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Data-driven analysis of the electronic-structure factors
controlling the work functions of perovskite oxides

Yihuang Xiong,a Weinan Chen,a Wenbo Guo,b Hua Wei,b Ismaila Daboa,c

Tuning the work functions of materials is of practical interest for maximizing the performance of
microelectronic and (photo)electrochemical devices, as the efficiency of these systems depends on
the ability to control electronic levels at surfaces and across interfaces. Perovskites are promising
compounds to achieve such control. In this work, we examine the work functions of more than 1,000
perovskite oxide surfaces (ABO3) by data-driven (machine-learning) analysis and identify the factors
that determine their magnitude. While the work functions of BO2-terminated surfaces are sensitive
to the energy of the hybridized oxygen p bands, the work functions of AO-terminated surfaces exhibit
a much less trivial dependence with respect to the filling of the d bands of the B-site atom and of
its electronic affinity. This study shows the utility of interpretable data-driven models in analyzing
the work functions of cubic perovskites from a limited number of electronic-structure descriptors.

1 Introduction
The work function measures the energy of extracting an electron
from a material. Understanding trends in the work function is
technologically important to thermionics1, optoelectronics, elec-
trochemistry, and photocatalysis2–8—with one primary example
being the possibility to optimize the activity of a surface by tun-
ing its electronic affinity9. Perovskites are a remarkably versatile
class of materials that can be synthesized with controlled purity
and relatively high yield10–12. Due to the interplay between their
structural, chemical, and electronic characteristics, perovskites
are promising candidates for achieving sensitive control of the
work function. Figure 1 compares the work functions of elemen-
tal metals13 with those of perovskite oxides; it is apparent that
perovskites show a wide distribution of work functions, providing
a rich compositional space for the design of e.g. thermionic con-
verters (requiring low work functions)14 and photovoltaic hole
collectors (requiring high work functions).

In this work, we develop a data-driven understanding of the
work functions of perovskite oxides in their prototypical cubic
symmetry. For comparison, Fig. 2 shows the work functions of

a Department of Materials Science and Engineering, and Materials Research Insti-
tute, The Pennsylvania State University, University Park, PA, USA, E-mail: YihuangX-
iong@psu.edu
b College of Information Sciences and Technology, The Pennsylvania State University,
University Park, PA 16802, USA
c Institutes of Energy and Environment, The Pennsylvania State University, University
Park, PA 16802, USA
† Electronic Supplementary Information (ESI) available: A schematic of a regression
tree in the random forests, feature selections based on correlation matrix and im-
portance ranking, and projected density of states of selected perovskites. See DOI:
10.1039/cXCP00000x/

Fig. 1 Distribution of the computed work functions for elemental met-
als13 and cubic perovskites. Perovskites show a broad distribution of
work functions.

10 representative perovskites in the orthorhombic (Pnma) and
cubic (Pm3̄m) phases along their [001] surface facets. These
results highlight a strong correlation between the work func-
tions of these structures, indicating that the high-symmetry, cu-
bic phase may provide a reliable basis to infer the work func-
tions of low-symmetry, perovskite-related structures featuring oc-
tahedral rotations. Examining cubic structures is also relevant to
high-entropy perovskites15 that tend to spontaneously adopt high
symmetry15,16. We thus present a detailed analysis of the depen-
dence of the work functions of cubic perovskites as a function of
composition and termination using extensive computational data.
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Fig. 2 Comparison of computed work functions along the [001] direction
for a representative set of 10 perovskite oxides with space groups Pm3̄m
and Pnma. The selected compositions are ABO3 where A = Ca or Sr and
B = Ti, V, Cr, Mn or Fe. The overall coefficient of determination (R2)
and root mean squared error are of 0.929 and 0.237 eV, respectively.

2 Computational method
2.1 Crystal structures and first-principles calculations
A perovskite crystal structure with formula ABO3 is shown in
Fig. 3. The B-site cation is octahedrally coordinated to oxygen,
and, typically, a larger A-site cation adopts a twelve-fold coordi-
nation with the surrounding oxygen atoms. The cubic perovskite
phase exists in nature (e.g. SrTiO3 and SrVO3), while many other
lower-symmetry stable structures are also found. Compared to
the ideal cubic structure, distortions such as octahedral rotations
and cations displacements may occur, and some of them are re-
sponsible for functional properties such as ferroelectricity17. Nev-
ertheless, we adopt the cubic phase as a simple template for sta-
tistical analysis, as discussed above and justified in Fig. 2.

Following Refs. 18 and 19, we select the constituent metal
cations based on their propensity to form a stable cubic phase.
The elements that are considered in this work are highlighted in
Fig. 3. The A-site elements include the main-group metals, while
the majority of the B-site elements belong to the transition metals
series. Considering the alternating AO and BO2 layers, we con-
struct two types of interfaces along the [001] direction, as shown
in Fig. 4. Using the optimized bulk structures, each slab geometry
is built symmetrically with 9 ionic layers. The periodic slabs are
separated by 14 Å of vacuum. Only the two outermost layers are
allowed to move during geometry optimization.

