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Environmental significance

Superior physical chemical properties for boron nitride nanomaterials endow them 

with diverse promising applications in different fields. However, their applications as 

boron nitride adsorbents in removing organic pollutants from the environment is at a 

nascent stage. Investigating adsorption behaviors for organic pollutants onto boron 

nitride nanomaterials and developing prediction models to obtain the adsorption data 

efficiently are crucial for designing novel adsorbents and extending their applications 

in the environment. Herein DFT computations were utilized for investigating the 

adsorption of 28 organic compounds onto the boron nitride nanosheet in both gaseous 

and aqueous environments. Furthermore, four QSAR models for predicting adsorption 

equilibrium constant values were established, which can serve as efficient tools for 

high-throughput screening of effective sorbents only via clicking a mouse.
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Abstract

Investigating the adsorption of organic pollutants onto boron nitride nanosheets is crucial for 

designing novel boron nitride absorbents so as to remove pollutants from the environment. In 

this study, we performed density functional theory (DFT) computations to investigate the 

adsorption of 28 aromatic compounds onto boron nitride nanosheets, and developed four 

quantitative structure-activity relationships (QSARs) models for predicting the logarithm of 

the adsorption equilibrium constant (logK) values of organic pollutants adsorbed onto boron 

nitride nanosheets in both gaseous and aqueous environments. The DFT-predicted adsorption 

energies showed that boron nitride nanosheets exhibit stronger adsorption capability than 

graphene. Our QSAR analyses revealed that van der Waals interactions play dominant roles in 

the gaseous adsorption, while van der Waals and hydrophobic interactions, are the main driving 

forces in the aqueous adsorption. This work demonstrates that in silico QSAR models can serve 

as efficient tools for high-throughput prediction of logK values for organic pollutants onto 

boron nitride nanomaterials.
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1. Introduction

To date, more than 350,000 chemicals and their mixtures being registered have been 

produced and utilized,1 and new chemical products are entering the market with the rate of 12 

000 per day.2 These chemicals will be inevitably released into environment during their 

lifecycle and become potential environmental pollutants, which give rise to adverse effects on 

human beings and the environment. Removing these pollutants from the environment is very 

important for protecting the health of ecosystems. Adsorption, due to its convenient operation, 

high efficiency, and low-energy consumption, has been extensively applied for eliminating or 

reducing pollutants from the environment.3-9 The hexagonal boron nitride nanosheet, as an 

analogue for graphene, has shown great potential in separating contaminants from the 

environment by adsorption due to its high specific surface area and chemical stability.10-13 

Therefore, exploring the adsorption for pollutants onto boron nitride nanomaterials is of great 

significance to develop novel boron nitride-based adsorbent materials for removing 

contaminants.

Previous experimental studies indicated that boron nitride nanomaterials have good 

adsorption capabilities towards various species such as metal ions, dyes, and organic 

solvents.3,7,14,15 Moreover, different adsorption mechanisms, e.g., van der Waals forces, π-π 

stacking and electrostatic interactions, may exist simultaneously during the adsorption 

processes. However, the adsorption behavior of many organic pollutants, especially emerging 

pollutants (e.g., phthalate ester), onto boron nitride nanomaterials is still unclear, and the 

adsorption mechanism is not well understood.

Modern computational techniques render us an alternative method to investigate the 
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adsorption behaviors, which is more efficient than conventional experiments and can provide 

an atomic level of understanding.16-20 Considering the large quantities of environmental 

contaminants, simulating their adsorption behavior towards boron nitride one by one is 

daunting, time-consuming, and costly, if not impossible. Therefore, it is essential to develop 

predictive models to obtain the adsorption data on boron nitride nanomaterials.

Very recent studies demonstrated the powerful ability of quantitative structure-activity 

relationships (QSAR) in predicting the adsorption of organic pollutants on carbon 

nanomaterials.18,21-25 In these QSAR models, the most important input parameters are the 

Abraham descriptors for polyparameter linear free energy relationships (pp-LFERs), which are 

determined experimentally, and the descriptors characterizing the molecular structures, which 

can be obtained by theoretical calculations. However, no QSAR model has been proposed to 

predict the adsorption of organic pollutants onto boron nitride nanomaterials so far.

