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Artificial Neural Network Prediction of Self-Diffusion in Pure 
Compounds over Multiple Phase Regimes 
Joshua P. Allers, a Fernando H. Garzon b,c and Todd M. Alam *a 

Artificial neural networks (ANNs) were developed to accurately predict the self-diffusion constants for pure 
components in liquid, gas and super critical phases. The ANNs were tested on an experimental database of 
6625 self-diffusion constants for 118 different chemical compounds. The presence of multiple phases results 
in a heavy skew in the distribution of diffusion constants and multiple approaches were used to address this 
challenge. First, an ANN was developed with the raw diffusion values to assess what the main drawbacks of 
this direct method were. The first approach for improving the predictions involved taking the log10 of diffusion 
to provide a more uniform distribution and reduce the range of target output values used to develop the ANN. 
The second approach involved developing individual ANNs for each phase using the raw diffusion values. 
Results show that the log transformation leads to a model with the best self-diffusion constant predictions and 
an overall average absolute deviation (AAD) of 6.56%. The resultant ANN is a generalized model that can be 
used to predict diffusion across all three phases and over a diverse group of compounds. The importance of 
each input feature was ranked using a feature addition method revealing that the density of the compound 
has the largest impact on the ANN prediction of self-diffusion constants in pure compounds. 

1 Introduction 
Understanding diffusion of chemical compounds is important for 

the design and optimization of numerous chemical engineering and 
energy applications. With many processes operating over a range of 
conditions, there is interest in predicting how the self-diffusion 
constant will change relative to various input parameters. When it 
comes to developing new technologies or optimizing existing ones, 
experiments and simulations often lead to large expenses in time and 
effort, especially when screening multiple compounds and 
conditions. A generalized predictive model for diffusion would allow 
identification of more promising materials or conditions without the 
need for obtaining and isolating raw materials or incurring large 
computational expenses.  
  The kinetic theory of gases can accurately describe transport 
properties of low-density gases, but no equivalent, fully generalized 
model exists for dense gases, liquids, or supercritical fluids.1 Many 
different approaches have been developed to predict the self-
diffusion in dense fluids including molecular dynamics (MD) 
simulations2-4 and theories based on free volume5-7 or excess 
entropy.8-10 MD approaches are the most common and utilize pair-
wise potentials to describe the interactions between particles. From 

MD simulations, empirical equations can be developed to predict 
diffusion. One of the more accurate empirical models was developed 
by Silva et. al. who extended the Lennard Jones (LJ) diffusion into real 
systems.11 The model successfully predicts diffusion for a large range 
of both hydrogen and non-hydrogen bonding compounds. Other 
successful models developed by Lee and Thodos and Zhu et al. are 
among the few able to predict self-diffusion over multiple phases.12, 

13 A brief review of existing empirical equations for predicting self-
diffusion are presented in the supplementary information (Eqs. S1 – 
S26). These are mainly based on hard sphere (HS) and LJ interaction 
potentials. For a more comprehensive list and discussion of models, 
see the review by Suarez-Iglesias et al.14 

Although these approaches produce reasonable predictions, 
issues can arise when attempting to predict the self-diffusion of a 
new compound not in the original data set used for parameter 
optimization. When introducing a new compound, any empirical 
model constants must be refit and, in the case of MD approaches, 
new simulations must be run to determine the compound 
parameters. An alternative approach is pursued in this work using 
machine learning (ML) methods, which allow models to be 
developed on existing experimental data. Rather than using the 
results of MD simulations to fit proposed equations for molecular 
properties, artificial neural networks (ANN) are trained using the 
experimental diffusion constants. The performance of ANN models 
is dependent on the data, both the quality and quantity. When it 
comes to self-diffusion in pure compounds, there is an abundance of 
experimental data available, making ML a viable option. The 
advantage of using an ANN is in the development process where 
separate training and test data sets are utilized. Using unseen data in  
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the test set allows development of generalized models that will 
not need to be refit every time new data is presented.  
 ML has already been used to successfully model physical and 
transport properties in various systems.15-17 The use of ML methods 
to predict diffusion is still limited with examples including the 
prediction of diffusion for organic compounds in air,18 binary gas 
mixtures,19, 20 organic compounds in water,21-23 and mixtures of 
binary solvents and hydrocarbons.24, 25 ML studies have also been 
reported for lithium diffusion through solid-state membranes,26 and 
activation energies for atomic diffusion on metal surfaces.27, 28 In 
previous work, we used ANNs and random forests to predict the self-
diffusion of Lennard Jones fluids.29 Focus was directed at 
understanding how different features would impact ML predictions 
and determining what methods produced the most accurate models. 
Our group has also reported the use of ANNs to correct finite-size 
effects in MD simulations of diffusion in binary LJ fluids, predicting a 
correction factor rather than the diffusion constant directly.30 

