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Coarse-grained force-field for large scale molecular dynamics 
simulations of polyacrylamide and polyacrylamide-gels based on 
quantum mechanics 
Zheng Mei,a, b Andres Jaramillo-Botero, a Xue-hai Ju b and William A. Goddard III *a

We developed a new coarse-grained (CG) molecular dynamics force field for polyacrylamide (PAM) polymer based on 
fitting to the quantum mechanics (QM) equation of state (EOS). In this method, all nonbond interactions between 
representative beads are parameterized using a series of QM-EOS, which significantly improves the accuracy in 
comparison to common CG methods derived from atomistic molecular dynamics. This CG force-field has both higher 
accuracy and improved computational efficiency with respect to the OPLS atomistic force field. The nonbond components 
of the EOS were obtained from cold-compression curves on PAM crystals with rigid chains, while the covalent terms that 
contribute to the EOS where obtained using relaxed chains. For describing PAM gels we developed water-PAM interaction 
parameters using the same method. We demonstrate that the new CG-PAM force field reproduces the EOS of PAM 
crystals, isolated PAM chains, and water-PAM systems, while successfully predicting such experimental quantities as 
density, specific heat capacity, thermal conductivity and melting point.

Keywords: polyacrylamide, coarse grain, molecular force field, EOS, accuracy.

Introduction
Polyacrylamide (PAM) is a water-soluble polymer synthesized from 
acrylamide sub-units. Due to its significant thickening and 
flocculating effects in water, PAM is widely used in enhanced oil 
recovery1-3, water treatment4-6, soil conditioning7-9 and biology 
laboratories10-13. The PAM chain structure contains a hydrophobic 
polypropylene backbone plus a crowded hydrophilic pendant amide 
group for each monomer on the chain. The strong backbone keeps 
the PAM chains stable from hydrolysis, while the polar amide 
groups provide strong interactions with water molecules. As a 
result, PAM can significantly improve the rheology of water while 
stabilizing aqueous gels at very low concentrations. This capability is 
leading to novel experimental and computational efforts to extend 
its applications. 

To understand and modify the properties of macromolecular 
materials, experimental and computational investigations are both 
important. Compared to experiments, computational simulations 
provide new atomistic insights and theoretical understanding 
connecting the dynamics of structure evolution and atomistic level 

interactions to provide critical cues to steer property-design and 
modifications. However, such computations face a dilemma: either 
use high accuracy methods for restricted length and time scales or 
use simplified less accurate methods for large-scale systems that 
provide compromised atomistic information. This is particularly 
relevant in polymer modelling, because their properties depend on 
micro-scale configurations that are beyond practical atomistic 
simulations. For example, Khabaz and co-workers found that the 
intrinsic viscosity of dilute polymer depends on the shape and size 
of the chains: Linear- and comb-shaped chains (with branch 
frequencies of 10-100 nm) exhibit 50% higher viscosity than H- and 
star-shaped chains. 14 Their branching frequencies are 10-100 nm-1 
in order to obtain the topologies of the chains.

In general, characteristic time scales (τ) for atomistic bonds and 
angles are on the order of ~ 0.1 picosecond (ps) while torsional time 
scales in τ ~ 10 ps. Therefore, polymers with degrees of 
polymerization higher than their entanglement lengths require very 
long relaxation times, typically many orders of magnitude beyond 
the scale of atomistic simulations. This problem becomes worse at 
lower temperatures, near the polymer glass transition temperature.