In this work, we theoretically investigated the adsorption of 28 different aromatic 

compounds (including phthalate esters) on boron nitride nanosheets in both gaseous and 

aqueous phases by means of density functional theory (DFT) computations. Based on the DFT 

computational results, the logarithm of adsorption equilibrium coefficient (logK) were 

estimated. In combination with Abraham descriptors for these 28 compounds, we established 

pp-LFER models for gaseous and aqueous phases, and evaluated the contributions from 

different adsorption mechanisms. Furthermore, by utilizing the theoretical molecular structure 

descriptors, we developed two QSAR models which can predict the adsorption for emerging 

pollutants in application domain (AD) whose Abraham descriptors are not available. The 

QSAR models established in this study not only can offer insights into the adsorption 
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mechanisms for boron nitride nanomaterials, but also lay a foundation for further development 

of theoretical prediction models to estimate adsorptions onto boron nitride nanomaterials.

2. Computational details

2.1. Organic compounds and boron nitride nanosheets

Herein, 28 aromatic compounds (Table 1) with diverse functional groups, i.e., -NO2, -CH3, 

-OH, -NH2, -CH2OH, -CH2CH3, -C(O)CH3, -CH2CH2OH, -C(O)OCH3, -OC(O)CH3, -

 CH2CH2CH3, -C(O)OCH2CH3 and -C6H5, are used as adsorbate models; the boron nitride 

nanosheet with supercell size of 8 × 8 × 1 (containing 64 boron atoms and 64 nitrogen atoms) 

is employed as the adsorbent model.

Table 1. Organic Compounds and Estimated Logarithm Values for Adsorption 

Equilibrium Coefficient (logK) from Our DFT Computations in Gaseous and Aqueous 

Environments
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logK (DFT)
No. Compound Substituents

Gaseous phase Aqueous phase

1 benzene 2.50 1.61

2 nitrobenzene -NO2 3.31 3.81

3 toluene -CH3 4.35 5.04

4 phenol -OH 5.06 1.47

5 aniline -NH2 4.44 2.45

6 1,3-dinitrobenzene -NO2 5.11 3.70

7 4-nitrotoluene -NO2, -CH3 5.32 4.54

8 2, 4-dinitrotoluene -NO2, -CH3 8.90 7.42

9 anthracene 11.43 13.69

10 pyrene 12.04 13.95

11 biphenyl 11.00 7.76

12 3,5-dimethylphenol -CH3, -OH 9.22 6.01

13 ethylbenzoate -C(O)OCH2CH3 8.77 7.55

14 4-ethylphenol -CH2CH3, -OH 7.28 6.03

15 methylbenzoate -C(O)OCH3 6.88 5.66

16 (3-methylphenyl)methanol -CH3, -CH2OH 6.11 4.68

17 1-methylnaphthalene -CH3 9.66 9.04

18 phenylacetate -OC(O)CH3 4.44 1.95

19 2-phenylethanol -CH2CH2OH 5.28 5.03

20 phenylmethanol -CH2OH 3.71 3.85

21 propylbenzene -CH2CH2CH3 9.10 4.68

22 p-xylene -CH3 6.17 4.34

23 dimethyl phthalate (DMP) -C(O)OCH3 8.27 6.18

24 diethyl phthalate (DEP) -C(O)OCH2CH3 10.51 9.71

25 acetophenone -C(O)CH3 5.47 2.83

26 naphthalene 7.36 6.34

27 1,2-dinitrobenzene -NO2 5.13 4.69

28 phenanthrene 11.14 11.55

2.2. Density functional theory computations
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All the computations were performed in the frame of density functional theory (DFT) by 

DMol3 program.26,27 The Perdew-Burke-Ernzerhof (PBE) functional within the generalized 

gradient approximation was employed to describe the exchange and correlation potentials.28 

The chosen basis set was double-numerical basis with polarization functions (DNP),29,30 which 

is comparable to Gaussian 6-31G(d, p).31 Besides, the PBE+D2 method with the Grimme van 

der Waals (vdW) correction32 was used for describing the long-range electrostatic interactions. 

A 4×4×1 Monkhorst-pack k-point mesh was utilized, and a Methfessel-Paxton smearing of 

0.005 Ha33 was employed for the Brillouin-zone integration. The popular conductor-like 

screening model (COSMO)34 with the dielectric constant (78.54) for water was used to 

implicitly simulate the aqueous environment. COSMO is superior to many other solvent 

reaction field methods. In this model, the surface charges of a cavity having the same shape of 

the solute molecule, which describe the electrostatic interactions between the solvent and solute, 

are determined with the electrostatic potentials directly.35

In order to simulate the adsorption onto a boron nitride nanosheet, first the adsorbate models 

(28 aromatic compounds) and the adsorbent model (a BN nanosheet) were optimized 

respectively. Afterwards, the global minimum sorbate locations for the 28 complex systems 

(each including one compound adsorbed on the BN nanosheet) were searched by using 

Sorption module of Materials Studio 8.0. The most stable configurations being obtained were 

further optimized with the aforementioned DFT method.

