultural Handbook No. 60.

Page 27 of 38 Environmental Science: Water Research & Technology



27

581 17. US Environmental Protection Agency, EPA Test Method 9056D: Soil and waste pH. 2004.

582 18. US Environmental Protection Agency, Field Measurement of Oxidation Reduction Potential 
583 (ORP).  2013.

584 19. American Water Works Association, Standard Methods for the Examination of Water and 
585 Wastewater. 2012.

586 20. US Environmental Protection Agency, Method 6010C: Inductively coupled plasma-atomic 
587 emission spectrometry. 2007.

588 21. S. Chen, X. Li, G. Sun, Y. Zhang, J. Su and J. Ye, Heavy metal induced antibiotic resistance in 
589 bacterium LSJC7, Int J Molec Sci, 2015, 16, 23390-23404.

590 22. C. Seiler and T. U. Berendonk, Heavy metal driven co-selection of antibiotic resistance in soil 
591 and water bodies impacted by agriculture and aquaculture, Front Microbiol, 2012, 3, 399.

592 23. X. Ji, Q. Shen, F. Liu, J. Ma, G. Xu, Y. Wang and M. Wu, Antibiotic resistance gene abundances 
593 associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to 
594 feedlots in Shanghai; China, J Hazard Mat, 2012, 235, 178-185.

595 24. E. Gullberg, L. M. Albrecht, C. Karlsson, L. Sandegren and D. I. Andersson, Selection of a 
596 multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals, MBio, 2014, 5, 
597 e01918-01914.

598 25. C. Baker-Austin, M. S. Wright, R. Stepanauskas and J. McArthur, Co-selection of antibiotic and 
599 metal resistance, Trends Microbiol, 2006, 14, 176-182.

600 26. R. Pei, S.-C. Kim, K. H. Carlson and A. Pruden, Effect of river landscape on the sediment 
601 concentrations of antibiotics and corresponding antibiotic resistance genes (ARG), Water Res., 
602 2006, 40, 2427-2435.

603 27. R. I. Aminov, J. C. Chee-Sanford, N. Garrigues, B. Teferedegne, I. J. Krapac, B. A. White and R. 
604 I. Mackie, development, validation, and application of PCR primers for detection of tetracycline 
605 efflux genes of Gram-negative bacteria, Appl Environ Microbiol, 2002, 68, 1786-1793.

606 28. R. I. Aminov, N. Garrigues-Jeanjean and R. I. Mackie, Molecular ecology of tetracycline 
607 resistance: development and validation of primers for detection of tetracycline resistance genes 
608 encoding ribosomal protection proteins, Appl Environ Microbiol, 2001, 67, 22-32.

609 29. J. Chen, Z. Yu, F. C. Michel, T. Wittum and M. Morrison, Development and application of real-
610 time PCR assays for quantification of erm genes conferring resistance to macrolides-
611 lincosamides-streptogramin B in livestock manure and manure management systems, Appl. 
612 Environ. Microbiol., 2007, 73, 4407-4416.

613 30. S. M. Diene, N. Bruder, D. Raoult and J.-M. Rolain, Real-time PCR assay allows detection of the 
614 New Delhi metallo-β-lactamase (NDM-1)-encoding gene in France, Int. J. Antimicrob. Agents, 
615 2011, 37, 544-546.

616 31. S. Dutka-Malen, S. Evers and P. Courvalin, Detection of glycopeptide resistance genotypes and 
617 identification to the species level of clinically relevant enterococci by PCR, J Clinical Microbiol 
618 1995, 33, 24-27.

619 32. G. Muyzer, E. C. De Waal and A. G. Uitterlinden, Profiling of complex microbial populations by 
620 denaturing gradient gel electrophoresis analysis or polymerase chain reaction-amplified genes 
621 coding for 16S rRNA, Appl Environ Microbiol 1993, 59, 695-700.

622 33. Center for Disease Control U.S. (CDC), Antibiotic Resistance Threats in the United States, 2019. 
623 Atlanta, GA:  U.S. Department of Health and Human Services., 2019.

Page 28 of 38Environmental Science: Water Research & Technology



28

624 34. K. K. Kumarasamy, M. A. Toleman, T. R. Walsh, J. Bagaria, F. Butt, R. Balakrishnan, U. 
625 Chaudhary, M. Doumith, C. G. Giske, S. Irfan, P. Krishnan, A. V. Kumar, S. Maharjan, S. 
626 Mushtaq, T. Noorie, D. L. Paterson, A. Pearson, C. Perry, R. Pike, B. Rao, U. Ray, J. B. Sarma, 
627 M. Sharma, E. Sheridan, M. A. Thirunarayan, J. Turton, S. Upadhyay, M. Warner, W. Welfare, 
628 D. M. Livermore and N. Woodford, Emergence of a new antibiotic resistance mechanism in 
629 India, Pakistan, and the UK: a molecular, biological, and epidemiological study, Lancet Infect 
630 Diseases, 2010, 10, 597-602.