The existing ML literature tends to focus on binary mixtures, so 
this work aims to fill the gap between model systems and binary 
systems by focusing on predicting the self-diffusion of pure chemical 
compounds. We take an existing database consisting of liquid, gas, 
and supercritical self-diffusion constants and use it to develop 
multiple ANN models. Different approaches are employed to handle 
the large range and heavy skew in the distribution of diffusion 
constants. We also build on our previous work by identifying the 
features that most impact the prediction of diffusion. 

2 Methods 
2.1 Pure solution database and features 

  The self-diffusion data used in this work was gathered and 
published by Suarez-Iglesias et al.31 The database consists of roughly  
15,000 data points from 360 unique compounds. Numerous classes 
of compounds including alkanes, cycloalkanes, alcohols, ketones, 
noble gases, fluorinated compounds, and other chemical 
functionalities are included in the database. The experimental data  
was provided in four main sections: tracer numbers, tracer graphics, 
NMR numbers and NMR graphics, where NMR refers to nuclear 
magnetic resonance. Tracer numbers and NMR numbers refer to  
diffusion constants that were explicitly reported by the authors 
whereas tracer graphics and NMR graphics refer to diffusion 
constants that were extracted from figures. The ML dataset used for 
the current study utilizes a combination of all four types of data and 
includes experiments at liquid, gas, and supercritical states. The  
range of self-diffusion constants spans from 10-11 to 10-3 m2/s and are  
given in units of m2/s as this is the form commonly reported by 
authors.  

 The features used to train the ANNs in this work are listed in 
Table 1. The original database tabulated 9 usable features (M, Tm, Tb, 
Tc, Pc, Vc, T, P, and ρ). An additional 11 features were added, including 
10 (Ha, Hd, FC, FH, FO, logP, PSA, R, SA, and SC) that were predicted 
using Chem3D from PerkinElmer Informatics. The phase/state (Ph) of 
each experimental point was also included as an input feature. The 
National Institute of Science and Technology (NIST) online database 
was used to fill in missing density and pressure values and the 
phase/state for each experimental diffusion value.32 The phase state 
feature was broken into 5 categories, labelled 0 through 4. In the 
database, liquid points are assigned to 0, supercritical points are 1 
and gas points are 2. Some authors explicitly state that experiments 
were performed at or near a phase change. Diffusion constants 
measured at liquid to gas phase changes are assigned a 3. Many 
experiments were performed to observe the diffusion behavior 
across a gas/supercritical phase change. In these sets of data, the 
point(s) closest to the critical pressure are assigned to 4. In general, 
the experimental pressure is less than a 1 bar difference from the 
critical pressure, but some cases are as high as 3 bar. For atomic 
fractions (FC, FH, FO), if a compound did not contain one of the species 
it was marked as a zero (e.g., argon would have a zero for all three of 
these atomic fraction input features). 

For many compounds, the density could not be determined at 
the given experimental conditions as the P-V-T data was not readily 
available. Any points where the density, or any other feature, could 
not be determined were left out, resulting in a final database 
containing 7221 points (DB1). Because density and pressure are 
highly correlated, a separate database was created that did not 
contain density as an input feature. The database without density 
(DB2) contains 11,537 points as authors more often reported the 
pressure. Both databases are provided in the supplementary 
information as Excel files. 

 
2.2 Data Selection 
 The experimental self-diffusion data was inspected and cleaned 
before any ML models were developed. There are 5 clear outliers 
that are noticeable when the log of diffusion is plotted versus density 
(Figure S1). The outliers come from three different studies: Winn in 
1950 studying methane and oxygen,33 Paul and Watson in 1966 
studying ammonia,34 and Beatty in 1969 studying n-pentane.35 
Beatty published two values at the same conditions, which is why 
there are only 4 clear outliers on the plot. These points all exhibit 
relatively high densities and high diffusivity values. When compared 
to similar results in the database, the outlier diffusion values are 
much larger. We expect that these studies may have had a mixture 
of both liquid and gas phases present during their experimental 
measurements leading to the anomalously large diffusion constants. 
These were the only experimental points removed from the 
databases prior to ML model development. 