2.3. Estimation for adsorption equilibrium coefficient (K)

The changes of Gibbs free energy (ΔG) during the adsorption process can be estimated 

from the changes of total energy (ΔE), zero point energy (ΔZPE), and entropy (ΔS) following 
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the equation:

ΔG = ΔE + ΔZPE – TΔS                          (1)

where T is temperature, and T = 298.15 K is used for all the calculations. ΔE is also the 

adsorption energy of a specific adsorbate on the BN nanosheet. ΔE, ΔZPE and ΔS can be 

obtained by the following equations:

ΔE = EBN+X – EX – EBN                                          (2)

ΔZPE = ZPEBN+X –ZPEX –ZPEBN                                     (3)

ΔS = SBN+X – SX – SBN                                            (4)

where the subscript BN stands for the boron nitride nanosheet, X represents the adsorbate, 

while BN+X denotes the complex system including the boron nitride nanosheet and the 

adsorbed compound. The total energies (EBN+X, EX and EBN), zero-point energies (ZPEBN+X, 

ZPEX and ZPEBN), and entropies (SBN+X, SX and SBN) were obtained by DFT computations.

We further calculated the adsorption equilibrium coefficient (K) with ΔG.

                                       (5)RT
G

eK





where K is unitless; R is the universal gas constant, i.e., 8.314 J·mol-1·K-1. The calculated K is 

equivalent to the experimentally determined K, which is defined as

K = qe/Ce                                                         (6)

where qe represents the equilibrium concentration of the compounds on boron nitride 

nanosheets; Ce denotes the equilibrium concentration of the compounds in the aqueous/gaseous 

environments.

2.4. Molecular structure descriptors

Note that the adsorption of organic pollutants on boron nitride nanomaterials is assumed 
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to be governed by different specific and nonspecific interactions.3,36 Abraham descriptors can 

characterize these diverse molecular interactions, and are widely utilized in pp-LFERs, which 

have the following forms (Eq 7 is used for the partitioning within two condensed phases; while 

Eq 8 is applied for the partitioning between condensed and gas phases.),37-42

logK = eE + sS + aA + bB + vV + c                        (7)

logK = eE + sS + aA + bB + lL + c                        (8)

where K stands for partition coefficient; the uppercase letters, E, S, A, B, V and L, denote the 

Abraham descriptors; the lowercase letters, e, s, a, b, v and l, are fitting coefficients and c is 

the regression constant. E is excess molar refraction. V represents McGowan’s molar volume 

[(cm3 mol-1)/100]. L is the logarithmic hexadecane-air partition coefficient. eE represents the 

interactions which arise through the presence of π- or n-electrons in the compound.44,45 vV and 

lL describe the dispersion interactions and cavity formation.46 Polar interactions are 

characterized by aA, bB and sS. A refers to hydrogen donor ability, while B denotes hydrogen 

acceptor ability. S represents dipolarity/polarizability for absorbates. All the Abraham 

descriptor values for the adsorbates in this study were obtained from the LSER Dataset for 

CompTox users in the UFZ-LSER database.47

The three dimensional (3D) molecular structures for the 28 compounds were obtained by 

geometry optimization by DFT, and confirmed to be the local minima by frequency analyses. 

With these optimized molecular structures, we obtained 4885 theoretical molecular structure 

descriptor values by using the Dragon software (Ver. 6.0).48 After deleting the descriptors with 

constant and near-constant values, and selecting the descriptors charactering the property for 

molecules which may influence the adsorption, we chose 108 theoretical descriptors to 
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establish QSAR models.