631 35. A. M. Bolger, M. Lohse and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence 
632 data, Bioinformatics, 2014, 30, 2114-2120.

633 36. A. P. Masella, A. K. Bartram, J. M. Truszkowski, D. G. Brown and J. D. Neufeld, PANDAseq: 
634 paired-end assembler for illumina sequences, BMC Bioinformatics, 2012, 13, 31.

635 37. QIIME, 454 Overview Tutorial: de novo OTU picking and diversity analyses using 454 data, 
636 http://qiime.org/tutorials/tutorial.html, (accessed January 11, 2019).

637 38. F. Meyer, D. Paarmann, M. D'Souza, R. Olson, E. M. Glass, M. Kubal, T. Paczian, A. Rodriguez, 
638 R. Stevens and A. Wilke, The metagenomics RAST server–a public resource for the automatic 
639 phylogenetic and functional analysis of metagenomes, BMC bioinformatics, 2008, 9, 386.

640 39. B. Jia, A. R. Raphenya, B. Alcock, N. Waglechner, P. Guo, K. K. Tsang, B. A. Lago, B. M. 
641 Dave, S. Pereira and A. N. Sharma, CARD 2017: expansion and model-centric curation of the 
642 comprehensive antibiotic resistance database, Nucleic Acids Res, 2016, gkw1004.

643 40. Y. Yang, B. Li, F. Ju and T. Zhang, Exploring variation of antibiotic resistance genes in activated 
644 sludge over a four-year period through a metagenomic approach, Environ Sci Technol, 2013, 47, 
645 10197-10205.

646 41. E. Kristiansson, J. Fick, A. Janzon, R. Grabic, C. Rutgersson, B. Weijdegård, H. Söderström and 
647 D. J. Larsson, Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of 
648 resistance and gene transfer elements, PloS one, 2011, 6, e17038.

649 42. T. Zhang, X.-X. Zhang and L. Ye, Plasmid metagenome reveals high levels of antibiotic 
650 resistance genes and mobile genetic elements in activated sludge, PloS one, 2011, 6, e26041.

651 43. G. Mendez and S. Lohr, Estimating residual variance in random forest regression, Comput Stat 
652 Data Anal, 2011, 11, 2937-2950.

653 44. N. Segata, J. Izard, L. Waldron, D. Gevers, L. Miropolsky, W. S. Garrett and C. Huttenhower, 
654 Metagenomic biomarker discovery and explanation, Genome Biol, 2011, 12, R60.

655 45. D. Baral, B. I. Dvorak, D. Admiraal, S. Jia, C. Zhang and X. Li, Tracking the sources of antibiotic 
656 resistance genes in an urban stream during wet weather using shotgun metagenomic analyses, 
657 Environ Sci Technol, 2018, 52, 9033-9044.

658 46. A.-D. Li, L.-G. Li and T. Zhang, Exploring antibiotic resistance genes and metal resistance genes 
659 in plasmid metagenomes from wastewater treatment plants, Front Microbiol, 2015, 6.

660 47. R. Genuer, J.-M. Poggi and C. Tuleau-Malot, Variable selection using random forests, Pattern 
661 Recognition Lett, 2010, 31, 2225-2236.

662 48. K. J. Archer and R. V. Kimes, Empirical characterization of random forest variable importance 
663 measures, Comput Stat Data Anal, 2008, 52, 2249-2260.

664 49. U. Grömping, Variable importance assessment in regression: linear regression versus random 
665 forest, American Stat, 2009, 63, 308-319.

Page 29 of 38 Environmental Science: Water Research & Technology

http://qiime.org/tutorials/tutorial.html


29

666 50. R. Ashley and M. Verbanck, Mechanics of sewer sediment erosion and transport, J Hydraul Res, 
667 1996, 34, 753-770.

668 51. J. Passerat, N. K. Ouattara, J. M. Mouchel, V. Rocher and P. Servais, Impact of an intense 
669 combined sewer overflow event on the microbiological water quality of the Seine River, Water 
670 Res, 2011, 45, 893-903.

671 52. P. L. Ho, W. U. Lo, M. K. Yeung, C. H. Lin, K. H. Chow, I. Ang, A. H. Y. Tong, J. Y.-J. Bao, S. 
672 Lok and J. Y. C. Lo, Complete sequencing of pNDM-HK encoding NDM-1 Carbapenemase from 
673 a multidrug-resistant Escherichia coli strain isolated in Hong Kong, PLOS ONE, 2011, 6, e17989.

674 53. T. R. Walsh, J. Weeks, D. M. Livermore and M. A. Toleman, Dissemination of NDM-1 positive 
675 bacteria in the New Delhi environment and its implications for human health: an environmental 
676 point prevalence study, Lancet Infectious Dis, 2011, 11, 355-362.