Prior to ANN training, the databases were also checked for any 
duplicate values. Any instance where a compound was tested at the 
same experimental temperature and pressure was considered a 
duplicate. Duplicate points were combined, and the mean of the 
diffusion value was taken. All models use the mean diffusion values 

M Molar Mass (g/mol) Hd # H-bond Donors 
Tm Melting Point (K) FC Carbon Fraction 
Tb Boiling Point (K) FH Hydrogen Fraction 
Tc Critical Temperature (K) FO Oxygen Fraction 
Pc Critical Pressure (bar) logP Log of Partition Coefficient 
Vc Critical Volume (cm3/mol) PSA Polar Surface Area (Å2) 
T Experimental Temperature (K) R Eccentricity Radius (atoms) 
P Experimental Pressure (bar) SA Shape Attribute 
ρ Experimental Density (kg/m3) SC Shape Coefficient 
Ha # H-bond Acceptors Ph Phase/State 

Table 1. List of features and abbreviations collected for each molecule. Units are in 
parenthesis where applicable. 
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where applicable. The final sizes of DB1 and DB2 were 6,625 and 
10,569 points, respectively.  

 
2.3 Data Pre-processing 

All ANN models used principal components (PCs) as inputs rather 
than the raw features. This was done to remove any correlations 
among the features. Principal component analysis (PCA) was 
performed in MATLAB R2018b (MathWorks, Natick, MA). The 20 
input features selected (Table 1) were scaled prior to the PCA using 
the standard scaling method: 

( )
'

x
x






        (1) 

where 'x  is the scaled value, x  is the raw value,   and   are the 
mean and standard deviation, respectively. For models with all 
phases combined, 19 PCs were generated and used as input features. 
The explained variance for each principal component when using 
DB1 can be seen in Figure S2. Similar behaviour is observed when the 
PCA is applied to DB2.  

For the multi-ANN model, an individual PCA was performed for 
each phase-specific dataset. The phase/state feature was removed 
from these phase-specific models as it is constant, resulting in 18 PCs 
used as input (Figure 1a). There are instances where a subset of PCs 
is used as the input features to reduce the dimensionality of the 
problem. Here, we chose to retain all PCs for model training as it has 
been argued that even low-variance PCs can contribute greatly to 
predictions in regression problems.36, 37 We did in fact see an 
improvement from including these low-variance PCs, shown in Table 
S1. 

The target diffusion values are scaled using a minmax method: 

min( )
'

max( ) min( )

y y
y

y y





     (2) 

where 'y  is the scaled value, y  is the raw value, min( )y  and max( )y  
are the minimum and maximum diffusion values, respectively. In 
certain models, the (base 10) logarithm of the self-diffusion 
coefficient is taken before the minmax scaling. These models are 
identified in the results section. 

The scaling was performed on the entire dataset prior to splitting 
into training, validation, and test datasets in ratios of 70%/15%/15%, 
respectively. The subsets are split randomly using the MATLAB 
‘randperm’ function. To ensure reproducibility and allow comparison 
between models, a random seed of 50 is set before ‘randperm’. The 

test dataset was not used during the development (i.e. training) of 
the ANN models and thus provides a measure the predictive 
performance.  
 
2.4 Artificial Neural Network Models 

ANN models were developed using the deep learning toolbox in 
MATLAB. An ANN is an ML algorithm that iteratively adjusts a set of 
weights and biases in an interconnected node structure to best fit a 
set of data (Figure 1b). The ANN inputs (i.e., PCs) are fed to a hidden 
layer with a specified number of nodes, each with its own weights 
and bias. 

For the ANN models the hidden layers are fully connected, 
meaning each neuron (node) is connected to all neurons in the 
previous layer. The relationships between the neurons is linear: 

( ) ( ) ( )

1

n
k k k

j j ij j

i

y F b w x


  
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 

                       (3) 

where ( )k

j
y is the output for neuron j  in layer k , and j

x are the i
different inputs to that neuron, ( )k

ij
w are the weightings of input i

for neuron j , and ( )k

j
b is the bias for that neuron (i.e., node) in that 

layer. The activation function F is applied to all the neurons in a layer 
and is used to introduce non-linearity to the ANN model. For the first 
hidden layer, the inputs ( ix ) to the nodes are the PC inputs while for 
subsequent layers the inputs are the outputs from the neurons in the 
previous ( k - 1) layer. The Levenberg-Marquardt (LM) optimization 
method was used to minimize the mean-squared-error (MSE).38, 39  