2.5. QSAR models development and evaluation

These 28 compounds were randomly split into a training set consisting of 24 compounds 

and a validation set including 4 compounds. Based on the logK values of DFT calculations and 

the molecular structure descriptor values for the training set, we utilized the multiple linear 

regression (MLR) analysis in the SPSS (SPSS 22.0) software package to build up QSAR 

models, including pp-LFERs models for which Abraham descriptors are as input variables and 

the models for which Dragon descriptors are input variables. Furthermore, the determination 

coefficient (R2), root mean square error for the training set (RMSEt) and for the validation set 

(RMSEv), leave-one-out cross-validated Q2 (Q2
LOO) and external explained variance (Q2

V), 

were calculated for assessing the goodness of fit, robustness, and prediction ability of QSAR 

models. Moreover, the application domain (AD) for the predictive models were characterized 

by Williams plots using standardized residuals (δ*) and leverage values (hi).49 

3. Results and discussion

3.1. logK values of DFT calculations and adsorption energies on boron nitride nanosheets

Table 1 lists the logK values of 28 aromatic compounds adsorbed on BN nanosheets in 

the gaseous and aqueous environments predicted by our DFT computations. The predicted logK 

value of benzene on the boron nitride nanosheet in the gaseous phase is 2.50, which is 

comparable with the experimentally measured value 2.88.50 We also estimated the logK value 

of nitrobenzene onto graphene in the aqueous phase for which the experimental value is 

available, and found that the predicted value (4.96) is in good agreement with the experimental 

one (5.31).51 These comparisons show that DFT computations can well reproduce the 
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experimental adsorption data, and can be used to obtain adsorption data when the experimental 

values are not available.

In addition, all the optimized equilibrium configurations are summarized in Table S1 

(Supporting Information, SI). The benzene rings for the 28 organic compounds are all parallel 

to the boron nitride nanosheet (Table S1). The distances between the mass center of these 

molecules and the BN nanosheet plane are in the range of 3.168 ~ 3.680 Å, implying the 

existence of van der Waals interactions. Besides, we performed Hirshfeld population analysis 

for each compound adsorption on BN nanosheet (Table S2), and the small charge transfer (-

0.064 ~ 0.016 e in gaseous phase and -0.096 ~ 0.023 e in aqueous phase) from the compound 

to the BN nanosheet also indicates physisorption.

We further compared the adsorption energies of 18 different organic compounds onto BN 

nanosheets with the corresponding values on graphene, in order to examine the differences of 

adsorption capability between boron nitride and carbon nanomaterials. As shown in Table 2 

and Figure 1, the adsorption energies for these 18 aromatic compounds on BN nanosheets are 

stronger than those on graphene both in gaseous and aqueous environments, and the adsorption 

energies on graphene correlate with those on the boron nitride nanosheet significantly (Figure 

1). Based on these DFT results, the boron nitride nanosheet possibly performs better than 

graphene in removing contaminants by adsorption.
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Table 2. Adsorption Energies (ΔE) for 18 Aromatic Compounds on Boron Nitride 

Nanosheet and Graphene in the Gaseous and Aqueous Environments

Gaseous Aqueous

No. Name ΔE_BN 

(kcal/mol)

ΔE_G24 

(kcal/mol)

ΔE_BN 

(kcal/mol)

ΔE_G24 

(kcal/mol)

1 benzene −17.1 −12.9 −15.9 −11.8

2 nitrobenzene −21.2 −16.2 −19.7 −14.3

3 toluene −19.2 −15.3 −19.2 −13.0

4 phenol −19.2 −14.5 −16.6 −12.4

5 aniline −21.2 −14.9 −18.1 −12.0

6 phenylmethanol −19.4 −15.4 −19.8 −14.1

7 phenylacetate −20.8 −15.5 −18.2 −12.5

8 methylbenzoate −24.4 −19.3 −22.5 −17.0

9 ethylbenzoate −27.2 −21.3 −25.0 −18.8

10 acetophenone −23.8 −18.5 −20.9 −15.6

11 1,3-dinitrobenzene −24.1 −20.0 −21.5 −17.5

12 1,2-dinitrobenzene −22.4 −17.6 −20.5 −15.4

13 4-nitrotoluene −23.9 −19.5 −22.8 −17.5

14 biphenyl −29.3 −22.0 −26.6 −20.7

15 naphthalene −25.0 −18.8 −23.9 −18.0

16 phenanthrene −32.9 −26.6 −31.3 −25.1

17 anthracene −33.1 −26.9 −32.7 −25.3

18 pyrene −36.0 −30.5 −35.1 −27.0
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Figure 1. Adsorption energies on graphene (ΔE_G) versus those on the boron nitride nanosheet 