In order to alleviate this problem, molecular dynamics simulations 
use coarse grain (CG) models that filter the high-frequency 
vibrational modes to enable longer integration timesteps, larger-
scale models, and a smoother potential energy surface.15-18 CG 
models merge groups atoms to effectively ignore the high 
frequency inner-group interactions while tracking longer range 
interactions. This enables CG models to describe much larger space 
and time scales, at the expense atomistic accuracy. The 
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development of CG molecular force fields has mostly been based on 
fits of derived properties to experiment or to atomistic molecular 
dynamics (MD) distributions. These MD atomistic models are in turn 
approximations to the true quantum mechanical potential energy 
surfaces of a particular system. For example, Lei and Pallavi 
developed their CG-PAM models using dissipative particle dynamics 
(DPD) and iterative Boltzmann inversion (IBI) strategies, 
respectively.19, 20 The DPD is a highly simplified bead-spring model 
with the interactions described by empirical equations. The IBI 
method focuses on reproducing microscopic observables (e.g., 
bonds and angle distributions) of a system according to atomistic 
dynamics from simulations using existing atomistic force fields.  In 
general, the accuracies of such CG models are limited by the 
inherent inaccuracy and limited transferability of the empirical 
parameters of the atomistic force fields. 

Karimi-Varzaneh et al. compared various coarse-grained models 
developed by different techniques and mapping schemes for 
amorphous polystyrene.21 They concluded that the use of CG force 
fields developed from equilibrium atomistic models in 
nonequilibrium simulations are possible, providing reliable results 
for both structural and dynamical properties, including shear 
viscosity. However, the transferability over thermodynamic states 
different from that used in the reference atomistic simulations for 
structure-based CG force fields seems to be erratic and difficult to 
predict, except for the conditional reversible work (CRW) method. 
Unlike the IBI method22, the CRW method averages over all 
atomistic degrees of freedom of a local sub-system to avoid the 
distribution bias from a specific thermodynamic state. 

Another widely used empirical CG model is MARTINI force field that 
was developed for biosystems but recently extended to non-
biosystems.23 The key feature of the MARTINI CG model is its 
systematic parametrization based on thermodynamic data, 
especially experimental partitioning data. However, such 
experimental data may not be available to develop CG force field 
for new systems. 

Aside from the empirical approach to force field development, 
there have been important contributions to the development of 
molecular force fields from quantum mechanics (QM) calculations. 
For example, Grimme proposed a black-box type procedure 
(QMDFF) to generate classical potential energy functions from QM 
input data.24 Cacelli et al. parametrized intramolecular force fields 
by using the energy and its first and second geometrical derivatives 
obtained from Density Functional Theory (DFT) calculations for a 
number of conformations of a single molecule.25 Brunken et al. 
recently developed and combined an automatically parametrizable 
quantum chemically derived molecular mechanics model with 
machine-learned corrections under autonomous uncertainty 
quantification and refinement.26 These methods show that QM 
calculations provide a robust source for developing molecular force 
field (FF). 

Here, we report a new approach to develop accurate CG-FF, and 
demonstrate it for PAM, QM-CG-PAM. This approach is based on 
quantum mechanics equations of state (QM-EOS) for polymer 
crystals. First, we explain the approach and demonstrate that it 
provides an improved compromise between accuracy and 

coarsening level compared to existing state-of-the-art CG 
approaches. Then we validate the QM-CG-PAM model by showing 
that it reproduces experimental observables for PAM. Then we 
show how it can be used to develop CG force fields for other 
polymer systems. Compared to the IBI, DPD, CRW and QMDFF 
strategies, our quantum mechanics coarse graining equation of 
state (QM-CG-EOS) approach is low-cost, easy-to-implement, and 
flexible.

Computational methods and details
Parameterization of QM-CG-PAM force field

All QM computations for the EOS of PAM crystals were performed 
using the Vienna Ab initio Simulation Package (VASP)27 using the 
PBE flavour of the Generalized Gradient Approximation level for 
DFT and including the Grimme-Becke-Johnson D3 dispersion 
corrections.28, 29 We showed recently that this PBE-D3 DFT leads to 
accurate EOS for molecular crystals up to 100 GPa or higher.30 We 
generated the QM-EOS as cold-compression/expansion curves and 
then mapped these onto a CG representation as depicted in Fig. 1. 
QM-EOS avoids thermodynamic state bias through the cold-
compression/expansion because QM-EOS describes the interactions 
for states ranging from highly compressed bulk to gas. 
For PAM, we considered two crystal configurations:
 CRY1 contains hydrophilic-hydrophilic and hydrophobic-