Optimization of the ANNs was performed by varying model 
hyperparameters. The validation set is used to assess the model 
performance during optimization and the combination of 
hyperparameters that results in the lowest validation error is 
deemed “optimal”. The starting setup for optimization was a single 
hidden layer, 10 hidden layer nodes, a hyperbolic tangent activation 
function, and a default learning rate of 0.001. The first parameter 
varied was the random seed, which controls the initialization of the 
weights and biases. The random seed was varied from 1-100 and the 
best value was kept constant throughout the remainder of the model 
development. The structure of the hidden layer nodes was then 
optimized by performing a grid search. For this work, models with 
two hidden layers were developed with the nodes in each layer being 
varied from 1-25. The ‘tansig’, ‘logsig’, and ‘poslin’ activation 
functions were tested for the hidden layers and the output layer uses 
a ‘purelin’ activation function. The default value for the learning rate 
was kept for all ANNs (0.001). 

Figure 1. a) Process flow for the phase-specific ANNs and b) general form of an Artificial Neural Network showing two hidden layers with n and m nodes, respectively. PCx is either 
the 18th or 19th principal component depending on the model. When the log distribution is applied to self-diffusion, the output from the ANN model becomes log10(D). 
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When assessing the model performance on the test set, the train 
and validation sets are combined to provide more training data. 
Because MATLAB automatically uses an early-stopping method, the 
number of epochs must be set when combining the train and 
validation sets. Once the where the early stopping occurs. This is 
used as a starting point when the validation set is re-incorporated 
back into the train set. Then, the performance curves are used to see 
whether the model is sufficiently trained. Parameters for the 
optimized models are listed in Table S2 in the supporting optimal 
hyperparameters have been chosen, the model is run to see 
information. 

 

2.6 Performance Metrics 
 Multiple metrics were used to assess the performance of the 
ANNs. The mean-squared-error (MSE) was used as the loss function 
when optimizing and training the models: 

 
n

2

exp,i pred,i
i 1

1
MSE D D

n 

       (4) 

where n  is the number of observations, 
exp,i

D  is the experimental 

diffusion constant and 
pred,i

D  is the predicted diffusion constant. 

Reported MSE values are calculated on the minmax scaled diffusion 
values. For models using log transformed diffusion, the MSE is 
reported on the log10 and minmax scaled diffusion constants. 

The correlation coefficient (R2) is reported for all models and is 
calculated on the entire dataset: 
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where 
exp

D  and 
pred

D  are the mean of the experimental diffusion and 

predicted diffusion, respectively. All R2 values are calculated using 
the minmax scaled self-diffusion values. 

The average absolute deviation (AAD) is calculated to compare 
directly to previous empirical models and provide an alternative view 
of the model performance: 

n
exp,i pred,i

i 1 exp,i

D D100
AAD(%)

n D


      (6) 

All AAD values are calculated using the raw, unscaled self-diffusion 
values. MSE and AAD are reported for the train and test sets 
individually, as well as the entire dataset to assess model 
performance. 

 

3 Results and Discussion  

3.1 Single ANN Baseline 
 Initially, a single ANN was developed on DB1 using the raw 
diffusion constants (distribution shown in Figure S3a). This will act as 
the baseline to compare all other models to and will be referred to 
as B-ANN (baseline-ANN). The optimized B-ANN has two hidden 
layers with 4 nodes in each layer. The correlation plot is shown in 
Figure 2.  