(ΔE_BN) by DFT calculations

3.2. QSAR models with Abraham descriptors for logK values on boron nitride

Based on Abraham descriptors for the 28 organic compounds, we built up and validated 

the following pp-LFER predictive models, 

for gaseous environment,

logK = −2.508 – 2.352 × E – 5.510 × S + 2.509 × A – 4.252 × B + 3.670 ×L (9)

nt = 24, R2 = 0.89, RMSEt = 0.89, F= 29.73, p < 0.001,

nv = 4, Q2
LOO = 0.89, Q2

V = 0.99, RMSEV = 1.88

for aqueous environment,

logK = −5.578 + 3.135 × E – 2.184 × S + 0.673 × A – 1.431 × B + 9.879 ×V (10)

nt = 24, R2 = 0.90, RMSEt = 0.99, F= 34.12, p < 0.001,

nv = 4, Q2
LOO = 0.83, Q2

V = 0.94, RMSEV = 0.80

where nt is the number of compounds in the training set, and nv denotes the number of 

compounds in the validation set. The values for R2, Q2
V, Q2

LOO, RMSEt and RMSEV imply that 

these two pp-LFER models have satisfactory goodness of fit, robustness and prediction ability, 

as they comply with the criteria (R2 > 0.60 and Q2 > 0.50) proposed by Golbraikh et al. 52 
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Figure 2 shows that the predicted logK values from pp-LFER models agree well with the 

calculated logK values via DFT method. Note that for the emerging pollutants phthalate esters, 

i.e., DMP and DEP in current study, their predicted logK values [8.00 (DMP_gaseous), 6.97 

(DMP_aqueous), 11.48 (DEP_gaseous) and 9.57 (DEP_aqueous)] from pp-LFER models are 

also comparable with the calculated ones [8.27 (DMP_gaseous), 6.18 (DMP_aqueous), 10.51 

(DEP_gaseous) and 9.71 (DEP_aqueous)] from DFT computational results. In terms of the 

application of the two pp-LFER models, besides four compounds in the vadidation set (i.e., 

acetophenone, naphthalene, 1, 2-dinitrobenzene, and phenanthrene), we also predicted the logK 

value for a compound outside the dataset, namely fluorene. The predicted logK values from 

models are comparable with those estimated with DFT method (Table S3). All of these 

demonstrate that these two pp-LFER models can effectively offer adsorption data for organic 

pollutants including phthalate esters towards boron nitride nanosheets in both gaseous and 

aqueous environments, and thus can serve as a high-throughput prediction tool.
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Figure 2. Predicted logK values with pp-LFER models (logK_pre) versus those calculated by 

DFT method (logK_cal)

As displayed in Figure S1, all the standardized residuals for the compounds in training set 

comply with the criteria |δ*| < 3, indicating that there are no outliers. These two pp-LFER 
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models (eq 9 and eq 10) can predict the adsorption towards boron nitride nanosheets for diverse 

organic compounds, i.e., benzene, phenols, nitrobenzenes, alkylbenzenes, anilines, alcohols, 

esters, ketones, biphenyls and polycyclic aromatic hydrocarbons (PAHs). In terms of the 

functional groups, the application domain covers various compounds with different functional 

groups including -NO2, -CH3, -OH, -NH2, -CH2OH, -CH2CH3, -OC(O)CH3, -C(O)CH3, -

C(O)OCH3, -CH2CH2OH, -CH2CH2CH3 and -C(O)OCH2CH3. When a compound is outside 

the application domain of the developed models, its prediction is unreliable.

3.3. QSAR models with Dragon descriptors for logK values on boron nitride

Note that Abraham descriptors values depend on experimental determinations, and the 

number for compounds having Abraham descriptors values is ca. 3700.47 For some of the 

organic compounds lacking Abraham descriptors values, if they locate in the application 

domain of the previous models,53,54 their Abraham descriptors values can be estimated. 

However, the accuracy of the predicted descriptors values is inferior to those derived from 

experimental data. While for many organic compounds outside the application domain, the 

predicted Abraham descriptors values for these compounds are unreliable. Therefore, it is of 

great importance for developing QSAR models with only the theoretical molecular structure 

descriptors which can be calculated by computational software directly.