677 54. A. Potron, L. Poirel and P. Nordmann, Plasmid-mediated transfer of the blaNDM-1 gene in 
678 Gram-negative rods, FEMS Microbiol. Lett., 2011, 324, 111-116.

679 55. B. Jovcic, Z. Lepsanovic, V. Suljagic, G. Rackov, J. Begovic, L. Topisirovic and M. Kojic, 
680 Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from 
681 Serbia, Antimicrob. Agents Chemother., 2011, 55, 3929-3931.

682 56. Z. S. Ahammad, T. R. Sreekrishnan, C. L. Hands, C. W. Knapp and D. W. Graham, Increased 
683 waterborne blaNDM-1 resistance gene abundances associated with seasonal human pilgrimages 
684 to the Upper Ganges River, Environ. Sci. Technol., 2014, DOI: 10.1021/es405348h.

685 57. F. Yang, D. Mao, H. Zhou, X. Wang and Y. Luo, Propagation of New Delhi Metallo-β-lactamase 
686 genes (blaNDM-1) from a wastewater treatment plant to its receiving river, Environ. Sci. Technol. 
687 Lett., 2016, 3, 138-143.

688 58. C. Zhang, S. Qiu, Y. Wang, L. Qi, R. Hao, X. Liu, Y. Shi, X. Hu, D. An, Z. Li, P. Li, L. Wang, J. 
689 Cui, P. Wang, L. Huang, J. D. Klena and H. Song, Higher Isolation of NDM-1 Producing 
690 Acinetobacter baumannii from the Sewage of the Hospitals in Beijing, PLOS ONE, 2013, 8, 
691 e64857.

692 59. Y. Luo, F. Yang, J. Mathieu, D. Mao, Q. Wang and P. J. J. Alvarez, Proliferation of Multidrug-
693 Resistant New Delhi Metallo-β-lactamase genes in municipal wastewater treatment plants in 
694 Northern China, Environ. Sci. Technol. Lett., 2014, 1, 26-30.

695 60. N. Fahrenfeld, H. Delos Reyes, A. Eramo, D. M. Akob, A. Mumford and I. M. Cozzarelli, Shifts 
696 in microbial community structure and function  in unconventional oil and gas waste impacted 
697 surface waters revealed by metagenomics., Sci. Total Environ., 2017, 580, 1205-1213.

698 61. H. Chen, X. Bai, L. Jing, R. Chen and Y. Teng, Characterization of antibiotic resistance genes in 
699 the sediments of an urban river revealed by comparative metagenomics analysis, Sci Total 
700 Environ, 2018.

701 62. Y. Yang, B. Li, S. Zou, H. H. Fang and T. Zhang, Fate of antibiotic resistance genes in sewage 
702 treatment plant revealed by metagenomic approach, Water Res, 2014, 62, 97-106.

703 63. J. Tang, Y. Bu, X.-X. Zhang, K. Huang, X. He, L. Ye, Z. Shan and H. Ren, Metagenomic 
704 analysis of bacterial community composition and antibiotic resistance genes in a wastewater 
705 treatment plant and its receiving surface water, Ecotox Environ Safety, 2016, 132, 260-269.

706 64. N. P. Marathe, C. Pal, S. S. Gaikwad, V. Jonsson, E. Kristiansson and D. J. Larsson, Untreated 
707 urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics, 
708 Water Res, 2017, 124, 388-397.

Page 30 of 38Environmental Science: Water Research & Technology



30

709 65. J. L. Vandewalle, G. W. Goetz, S. M. Huse, H. G. Morrison, M. L. Sogin, R. G. Hoffmann, K. 
710 Yan and S. L. McLellan, Acinetobacter, Aeromonas and Trichococcus populations dominate the 
711 microbial community within urban sewer infrastructure, Environ Microbiol, 2012, 14, 2538-2552.

712 66. S. Coutu, L. Rossi, D. A. Barry, S. Rudaz and N. Vernaz, Temporal variability of antibiotics 
713 fluxes in wastewater and contribution from hospitals, PLoS One, 2013, 8, e53592.

714 67. L. Sun, E. Y. Klein and R. Laxminarayan, Seasonality and temporal correlation between 
715 community antibiotic use and resistance in the United States, Clin Infect Dis, 2012, 55, 687-694.

716 68. P. Gao, M. Munir and I. Xagoraraki, Correlation of tetracycline and sulfonamide antibiotics with 
717 corresponding resistance genes and resistant bacteria in a conventional municipal wastewater 
718 treatment plant, Sci Total Environ, 2012, 421-422, 173-183.

719 69. E. Gullberg, L. M. Albrecht, C. Karlsson, L. Sandegren and D. I. Andersson, Selection of a 
720 multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals, MBio, 2014, 5, 
721 e01918-01914.