hydrophobic interactions between the chains
 CRY2 contains hydrophilic-hydrophobic interactions between 

the chains.
EOS were generated for each case.
These EOS considered periodic crystals obtained by compressing 
and stretching along the lattice directions without changing the 
intrachain bond distances angles or chain-orientation.
Fig. 2 and Table 1 show the QM-geometry-optimized PAM crystals. 
Every crystal contains 2 chains with 4 monomers. The mapping 
scheme and crystal structures chosen comply with the four 
conditions that must be fulfilled in coarse-graining process, as 
proposed by Riniker31:
(1) Non-essential degrees of freedom and interactions unrelated to 
the process or property of interest are removed.
(2) The CG must enable simulations on very large systems, so that 
the computational gain is sufficiently substantial to offset the loss in 
accuracy.
(3) The interactions governing the degrees of freedom to be 
eliminated should be largely decoupled from the interactions 
governing the other degrees of freedom of the system that are to 
be maintained. This means that the frequency components of the 
motions along the degrees of freedom to be eliminated must be 
well separated from other frequencies in the system and that the 
coupling between the two types of motions is weak.
(4) Elimination of the fast motions should allow simple, efficient 
representations of the interactions governing the other, remaining 
degrees of freedom.
In our CG-PAM model, the C-H, N-H, C=O bonds and the H-C-X, H-N-
X, O=C-X (X represents C, H, O or N atom) angles are eliminated to 
meet the above conditions. These bonds and angles are not 
essential for the shape of the polymer chain, nor the entanglement 
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between different chains, so condition (1) is met. The H atoms 
requires much smaller timestep and more computational resources 
in simulations, so they are merged into heavy atoms, satisfying 
condition (2). The CRY1 crystal configurations has the hydrophobic 
edges of adjacent acrylamide chains in contact, as well as the 
hydrophilic edges. Thus, we can separately obtain EOS for the 
hydrophobic-hydrophobic and for hydrophilic-hydrophilic 
interactions. The CRY2 crystal configurations has the hydrophobic 
edges of one acrylamide chains in contact the hydrophilic edge of 
the adjacent chain, which serves to describe the hydrophobic- 
hydrophilic EOS. These chain-chain interactions eliminate degrees 
of freedom that are largely decoupled from the others. For 
example, CH and CC bonds have much larger frequencies than the 
non-bond interactions, fulfilling conditions (3) and (4).
Hydrogen Bonds (HB) are particularly important for the PAM model, 
because they contribute to the polar interactions found in PAM 
dynamics. HBs are very orientation-dependent, with Morozov32 
indicating that the HB in the dimer prefers H-bond angle > 150°. The 
HBs in our benchmark system are 148°, 169°, 167° and 138° for HBs 
in CRY1, and 156°, 155°, 155° and 156° for HB in CRY2. Thus, the 
CRY1 and CRY2 structures properly describe typical PAM 
interactions.
To fit the QM-EOS of these crystals, we describe the nonbond 
interactions between the beads using Morse two-body potentials 
(Equation 1). 

                    (1)
0 0 0{exp[ 2 ( )] 2exp[ ( )]}vdWE D r r r r      

Here we consider that our EOSs emphasize properly the different 
CG interactions. 
The CG level calculations were performed using the LAMMPS 
Molecular Dynamics Simulator.33 The parameters for the nonbond 
interactions (referred to here as van der Waals, vdW) were adjusted 
to fit the five QM EOS. QM energies were obtained for all chains 
while keeping the chains rigid as the lattice parameters were 
changed.

O
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Figure 1 Coarse-grain mapping scheme for polyacrylamide (left) and 
atomistic representation (right). Each bead is located at the center 
of mass of the corresponding atomic group.