Herein, the optimal QSAR models with Dragon descriptors for predicting the adsorption 

of organic compounds onto boron nitride nanosheets were developed:

for gaseous environment,

logK = −6.950 + 1.318 × Sv + 1.323 × nArOH – 2.058 × B05[C-O] – 0.365 ×F05[C-C] (11)

nt = 24, R2 = 0.91, RMSEt = 0.82, F= 47.175, p < 0.001,

nv = 4, Q2
LOO = 0.87, Q2

V = 0.94, RMSEV = 0.72

for aqueous environment,
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logK = −2.788 + 1.247 × nC – 2.210 × NRS + 1.193 × nArNO2 − 1.009 × H-051 (12)

nt = 24, R2 = 0.93, RMSEt = 0.88, F= 58.75, p < 0.001,

nv = 4, Q2
LOO = 0.82, Q2

V = 0.98, RMSEV = 0.85

Likewise, these two QSAR models with R2 > 0.60 and Q2 (Q2
LOO and Q2

V) > 0.50, have 

high goodness of fit, robustness and prediction ability. All the values of variable inflation 

factors (VIF) for the descriptors utilized in eq 10 and eq 11 are less than 10, which implies that 

there is no serious multi-collinearity among these variables.55 

As shown in Figure 3, the predicted logK values by the QSAR models with Dragon 

descriptors (eq 11 and eq 12) are in good agreement with those from DFT estimation. For the 

gaseous phase, in comparison with the pp-LFER model (eq 9), the QSAR model (eq 11) has 

less descriptors and performs better in goodness of fit, robustness and prediction ability. For 

the aqueous phase, the QSAR model (eq 12) using less descriptors has better goodness of fit, 

while the pp-LFER model (eq 10) has fewer RMSEV value and comparable robustness. In terms 

of the prediction accuracy for the phthalate esters, the pp-LFER models (eq 9 and eq 10) 

perform better than the QSAR models (eq 11 and eq 12), since the average prediction errors 

for phthalate esters with pp-LFER models [0.62 (gaseous phase) and 0.47 (aqueous phase)] are 

less than those with QSAR models [1.12 (gaseous phase) and 0.78 (aqueous phase)]. We also 

applied these two QSAR models for predicting the logK values for fluorene (Table S3). These 

results showed that the predicted logK values for fluorene with the pp-LFER models (eq 9 and 

eq 10) are closer to those from DFT calculations than those predicted with the QSAR models 

(eq 11 and eq 12).
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Figure 3. The QSAR predicted logK values with Dragon Descriptors (logK_pre) versus those 

calculated by DFT method (logK_cal)

Besides, based on the standardized residuals (δ*) and leverage values (h) for the 

compounds in the training set, we characterized the application domains (ADs) as illustrated 

in Figure S2. With the |δ*| values less than three, all the compounds are located in the ADs. 

Note that the h value for 4-ethylphenol (1.0) is larger than the warning leverage value 

(h*=0.625) while its |δ*| value is smaller than 3 (Figure S2b), indicating that its structure is 

very different from other compounds in the training set and it is influential on the prediction 

model for aqueous phase. It is known that the application domain for a prediction model 

depends on the compounds utilized when this model is developed. The established QSAR 

models (eq 11 and eq 12) with the Dragon descriptors have the same ADs with those for pp-

LFERs (eq 9 and eq 10), covering diverse organic compounds. Moreover, the two models (eq 

11 and eq 12) can be applied for obtaining logK values of more emerging pollutants lacking 

pp-LFERs descriptors values.

3.4. Adsorption mechanisms
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pp-LFER models. As shown in the developed pp-LFER models (eq 9 and eq 10), for both 

gaseous and aqueous systems, the five sets of parameters, namely eE, vV/lL, aA, bB and sS, are 

used, but they have different values, which indicate that the molecular interactions they are 

describing play different roles in the adsorption (Figure 4). 
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Figure 4. Box and whisker plots for the values of different terms in pp-LFER models. The 

lines below and above the rectangles in the plot denote the minimum and maximum values for 

each term; the lines within the rectangles mean the 50th percentiles; the bottom and the top for 

the rectangles represent the 25th and 75th percentiles.

In terms of the adsorption in the gaseous environment, the term lL plays a dominant role 

as its relative contribution to the adsorption ranges from 53% to 68%. lL in eq 8 represents 

dispersion interactions. Therefore, the dispersion interactions are key driving forces for 

adsorption on the BN nanosheet in the gaseous phase. The relative contribution to the 

adsorption for sS is in the range of 12% ~ 25%, which is second only to that for lL. The term 

sS describes the interactions related to the polarity and polarizability of the adsorbates. Note 

that the fitting coefficient s is negative, implying that the compound having high value of S is 
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not liable to be adsorbed onto boron nitride nanosheets. As shown in eq 9 and Figure 4, the H-

bonding interactions between H-donating adsorbate and H-accepting adsorbent, characterized 

by the term aA, do positively contribute (ca. 0 ~ 6%) to the adsorption. While for the H-bonding 

interactions between H-accepting adsorbate and H-donating adsorbent, being denoted by the 

term bB, its contribution to the adsorption ranges from 2% to 10% negatively. The reason may 

be that the nitrogen atoms on the boron nitride nanosheet is rich in electrons, which can accept 

hydrogen atoms from the compounds lacking electrons, thereby increasing the interactions 

between the compounds and the nanosheet. In addition, the term eE representing the 

interactions related to π or n-electron pair has a negative contribution (ranging from 4% to 

13%) to the adsorption. It implies that the compound possessing less π or n electrons tends to 

be adsorbed by boron nitride nanomaterials for accepting the electrons.