The test set MSE for the B-ANN is 2.6x10-6, which is excellent 
(Table 2). This implies that the model is performing well and is 
consistent with the initial impression given by the full-scale 
correlation plot, but these results are misleading. The AAD provides 
a more representative value of model performance as it considers 
the percent deviation of all points. The AAD over all data is 1727.6%, 
revealing that the B-ANN is performing much worse than the MSE 
would indicate. The low MSE and high AAD can be understood by the 
subplot in Figure 2, which highlights the liquid and supercritical 
diffusion region. The B-ANN model struggles to capture the diffusion 
behaviour in this region, leading to an extremely high AAD value. This 
phenomenon can be attributed to the use of the MSE loss function 
(Eqn. 4) and the heavy skew in the distribution of the self-diffusion 
constants, which is applying very high importance to the low-density 
gas diffusion constants (i.e., large diffusion constants). The easiest 
way for the optimizer to reduce the MSE is to fit the larger diffusion 
values and neglect the smaller values. This is a problem as the 
resulting model is unusable for predicting diffusion constants over 
the entire liquid, supercritical, and dense gas regions. Alternative loss 
functions were considered, but the use of the LM optimizer 
restricted us to loss functions that are twice differentiable. 
 A similar B-ANN was developed on the larger database that did 
not include density (DB2). The AAD for the test set was 63,538%, 
which is significantly worse than the B-ANN with density (Table S3). 
The same problem arises in the low-diffusion region in which the 
MSE places high importance on the larger gas (low-density) diffusion 
values. The order-of-magnitude increase in the AAD between the 

  Model 
 Metric B-ANN Log-ANN L-ANN SC-ANN G-ANN Multi-ANN 

Train 
AAD(%) 1710.1 6.5 12.0 7.9 42.7 17.5 

MSE 8.6e-6 3.45e-5 3.8e-6 4.1e-4 1.5e-6 7.0e-5 

Test 
AAD(%) 1827.1 7.1 14.8 9.4 39.9 21.0 

MSE 2.6e-6 4.0e-5 7.7e-6 8.0e-4 1.6e-6 1.4e-4 

All 
AAD(%) 1727.6 6.6 12.5 8.1 42.3 18.0 

R2 0.9836 0.9911 0.9977 0.9767 0.9997 0.9997 

Figure 2. Correlation plot for the B-ANN with the experimental self-diffusion values on 
the x-axis and predicted self-diffusion values on the y-axis. The solid indicates the 1:1 
line. The inset has the same units as the main figure. 

Table 2. Performance metrics for each model developed on DB1. 
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two models also indicates that density is a more important feature 
than pressure and is pivotal for model development. 
 
3.2 Single ANN with log transformation 

The heavy skew in the range of self-diffusion rates for both the 
DB1 and DB2 datasets is analogous to using an imbalanced dataset 
in classification problems. Multiple groups have studied the use of 
imbalanced datasets and suggested solutions,40-42 but little analysis 
has been done concerning heavy skew in regression datasets. One 
common theme is to perform a log transformation of the target 
values to produce a more uniform distribution. This allows the MSE 
loss function to improve optimization for the low-diffusion values 
during the ANN training. A (base 10) log transformation was applied 
to the diffusion values in DB1 and the distribution before and after 
can be seen in Figure S3. The heavy skew is successfully transformed 
into a more suitable distribution for the MSE loss function with a 
smaller range. The transformed diffusion values were then used as 
targets to develop an ANN (log-ANN). The log10 transformation is 
done only to improve model performance. All output values from the 
log-ANN are returned to their original scale before comparing to 
experiment and calculating the AAD. 
 The optimized log ANN has two hidden layers with 18 and 15 
nodes, respectively. The correlation plot is shown with the log 
transformation applied (Figure 3). With an R2 value of 0.9911 the 
correlation between the predicted and experimental values is in 
good agreement. The test set MSE and AAD are 4.0x10-5 and 7.1%, 
respectively. The MSE for the log-ANN is an order of magnitude 
larger than that of the B-ANN, which is likely due to the 
transformation into log space and reduced range.  
 It is clear from the AAD values alone that the log transformation 
greatly improved the accuracy of predictions, resulting in an overall 

AAD that is 3 times smaller than that of the B-ANN. The modified 
distribution allowed the model to train more effectively on the 
smaller diffusion values while maintaining accuracy at high values. 
The improvement is visible when comparing the results visually 
(Figures S4 and S5). When the B-ANN predictions are plotted on a log 
scale it becomes clear that the smaller diffusion values are poorly fit. 
 The distribution of relative errors is shown for the log-ANN in the 
subplot of Figure 3. The relative errors calculated after reverting the 
log transformation show 83.4% of the predictions are within 10% of 
the experimental values and 97.3% are within 30% of the 
experimental values. The model tends to over-predict slightly with 
about 51% of the points being in the negative. The largest deviation 
is -220 % and comes from a supercritical methane point reported by 
Jeffries and Drickamer in 1953.43 
 The log transformation was also assessed using the larger 
database that did not include density (DB2). The log-ANN without 
density had an overall AAD of 14.1% compared to the 63,538% using 
the B-ANN (Table S3). Again, we see that the log transformation 
significantly improves the self-diffusion predictions, again by 3 
orders of magnitude. The log-ANN performs worse when density is 
not present in the database, with only 34.8% of points being within 
10% of the experimental value and 95.8% of points being within 30%. 
The importance of density as a feature is again emphasized by these 
results and is consistent with previous efforts to develop empirical 
relationships (supplemental materials Eqs. S1-26) 
 