Figure 2 Optimized crystal structures of polyacrylamide. CRY1 has 
hydrophilic-hydrophilic and hydrophobic-hydrophobic interactions. 

CRY2 has only hydrophilic-hydrophobic interactions. The upper 
figures show the view perpendicular to the chain axis. The lower 
figures show the side view. Grey = carbon, red = oxygen, blue = 
nitrogen, white = hydrogen.

Table 1 Optimized lattice parameters of polyacrylamide crystals. 
Units are Angstrom and degree.

Structure a b c α β γ

CRY1 10.25 13.63 6.15 123.64 94.05 97.26

CRY2 10.24 13.52 6.01 119.74 90.85 97.92

To obtain bond and angle interactions between the beads for our 
CG-PAM model, we constructed a single chain of 10 acrylamide 
monomers, shown in Fig. S1(a). Then we used QM to independently 
examine the energies for stretching the bonds and for bending the 
angles using PBE-D3. There were fitted to obtain Harmonic 
potentials (Equation 2 and 3) for the bonds and angles of the CG-
PAM. The fit is shown in Fig. S1(b-g).

                                                                 (2)2
0( )bond BE K r r 

                                                                 (3)2
0( )angle AE K   

We then derived nonbond vdW interaction parameters between 
water and PAM based on QM calculations at the DFT-PBE-D3 level. 
Because the SPC-E water model predicts accurate values for 
viscosity and heat of evaporation, we selected SPC-E to describe 
water-water interactions.34 This water model contains three charge 
sites but only one van der Walls site (centred at the oxygen atom). 
Our coarsening of the water-PAM interactions uses the bead 
located at the oxygen as the vdW site for the water molecule.  The 
PAM-water interaction is also described by equation (1), where the 
parameters D0, α and r0 were optimized to fit the QM-EOS of the 
water-PAM adsorption structures. To obtain explicit interaction 
parameters between the water and PAM beads, we built models of 
isolated acrylamide monomers with a single water molecule 
adsorbed at various sites. These sites were chosen to represent the 
interaction for only one pair of beads, to allow optimization of 
parameters for one pair at a time. The equilibrium position in each 
EOS corresponds to a local energy minimum of the optimized 
structure. Based on these EOS, the nonbond parameters for water-
PAM were obtained by considering the correlations of the water 
bead-PAM bead distances and QM energies.
Validation of optimized CG-PAM force field

Using our CG-PAM model for a system of 20 chains each with 100 
PAM monomers, we carried out MD with our optimized QM-CG-
PAM force field to predict physical properties that we compared to 
experimental data and to the OPLS atomistic force field.35 
To obtain an equilibrated polymer model, we built the initial 
structure at a low density (0.6 g cm-3) and performed a series of 
“compress-quench” iterations heating the system up to 800 K and 
back down to 300 K. This led to a converged target density of 1.3 g 
cm-3, as shown in Fig. 3 and Fig S3. We kept the melting point near 
the centre temperature of the quenching cycle to improve 
equilibration. Our simulations shows that the last 0.1 ns NPT 
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equilibrium is sufficient to converge the density and potential 
energy (Fig. S4). This procedure allows the chains to entangle 
optimally with each other.

Figure 3 The construction and equilibrium procedure of the CG-
PAM model.