For the adsorption in the aqueous environment, the term vV representing the dispersion 

and hydrophobic interactions has the most significant influence on the logK values with relative 

contributions ranging from 41% to 59%, which indicates that the dispersion and hydrophobic 

interactions play vital roles in the adsorption for organic compounds onto the boron nitride 

nanosheet. The term eE, denoting the interactions related to π or n-electron pair, has a positive 

contribution to the adsorption with the relative contribution in the range of 8% ~ 26%. Note 

that its contribution in the aqueous phase is positive, which is contrary to that in the gaseous 

phase, most likely the π or n electrons from the compound can interact with one hydrogen atom 

in water molecules, and the other hydrogen atom in water molecules can interact with the 

nitrogen atoms of boron nitride surface, thereby assisting the adsorption of the compound 

towards boron nitride nanosheets. Therefore, it seems that the compound having more π or n 
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electrons become liable to be adsorbed towards the boron nitride nanosheet in aqueous phase. 

sS represents the interactions related to the polarity and polarizability of the compounds, and 

has a negative contribution (ranging from 5% ~ 15%) to the adsorption. Besides, the hydrogen 

bonding interactions also play roles in the adsorption. The term aA describing the H-bonding 

interactions between H-donating adsorbate and H-accepting system (including adsorbent and 

water) contributes positively to the adsorption (ranging from 0 ~ 2%), while the term bB 

representing the H-bonding interactions between H-accepting adsorbate and H-donating 

system contributes negatively to the adsorption (in the range of 1% ~ 5%). The roles for 

hydrogen donating/accepting abilities in the adsorption on boron nitride nanosheets in the 

aqueous phase are similar to those in the gaseous phase. 

QSAR models with Dragon descriptors. Table 3 lists the predictive variables and their 

standardized coefficients, t, p values, and variable inflation factor (VIF) for the QSAR models 

with Dragon descriptors (eq 11 and eq 12). Note that the predictive variables used for the 

gaseous and aqueous phases are different, which implies that the adsorption mechanisms in the 

gaseous phase are different from that in the aqueous phase.

For the adsorption in the gaseous phase, as shown in eq 11, the descriptors Sv, nArOH, 

B05[C-O] and F05[C-C] are combined to predict the logK values. Sv, sum of atomic van der 

Waals volumes (scaled on carbon atom),56 has the highest standardized coefficient among 

these four descriptors (Table 3), indicating that it is the most influential predictive variable for 

the adsorption onto the boron nitride nanosheet in gaseous environment. It also indicates that 

van der Waals interactions play an important role in the adsorption, which is in good agreement 

with the pp-LFER model in gaseous phase. Besides, the descriptor nArOH is the number of 
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aromatic hydroxyls,57 and its coefficient is positive, which suggests that the compound having 

a large nArOH value tends to be adsorbed onto the boron nitride nanosheet, because the 

hydrogen atom from the aromatic hydroxyls lacking electrons can be liable to interact with the 

nitrogen atom possessing rich electrons from boron nitride surface. The descriptors B05[C-O]58 

and F05[C-C]59 denote different atom pairs, and both of them have negative coefficients. 

These two descriptors, to some extent, reflect the spatial structure for the compound. There 

exists steric hindrance during the adsorption for the compound having large values for B05[C-

O] or F05[C-C].