3.3 Phase-Specific Multi-ANN 
 An alternative approach to taking the logarithm of the self-
diffusion constant is to split the data and develop multiple ANNs on 
smaller subsets of raw diffusion values. By splitting the data, the 
range of diffusion values used in each ANN can be minimized, and 
some accuracy should be gained by training on the diffusion values 
directly rather than the log transformed values. We chose to split the 
data by phase and have separate ANNs for liquids (L), supercritical 
fluids (SC), and gases (G). The phases/states were identified using the 
NIST online database, but like density, many compounds do not have 
available phase data. Therefore, this approach was only assessed on 
the density database (DB1), which contains compounds with 
available P-V-T and phase data. Points that were labelled as 3 or 4 
(near a phase transition) were not included in the phase-specific 
models. 
 The liquid-only ANN (L-ANN) contained 70.9% of the original 
diffusion data points with 4698 out of the 6625. Even after removing 
the gas and supercritical points, the distribution of diffusion remains 
skewed, but the range is significantly reduced. In the full dataset, the 
largest diffusion value is on the order of 10-3 m2/s and in the liquid-
only subset, the largest diffusion value is on the order of 10-7 m2/s. 
 The optimized L-ANN has two hidden layers with 19 and 17 
nodes, respectively. The MSE and AAD for the test set were 7.7x10-6 
and 14.8%, respectively (Table 2). The overall AAD for the liquid data 
is 12.5%. The model predictions showed extremely good correlation 
with experimental values, with an R2 value of 0.9976 (Figure 4a). The 
improvement over the B-ANN is immediately noticeable when 
comparing to the subplot in Figure 2 (approximately same D range). 
The separation of the liquid points from the gas and supercritical 
points allows the L-ANN to optimize on the smaller diffusion values. 

Figure 3. Correlation plot for the log-ANN with the experimental self-diffusion values on 
the x-axis and predicted self-diffusion values on the y-axis. The solid line indicates the 
1:1 line. The inset shows the distribution of errors from -50 to 50 percent deviation. 
Additional errors are present beyond -50 but are left out for clarity. 

Page 5 of 9 Physical Chemistry Chemical Physics



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 The supercritical ANN (SC-ANN) contains 16.1% of the original 
data points with 1068 out of the 6625. The supercritical subset spans 
an even smaller range than the liquid-only subset. The smallest 
diffusion value in the liquid-only subset was on the order of 10-11 
m2/s while the smallest in the supercritical subset was on the order 
of 10-9 m2/s. Regardless, a heavy right skew was still present in the 
range of diffusion.  
 The SC-ANN has two hidden layers with 20 and 7 nodes in layers 
1 and 2, respectively. The MSE for the test set was 8.0x10-4, 
significantly higher than any of the other ANNs. The majority of 
supercritical points are well-predicted, but there is a distinct branch 
of diffusion points that breaks away from the 1:1 line (Figure 4b). The 
points in this branch all originate from the same 1953 study 
performed by Jeffries and Drickamer,43 but were not identified or 
removed during the initial data cleaning. The same branch of points 
can be seen when the predictions from the log-ANN are reverted to 
the original scale (subplot in Figure S5). Considering these points are 
outliers in both the log-ANN and SC-ANN, it is likely there are large 
inaccuracies in the experimental data or a scaling factor for that 
study has not been identified. Even with those outliers, the 
performance of the ANN model is good with a test AAD of 9.4% and 
an overall AAD of 8.1%. The AAD ends up being smaller than that of 
the L-ANN due to a smaller range of diffusion. With the liquid subset 
having a lower minimum diffusion, the effects of the MSE loss 
function become more pronounced, leading to the increased AAD 
(Figure S6a and b). 
 The gas ANN (G-ANN) had the smallest subset of data, containing 
only 770 of the total 6625 data points. Although the liquid and 
supercritical diffusion values had been removed, the smallest 
diffusion values are still on the order of 10-8 m2/s. The resulting range 
of diffusion is equivalent to the B-ANN model, which used all of the 
experimental self-diffusion data. 
 The optimized G-ANN has two hidden layers with 8 and 3 nodes, 
respectively.  The correlation plot for the G-ANN is similar to the B-
ANN and suffers from the same issues in the low-diffusion region 
(Figure 4c). The large range causes the MSE loss function to neglect 
the smaller values and focus on the larger diffusion constants (see 
Figure S6c). This is likely why the test AAD for the G-ANN is 
significantly larger than the liquid and supercritical ANNs at 39.9%. A 
log transformation would likely improve these results, as shown with 
the previous log-ANN. 
 Although the performance of each individual ANN still suffers 
from skew in the distribution of diffusion, the approach was 
successful in improving the accuracy of the predictions. With all three 
models combined, the overall AAD was improved by 2 orders of 
magnitude, from 1727.6% to 18.03%. The multi-ANN approach also 