We integrated the isobaric molecular dynamics (NPT) ensemble 
equations of motion for the CG-PAM model using a 5 fs integration 
timestep with a Nose-Hoover thermostat (damping time of 500 fs) 
and a Nose-Hoover barostat (pressure damping time of 5 ps). The 
NPT simulations were performed for 1 ns at various temperatures in 
the range of 300-750 K with 1 atmosphere pressure. We then 
calculated experimental observables such as density, heat capacity, 
and melting temperature. 
We built and simulated an equivalent-sized PAM atomistic model 
using the OPLS force field for comparison.35 A timestep of 1 fs, a 
temperature damping time of 100 fs and a pressure damping time 
of 1 ps were used for the atomistic simulations, while other settings 
remained the same as those in the CG model. 
Using our optimized the water-PAM interactions, we simulated 
aqueous gel models consisting of PAM and water with 
concentrations of 40, 60 and 80 % PAM by weight. These were built 
and relaxed using the same procedure as for pure CG-PAM. The 
amount of CG-PAM was kept constant at 20 chains each with 100 
monomers, while the amount of water molecules was set to 2000, 
5300 and 11900 to reach the PAM weight concentrations of 40, 60 
and 80%, respectively. Using our optimized CG-PAM force field and 
water-PAM interactions, we carried out 1 ns NPT dynamics 
simulations to calculate such observables as density, specific heat 
capacity, and thermal conductivity for three concentrations. The 
same simulations were performed on atomistic models using the 
OPLS force field for comparison. 
All dynamics for PAM aqueous gels were done at 300 K and 1 
atmosphere pressure using the NPT ensemble, Nose-Hoover 
thermostat and barostat with 1 fs timestep, 100 fs temperature 
damping time and 1 ps pressure damping time. 
We then used the CG-PAM force field to predict shear viscosities 
using a SLLOD deformation scheme under non-equilibrium 
molecular dynamics (NEMD) simulations.
Results and discussion
Parameterization of Van der Walls interactions

To obtain EOS of the PAM crystals, the deformations increased one 
cell parameter at a time. This helps identify which CG pair is 
responsible for the change in energy. All pairs of non-bond 
interactions contribute to each EOS, so that a single set of 
parameters will not agree exactly with all the QM-EOS. Fig. 4 shows 
the a, b, c, d and e EOS involve mainly NH2…NH2, CH2…CH2, 
NH2…CH2, CO…NH2 and CO…NH2 non-bond interactions 
respectively. The relative energies are referenced to the energies of 
the crystal expanded by 2 nm in each direction. The minimum 
points are global energy minimum. The atomistic simulations were 
carried out with the atoms located at exactly the same positions as 
the QM models, calculated as single point energies. We obtained 
the non-bond parameters (Table 2) for the beads as the best fit 
over all 5 QM-EOS, based on the least squares error against all QM-
EOS shown in Fig. 4.

Table 2 Optimized Morse parameters for the CG-PAM non-bond 
interactions.

Non-bond 
interaction D0 (kcal mol-1) α r0 (Å)

CH2-CH2 0.1141 1.4170 4.2771
CH2-CH 0.1141 1.4170 4.2771
CH2-CO 0.3258 1.3083 4.0052
CH2-NH2 0.3327 1.2306 4.4548
CH-CH 0.1141 1.4170 4.2771
CH-CO 0.3258 1.3083 4.0052
CH-NH2 0.3327 1.2306 4.4548
CO-CO 0.9307 1.1995 4.4345
CO-NH2 0.9503 1.1218 3.8019
NH2-NH2 0.9702 1.0441 3.9663
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Figure 4 Five EOS based on changing various cell parameters for 
PAM crystals while keeping the chains rigid. The arrows represent 
the stretching directions of the crystals. Here atomistic is OPLS.

Both our CG force field and the atomistic OPLS force field lead to 
good minimum-energy lattice parameters, i.e., accurate densities. 
Nonetheless, the atomistic OPLS force field overestimates the 
hydrophilic interactions (by 35%) but underestimates the 
hydrophobic ones (by 39 to 58%), which leads to an incorrect well 
depth. In contrast, our CG force field agrees well with QM in terms 
of binding energy (2 to 17% deviation). This implies that the CG 
force field should be more accurate than OPLS for energy-
dependent properties, such as melting point, heat capacity and 
thermal conductivity. 
Due to the important applications of PAM as a water thickener, we 
calculated three different EOS related to the material’s rheological 
behavior. These EOS were only used for validation, not parameter 
optimization. In Fig. 5 (a) and (b), the CG and OPLS force field show 
barriers 20-40% lower than the QM-predicted EOS. In order to 
avoid bad contacts between the chains, we allowed the cell size of 
the non-chain-directions to adjust during the translation. The side 