Table 3. Description for the Predictive Variables and Their Standardized Coefficients, t, 

p Values and Variable Inflation Factor (VIF)

Gaseous phase

Descriptors Description
Standardized 
coefficients

t* p* VIF

Sv
Sum of atomic van der Waals 
volumes (scaled on Carbon 
atom)

1.403 7.275 < 0.001 7.724

nArOH number of aromatic hydroxyls 0.161 2.194 < 0.05 1.115

B05[C-O]
Presence/absence of C-O at 
topological distance 5

–0.377 –4.413 < 0.001 1.513

F05[C-C]
Frequency of C-C at 
topological distance 5

–0.523 –2.634 < 0.02 8.189

Aqueous phase

Descriptors Description
Standardized 
coefficients

t* p* VIF

nC number of carbon atoms 1.011 14.572 < 0.001 1.222

NRS number of ring systems –0.138 –2.114 < 0.05 1.080

nArNO2
number of nitro groups 
(aromatic)

0.222 3.296 < 0.01 1.149
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H-051 H attached to alpha-C –0.189 –2.987 < 0.01 1.016

* t denotes the statistic from t-test; p is the significance level of t-test.

When the adsorption in the aqueous phase is concerned, as illustrated in eq 12, the 

descriptors, namely nC, NRS, nArNO2 and H-051, contribute differently to the logK values. 

The standardized coefficients in Table 3 shows that the descriptor nC (the number of carbon 

atoms)60 is the most influential variable in predicting the logK values. The positive coefficient 

of nC indicates that the compound with more carbon atoms tends to be adsorbed on the boron 

nitride nanosheet. The descriptor nArNO2
61 denoting the number of nitro groups (aromatic) 

has a positive coefficient, which indicates that when interacting with the boron nitride 

nanosheet, a compound with more nitro groups (aromatic) will have stronger interactions 

compared with a compound with less nitro groups (aromatic). This phenomenon can be 

understood by the electrophilic property of the nitro groups, which tend to withdraw the 

electrons from the surface of boron nitride, thereby increasing the interactions between the 

compounds and the boron nitride nanosheet. The descriptor H-051 is an atom-centered 

fragment, describing the existence of hydrogen attached to alpha-C.62 NRS characterizes the 

number of ring systems.63 The coefficients for H-051 and NRS are both negative, implying 

that the compound with a lower H-051 or NRS value will be adsorbed by boron nitride 

nanomaterial more easily.

Furthermore, taking benzene as an example, we computed its adsorption energy onto 

boron nitride nanosheet without vdW correction, and found that the absolute values for the 

obtained adsorption energies without vdW corrections (7.2 kcal/mol in gaseous phase and 6.3 
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kcal/mol in aqueous phase) are ca. 10 kcal/mol less than those (17.1 kcal/mol in gaseous phase 

and 15.9 kcal/mol in aqueous phase) calculated with PBE+D2 method. It implies that the 

noncovalent interactions (van der Waals in particular) play significant roles in the adsorption, 

which is also supported by the non-covalent interactions analysis of the simplified model 

system (Figure S3).64

To summarize, the adsorption mechanisms for organic pollutants onto boron nitride 

nanosheets in gaseous environment are different from those in aqueous environment. The van 

der Waals interactions prevail in the gaseous adsorption, while for the aqueous adsorption, the 

main driving forces are van der Waals and hydrophobic interactions. 

4. Conclusions

In this study, DFT computations were successfully utilized to probe the atomic-level 

details for adsorption of 28 diverse organic compounds onto the boron nitride nanosheet in 

both gaseous and aqueous environments. Adsorption energies implied that the boron nitride 

nanosheet has stronger adsorption capability than graphene. Four QSAR models for predicting 

logK values were further established, which can serve as efficient tools for high-throughput 

screening of effective sorbents. Especially, when the pp-LFER descriptors of organic 

compounds are not available, the adsorption behavior can still be well predicted by the QSAR 

models with only theoretical molecular descriptors. Moreover, the developed QSAR models 

can provide us insights into the mechanisms involved in the adsorption onto boron nitride 

nanomaterials. These in silico techniques, i.e., DFT computations and QSAR modeling, make 

it possible for us to obtain the adsorption data on boron nitride nanosheets only via clicking a 

mouse, and such techniques can be extended to many other sorbents systems.
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Supporting information

Electronic supplementary information (ESI) is available: (1) Adsorption equilibrium 

configuration (Table S1); (2) Charge transfer between the compound and the boron nitride 

nanosheet (Table S2); (3) Estimated logarithm values for adsorption equilibrium coefficient 

(logK) for fluorene (Table S3); (4) Williams plots of standardized residuals (δ*) versus 

leverage values (h) for pp-LFER models (Figure S1); (5) Williams plots of standardized 

residuals (δ*) versus leverage values (h) for QSAR models (Figure S2); (6) Non-covalent 

interactions (NCI) analysis for the interactions between C6H6 and B15N15H14 with the 

Multiwfn program (Figure S3).
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