722 70. J. L. Martínez, T. M. Coque and F. Baquero, What is a resistance gene? Ranking risk in 
723 resistomes, Nat Rev Microbiol, 2015, 13, 116-123.

724 71. M. A. Wilson, O. Mohseni, J. S. Gulliver, R. M. Hozalski and H. G. Stefan, Assessment of 
725 hydrodynamic separators for storm-water treatment, J Hydraul Eng, 2009, 135, 383-392.

726 72. A. Sterk, F. M. Schets, R. Husman, A. Maria, T. Nijs and J. F. Schijven, Effect of climate change 
727 on the concentration and associated risks of Vibrio spp. in Dutch recreational waters, Risk 
728 Analysis, 2015, 35, 1717-1729.

729

Page 31 of 38 Environmental Science: Water Research & Technology



 

Figure 1. ARG copies normalized to 16S rRNA gene copies for sewer sediment (“Sediment”) and wastewater 
(“Water”). Samples were collected from either combined or separate sanitary sewer systems in triplicate 
during each season (each box represents N=9 for combined and N=6 for separate sanitary sewers). Note 

the scale is different for vanA. 
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Figure 2. Percent increase in mean square error (MSE) for the different factors included in the random forest 
regression for (a) wastewater or (b) sediment factors for ARGs. The percent of variance explained for each 
regression is listed following the ARG name. (No data is shown for NDM-1 in wastewater given that it was 

only observed in four out of thirty samples.) 
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Figure 3. (a) Cluster analysis for the ARG profiles observed in combined sewer sediment systems (C1-C3) 
collected in two different seasons (fall/winter “F/W” versus summer “S”). Samples connected by black bars 

are significantly different (SIMPROF p>0.05). (b) Heat map of antibiotic classes relative abundance observed 
in the sewer sediment metagenomes. 
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Figure 4.  (a) Cluster analysis for the microbial community profiles observed in combined sewer (C1-C3) and 
separate sanitary sewer (S1 and S2) systems.  Paired wastewater (“WW”) and sewer sediment (“S”) 

samples were collected triplicate during two different seasons (fall/winter “F/W” versus summer “S”) and 
replicate samples were sequenced.  Samples connected by black bars are significantly different (SIMPROF 
p>0.05). (b)  Heat map of bacterial and archaeal phyla and classes with relative abundances greater than 

1% in at least one sample from wastewater or sewer sediment.  Results for replicate samples from 
fall/winter (“W”) and summer (“S”) are shown. 
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Table. 1  Sewer type, sampling period, and description of where sediment samples* were collected.

System 
ID

Sewer 
Type

Fall/Winter 
Sampling 
Months

Summer 
Sampling 
Months

Sediment Sampling 
Location/Type

C1 combined October- 
November

June-July Sediment deposits from bottom 
of sewer pipe collected via 
manhole

C2 combined October- 
November

July-August Sediment deposits from bottom 
of sewer pipe collected via 
manhole

C3 combined October-
November

June-July Sewer sediment discharged 
during CSO events and 
stockpiled in CSO detention tank 

S1 separate September June-July Sediment deposits from pump or 
metering stations

S2 separate December- 
January

August-
September

Wet well

*N=3 samples per season for each sewer, exact locations varied by availability of access and sediment deposits
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Table 2.  Wastewater and sewer sediment chemical and quality data for combined (“C”) and separate sanitary (“S”) sewer systems.  Average 
values are reported ± standard deviation (N=6).

 Wastewater Influent Sewer Sediment

System 
ID pH Conductivity 

(µS/cm)
COD 
(mg/L)

TSS
 (mg/L)

VSS 
(mg/L)

ORP
 (mV) 

pH Conductivity 
(µS/cm)

Moisture 
Content 
(%)

C1 7.3 ± 0.1 891 ± 93.0 697 ± 160 274 ± 107 220 ± 126 278 ± 90.0 7.0 ± 0.6 119 ± 45.0 25 ± 8.0

C2 7.4 ± 0.2 2020 ± 522 603 ± 330 179 ± 56.0 150 ± 35 253 ± 127 7.1 ± 0.5 575 ± 702 35 ± 17

C3 7.0 ± 0.3 863 ± 257 759 ± 220 420 ± 121 344 ± 108 228 ± 71 6.9 ± 0.8 659 ± 466 30 ± 9.0

S1 7.3 ± 0.3 895 ± 158 516 ± 61 277 ± 70 223 ± 52 296 ± 159 6.6 ± 0.7 466 ± 423 26 ± 16

S2 7.1 ± 0.1 784 ± 120 737 ± 139 443 ± 163 326 ± 115 350 ± 104 6.3 ± 0.5 224 ± 79.0 65 ± 7.0
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