corrected a large xenon outlier that is present in both the B-ANN and 
log-ANN. Between the two approaches, the log-ANN was more 
successful than the phase-specific ANNs at handling the skew of the 
experimental data and resulted in a lower AAD and MSE. 
 
3.4 Feature Importance 

The 20 features collected in this work (Table 1) were chosen 
based on accessibility and potential impact based on previously 
published correlations (see discussion in Supplemental Information). 
We wanted to use features that could easily be obtained for new, 
unknown chemical compounds allowing efficient incorporation into 
the model. It is likely that all 20 features do not have equivalent 
impact for the prediction of diffusion. To assess which features had 
the largest impact, a feature addition method is employed for the 
ANN models. The method sequentially adds the original features to 
an ANN (not the PCs), creating all possible combinations to find the 
best performing features. Because the log-ANN performed the best, 
it was used to assess the feature importance. To begin the 
evaluation, the log-ANN is trained with each individual feature alone 
and the validation MSEs are recorded. The feature that produces the 

Figure 4. Correlation plots of experimental and predicted self-diffusion for the a) L-ANN (liquids), b) SC-ANN (super critical), and c) G-ANN (gas). The solid lines indicate the 1:1 line. 

Figure 5. Validation MSE versus number of features during the feature addition 
process. The text refers to the feature retained at each iteration. See Table 1 for 
symbol definition. 
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lowest error is retained and subsequent models are developed with 
2, 3 … n features. For example, if temperature produced the best 
model with one input, two-input models would then be made with 
temperature and every remaining feature. The process is continued 
until no features remain. 
 The results of the feature addition process are shown in Figure 5. 
The single-input ANN model had the lowest validation error when 
using ρ (density). The relationship between density and diffusion is 
intuitive and well-documented with the first successful correlation 
being the kinetic theory of gases.1 Correlations for dense fluids 
commonly incorporate density as an input and few successful models 
can be found that do not consider the density of the system (See 
Background in SI). Because of the large range of diffusion values, the 
ANN model is likely picking up on the inverse relationship between 
density and diffusion. 
 We also see temperature (T) being the third most important 
input feature. In contrast to density, the model will observe a direct 
relationship between T and self-diffusion. It is important to 
distinguish self- and mutual diffusion, as the temperature would 
have less of an impact if the model were trying to predict mutual 
diffusion. The self-diffusion is directly related to the thermal energy 
of the molecules and therefore the temperature has a large impact 
on how fast each molecule diffuses. In models where mutual 
diffusion is the focus, differences in chemical potential may have 
more of an impact. 

In the top 5 features, we see that two are critical properties, Tc 
and Vc. Although the relationship between the critical properties and 
self-diffusion is less clear, critical properties have been used in 
empirical and theoretical models to predict the self-diffusion. For 
example, Zhu et. al. used Tc and Vc to calculate the updated LJ force 
constants for their pure solution model (Eqs. S22 – S26).12 The carbon 
fraction, Fc, is also contributing significantly to the predictions. It is 
likely that the Fc is providing an idea of the size or length of each 
molecule, similar to the parameter N in the LJ chain models (Eqs. S5-
S7 and S17-S21). We see from the correlation plot in Figure S7, that 
Fc has strong correlation with both the radius (R) and shape attribute 
(SA). It can be assumed that the relationship between the self-
diffusion and Fc is inversely proportional as the larger/longer 
molecules will experience more hinderance and frictional forces. 
 Given that the ANN model performance does not improve with 
more than 5 features, this implies that several features could be 
removed for ANN development. The features to be incorporated last 
were FO, SA, Tm and M, with the latter being the “least important”. 
The FO (oxygen fraction) is highly correlated to H-bond donors so it 
may be superfluous information (Figure S7). Similarly, M is highly 
correlated with FC and Tm is highly correlated with Tc and Tb. The 
features could be removed to save computational resources, but the 
PCA feature employed here allows us to retain any additional 
information they may have while removing the correlations. Also, 
computational resources were not an issue as all models are able run 
quickly on a single processor (see Supplemental Information). 
 