group is flexible while the backbone is rigid. This represents the 
chain-chain friction more realistically. The CG and the OPLS force 
field underestimate the friction between the chains having 
hydrophilic-hydrophilic contacts and hydrophobic-hydrophobic 
contacts. For the rotation barrier, the CG force field is in good 
agreement with the QM friction EOS and slightly better than OPLS 
(Fig. 5 (c)).
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Figure 5 EOS for translation of a single one chain in CRY1 (a) and 
CRY2 (b) and the EOS of rotation of one chain in CRY1 (c).

The non-bond interactions parameters between water and CG-PAM 
were developed for aqueous gel simulations using the QM-EOS of 
the water-monomer adsorption structures as shown in Fig. 6. From 
coupled cluster calculations using MP2/aug-cc-pVXZ, there is a -6.36 
kcal mol-1 for NH3…H2O hydrogen-bond-affinity, while our DFT-D3 
leads to -6.15 kcal mol-1 for R-NH2…H2O.36 On the other hand, the 
OPLS atomistic force field predicts a difference of about 4 kcal mol-1 
for the hydrogen bond. Again, the atomistic OPLS force field 
overestimates the hydrophobic interaction and underestimates the 
hydrophilic interactions. Sometimes these deviations cancel each 
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other out, but they may still contribute to errors in the calculation 
of energy-dependent properties. By fitting to the QM-predicted 
EOS, the optimized CG force field (parameters in Table 3) is more 
accurate than OPLS in reproducing the potential energy curve, 
representing an improvement for aqueous PAM gel models and 
simulations.
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Figure 6 EOS of water-PAM non-bond interactions.

Table 3 Optimized water-PAM non-bond interaction parameters.
Pair D0 (kcal mol-1) α r0 (Å)

NH2-H2O 4.0400 1.5446 3.0743
CH2-H2O 0.3707 1.6415 3.5594
CH-H2O 0.3707 1.6415 3.5594
CO-H2O 6.5006 1.5277 3.4281

Parameterization of valence interactions
The valence parameters (Table 4) in CG-PAM were optimized using 
QM-predicted energy curves following the same strategy as for the 
non-bond parameters. The comparison between QM, CG and 
atomistic OPLS force field are shown in Fig. 7. Again, our CG force 

field is more accurate than the OPLS force field, especially for the 
NH2-CO bond, NH2-CO-CH angle, and CO-CH-CH2 angle. These 
weaker bonds and angles are all located at the hydrophilic pendant 
amide groups, while the hydrophobic backbone interactions are 
fine. This probably affects the properties of OPLS models for PAM 
aqueous gel.

Table 4 Optimized valence parameters for CG-PAM.

Bond or angle KB or KA 
(kcal mol-1)

r0 or θ0 
(Å or degree)

CO-NH2 398.12 1.9515
CH-CO 286.11 2.0788
CH-CH2 295.66 1.6649

CH-CO-NH2 499.08 82.72
CH2-CH-CO 122.39 99.34
CH2-CH-CH2 111.35 108.19
CH-CH2-CH 111.51 107.69
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Figure 7 EOS of valence interactions, where a, b and c are NH2-CO, 
CO-CH and CH-CH2 bonds, respectively. Lower figures d, e and f are 
NH2-CO-CH, CO-CH-CH2 and CH-CH2-CH angles, respectively. 
Generally, the CG is much closer to QM than OPLS.

It’s very important to capture the correct polar interactions in PAM 
and aqueous PAM gel models, because the polar interactions play 
an important role in thickening and flocculating effects. The 
interaction between the hydrophilic pendant amide groups 
determines the cross-linking dynamics of the chains. The water-
PAM interactions, especially the water-carbonyl and water-amino 
interactions, are the main contributors to the solubility and 
rheology of PAM in water. Therefore, accurate polar interactions 
enable an improved understanding of aqueous PAM gels.

Validation against experimental observables
The best validation of the accuracy of a simulation is to compare 
against the corresponding experimental observables. First, we focus 
on the melting point, an important property for polymers. The NPT 
dynamics simulations for CG-PAM and atomistic PAM were 
performed at various temperatures to obtain the time-averaged 
density and potential energies, as functions of temperature. Since 
the temperature dependence of the properties change at the phase 
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transition, we located the melting points at the turning points of 
these functions. From Fig. 8 (a) and (c), based on potential energies, 
it is hard to find their inflection points. This is because of the energy 
fluctuations of the amorphous structures. Notwithstanding, we can 
locate this transition point by piecewise linear interpolation. 
Because the experimental melting point is about 520 K, we assigned 
the points below 520 K as solid and above 520 K as liquid. Then we 
did a linear fit for the temperature dependence for the 2 sets of 
points to locate the melting point at the line crossing. The 
estimated melting points by CG-PAM (517-530 K) and atomistic 
PAM (553 K). Comparing with the experimental melting point 519-
523 K, our CG-PAM model is more accurate.37 The densities of both 
CG-PAM (1.304 g cm-3) and OPLS PAM (1.307 g cm-3) are in good 
agreement with experiment (1.30 g cm-3), but their thermal 
expansion behaviours are slightly different. The OPLS model for 
PAM has a lower density at high temperatures, probably because it 
underestimates vdW well depths for hydrophilic groups as 
discussed in Section 3.1. In addition, we calculated the densities 
and melting points for CG-PAM melt models with chain lengths of 2, 
4, 8, 16, 32, 64, 128 monomers, as shown in Fig. S6. The densities 
and melting points are in the range of 1.01-1.29 g cm-3 and 472-530 
K, respectively. 
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Figure 8 Estimated melting point using the turning points in the 
temperature dependence functions of potential energy and density. 
The experimental melting point of PAM is 519-523 K.37

Our second validation is for heat capacity. The time-averaged 
enthalpies at different temperatures were calculated, leading to the 
specific heat capacities (Cp) shown in Fig. 9. The OPLS PAM model 
shows 1.5 times larger Cp than experiment. This may arise from the 
too-weak hydrophilic interactions. In contrast, the Cp of CG-PAM 
model (1.45 kJ kg-1 K-1) is ~15% smaller than experiment (1.75 kJ kg-1 
K-1).38 We find similar behaviours for the aqueous PAM gel at 300K 
as shown in Fig. 9 (b).
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Figure 9 Temperature dependence of specific heat capacities for 
pure PAM (a) and concentration dependence of specific heat 
capacities under 300 K for aqueous PAM gel (b). The error bar in (a) 
is based on the Cp averaged by 1 ps time interval.

The remaining validations focus on the concentration dependence 
of density and thermal conductivity. Fig. 10 (a) shows that the 
density of CG-PAM aqueous gel (1.123 g cm-3) agrees with 
experiment (1.138 g cm-3) at a concentration = 0.4. In contrast, the 
OPLS model leads to 10% larger density at the same concentration, 
probably due to the inaccurate water-PAM non-bond interactions 
shown in Fig. 6. 
The thermal conductivities were calculated using the Green-Kubo 
(GK) formulation that averages the auto-correlation of the heat flux. 
Both the CG and OPLS models produce thermal conductivities 
higher than experiment38, but the CG model shows better accuracy 
than the OPLS model.
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Figure 10 Concentration dependence on density and thermal 
conductivity for aqueous PAM gel under 300 K.