3.5 Comparison to Empirical Equations  

 To compare our log-ANN model to those previously proposed, 
we used MATLAB to implement the models of Silva et al. and Zhu et 
al. (Eqs. S15-16 and S22-26).11, 12 The LJ4 model proposed by Silva et 
al. is tested against only liquid points while the Zhu et al. model is 
tested against all points in DB1, including the gas and supercritical.  

The LJ4 model from Silva takes 4 variables as input: AD, a shape 
factor, ED, an energy parameter, TD, a temperature parameter and σ, 
the molecular diameter. The values for these parameters were taken 

as reported by the authors (Table 3 in Ref. 11). Each of the 41 
molecules tested by Silva are present in our database except for 
deuterated methanol, which did not have available data for its 
critical properties. A total of 3690 liquid diffusion values are present 
for the remaining 40 molecules in DB1, compared to the 2471 points 
used in the original paper. The performance on unseen data is poor 
with an overall AAD of 92.85% (Figure S8a). It is likely that some of 
the experimental conditions in the new data were not present when 
Silva et al. calculated the molecular parameters. The log-ANN 
performs much better on this subset of points, with an AAD of 6.69%.  
 The model developed by Zhu et al. was designed and tested on 
experimental diffusion at liquid, gas, and supercritical states. We 
were able to test Zhu’s model on all points in DB1, to get a direct 
comparison to the log-ANN. The Zhu model performed well with an 
overall AAD of 36.37%. The largest deviations come from the low-
density gas diffusion values (Figure S8b). As reported earlier, the log-
ANN achieved an overall AAD of 6.56% on this data, performing 
better than the Zhu model across the three phases. 
 The ML approach not only resulted in better prediction of the 
self-diffusion constants, but also has the advantage of being easily 
updated when new data is presented. The expectation is that any 
new compounds or conditions could simply be predicted without any 
re-training or re-optimization of the ANN. This prediction behaviour 
of ANNs is also distinct from MD approaches, which require 
additional simulations to extract molecule and model parameters. 
  

4 Conclusions  
An experimental dataset of self-diffusion constants for pure 

compounds was used to develop artificial neural networks covering 
liquid, supercritical and gas states. The major challenge of using 
ANNs to predict over multiple phases is the large range of diffusion 
constants present across different phases. Using a database with 
heavy skew in the distribution of the diffusion rates in combination 
with an MSE loss function leads to the small diffusion values 
(primarily liquid and supercritical points) being insufficiently 
weighted and therefore poorly modelled. Two different approaches 
were explored in this work to address the large range of diffusion 
values and both proved to be successful in improving the ANN 
predictions. When individual ANNs are developed for each phase 
(multi-ANN), the overall AAD is reduced by two orders of magnitude 
when compared to the original baseline ANN. Performing a log 
transformation of the diffusion values improved the overall AAD by 
3 orders of magnitude and lead to a generalized model that can 
predict well over multiple compounds and phases. The ANN models 
that were developed with density as an input feature had superior 
performance to those without density in all cases and emphasizes 
the importance of density in modelling self-diffusion. 

This work presents generalized ML models for predicting self-
diffusion in pure solutions over multiple phases. In future work, these 
types of ML models could also be developed to predict diffusion in 
mixture and porous materials. Recent work has shown that scaling 
relationships exist between the self-diffusion of bulk fluids and the 
self-diffusion of those fluids in porous materials.44-47 For large pores 
and materials with a small interaction energy with the absorbed 
fluid, the diffusivity is a direct function of local pore density, excess 
entropy, or filling fraction and is approximately equal to the 
diffusivity of the bulk liquid. By utilizing these scaling relationships, 
the ANN models developed here, for pure solutions, provide very 
good initial guesses for the diffusivity. With increasing surface 
interactions and decreased pore size this relationship becomes more 
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complicated but highlights an area for future ML model 
development.  
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