From the above validations, this QM based CG-PAM force field 
provides good accuracy for large scale length-time simulations. The 
accuracy improvement arises from parameterizing directly to QM, 
while the improved length-scale capability is due to the level of 
coarsening. For the same size of polymer models, the CG model has 
a larger mass with reduced interaction terms than the atomistic 
model. This CG model allows us to use longer timesteps to simulate 
larger models. Comparing with the OPLS atomistic forcefield, our 
CG-PAM force field uses 2/5 the number of interacting units to 
represent the atomistic model. We have tested that the simulations 
are stable at 0-1500 K for timesteps of 5 to 10 fs, which is 5 times 
longer than the OPLS (usually 1-2 fs). On the whole, the 
computational efficiency of CG-PAM model is 12.5 times that of 
atomistic model.
An earlier study shows that hydration free energies of side polar 
groups depend strongly on the backbone conformation.39 The 
backbone can strongly affect the affinity for the surrounding 
solvent. Considering the significance of solvent effects on a PAM 
gel, we did NPT simulations at 300 K and 1 atmosphere on atomistic 
and CG-PAM gels with 20% and 80% weight concentrations of PAM. 
The water-water radial distribution functions (RDF) (Fig. 11) show 
that the CG-PAM enhances the affinity by reducing the water-water 
distance by 0.1 (from 2.85 to 2.75 Å) Angstrom. The water-water 
RDF of 80% CG-PAM gel shows a significant valley in range of r = 3-5 
Å and a peak at r = 5-5.5 Å, while that of atomistic-PAM gel does 
not show these features. This is because of the different level of 
scattering of the water. From Fig. S5(a), the CG-PAM chains are 
separated by water. Since the thickness of the PAM chain is about 5 
Å, the locations of the valley and peak are reasonable. However, 
from Fig. S5(b), the atomistic-PAM chains contact each other 
leaving cavities for water. So, the RDF of 80% atomistic-PAM shows 
inverse micelles character, as found in wet octanol or butanol.40, 41 
Overall, the different solvent behaviours between CG and atomistic 
PAM gels results from the weak water-PAM affinity, as found in the 
atomistic model. 
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Figure 11 Water-water radial distribution functions for atomistic 
and CG-PAM gels with 20% and 80% weight concentrations of PAM. 
The simulations were performed at 300 K and 1 atmosphere using 
NPT ensemble for 1 ns.

Our CG-PAM model has some limitations. Fig. 12 (a) shows the 
pseudo shear thickening of pure PAM induced by longer timesteps 
at high shear rates. In the most interesting range of shear rates for 
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polymer simulations, 107-1011 s-1, the 5 fs timestep is safe. 
Nevertheless, Fig 12 (b) shows an energy drift at 1800 K, while 
integration at 5 fs timestep is stable for temperatures lower than 
1300 K. In order to retain maximum accuracy, we mapped the CG to 
a united-atom-like model to limit the simulation scale. We believe 
this is a good start of the QM-EOS based coarsening methodology 
that can extend to larger mapping schemes in the future.
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Figure 12 (a) Shear viscosities as functions of shear rate calculated 
by different timesteps. The SLLOD-NEMD simulations are 
performed on 20 chains * 100 monomers CG-PAM models sheared 
at 300 K. (b) Total energy evolution during NVE simulations 
performed on the CG-PAM melt model with 5 fs timestep and 300-
1800 K temperatures.

Conclusions
Using a QM-derived EOS, we developed a new CG force field 
for PAM and aqueous PAM gels. This CG force field shows 
improved accuracy than the well-known OPLS atomistic force 
field, when compared to both QM-EOS and experimental 
observables. The CG FF successfully reproduces the EOS of 
PAM crystals, isolated chains, and water-absorption systems. 
Compared with the OPLS atomistic force field, our CG FF is 
more accurate for all validations, including density, heat 
capacity and thermal conductivity. The melting point is 
estimated with an error less than 2%. This is unusual for force 
fields especially CG polymer force fields, because the melting 
point is sensitive to many structural conditions. Our method 
starts from the QM EOS, and is parameterized directly from 
cold compression/expansion EOS on simple idealized crystal 
models using non-bonded and bonded interactions. We have 

validated our method on a polymer system that is complicated 
by the existence of polar interactions, which are not 
conventionally captured by the standard CG approaches.
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