All first-principles calculations are managed by the AiiDA high-
throughput calculation infrastructure20. The self-consistent-
field calculations are performed at the semilocal Perdew–Burke–
Ernzerhorf (PBE) level21 using the PW code of the QUANTUM

ESPRESSO distribution22. Ionic cores are represented by norm-

Fig. 3 A perovskite unit cell is composed of A cation in the center of the
unit cell, and B cation octahedrally coordinated with the oxygen (top).
The elemental compositions that are used to construct the perovskites
are highlighted in the periodic table (bottom).

conserving pseudopotentials with kinetic-energy cutoffs of 100 Ry
for the reciprocal-space expansion of the wave functions23. Bulk
structures are fully optimized through variable-cell optimization,
while sampling the Brillouin zone with a Γ-centered Monkhorst–
pack grid of 12×12×1224. For slab calculations, a Marzari-
Vanderbilt cold smearing of 0.01 Ry25 is employed to discretize
the Brillouin zone with a reduced k-points mesh of 6×6×1. In ad-
dition, the ENVIRON module is applied to automatically align the
Fermi level with respect to vacuum26–28. The atomic positions
are then fully optimized until the interatomic forces are smaller
than 0.02 eV/Å.

Based on the optimized perovskite surface, we can calculate the
work functions as

Φ = Φ
◦−EF, (1)

where Φ◦ is the potential in vacuum and EF is the Fermi energy.

Due to the semilocal PBE approximation, the calculated band
gap and work function are expected to be underestimated13,29.
Even though previous work suggests that the work functions
of metals calculated from PBE are consistent with experimental
measurements13,30, there is still debate about the accuracy of
PBE work functions for perovskite oxides. More generally, the
work functions of metal oxides can be strongly influenced by sur-
face orientations, terminations, and defects. Studies by Ma et
al. and Guo et al. showed that an accurate description of band
gaps could lead to improved predictions of the work functions
and band edges of semiconductors31,32. Although predicting ab-
solute work functions using the PBE functional may not be accu-
rate, Ma et al., and Chambers and Sushko showed that the PBE
approximation is reliable to estimate differences in the work func-
tions of AO and BO2-terminated surfaces32,33. While beyond the
scope of this work, it is expected that hybrid functionals such
as Heyd-Scuseria-Ernzerhof (HSE)34 could be more accurate for
evaluating the work functions of perovskite metal oxides. Since
the goal of this study is to understand trends between work func-
tions and electronic descriptors, we argue that it is suitable to use
the PBE functional.
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Fig. 4 Surface structures considered in this work: the AO and BO2
terminations.

2.2 Machine-learning method and descriptor selection

On the basis of our computed datasets, we aim to identify the fea-
tures that best describe the work functions of the perovskites. To
achieve this, we employ a statistical learning method. We chose
our model based on interpretability and performance. Here we
use random forest regression35, which is an ensemble statistical
learning method that integrates a number of decision trees and
that returns the average prediction of these trees36. In specific
terms, given a training set (X, y) where X is the features and y are
the corresponding responses, the random forest model is trained
by repeatedly sampling a subset x of the training set to form the
trees. The quality of the branch split is measured using the mean
squared error (MSE) of the regression: MSE = 1

N ∑
N
n=1(yn− ŷn)

2.

For each testing sample x, the prediction is obtained from the
averaged prediction of the individual trees: f (x) = 1

M ∑
M
=1 fm(x),

where M is the total number of trees and fm stands for the pre-
diction of each tree model using data x. Random forests are
known to be robust against overfitting, and have been widely ap-
plied for both regression and classification tasks37. In addition,
random forests offer means of interpreting the model using im-
portance ranking and partial dependence analysis38,39. To train
the model for predicting the work function, we ‘fingerprint’ the
interface structures in our database with a number of features
that are physically meaningful and are expected to be correlated
with the work functions. Some of the selected features have be
shown previously to be critical to describe phase stability40, ther-
mal conductivity41, optical absorption42,43, superconductivity44,
catalytic activity45, and fuel-cell performance46. In total 38 fea-
tures are selected and summarized in Table 1.

All features, except ĒO
2p and χ

ABO3
M , are selected for both A and

B elements. We computed the ionization potential IPcalc and the
electron affinity EAcalc of the atoms using the energy of the half
occupied Kohn-Sham orbital49. Furthermore, the band center of
orbital ϕ is the energy difference between the weighted center of
the ϕ-projected band and the Fermi level in a crystal:

Table 1 Atomic descriptors that are selected in this work

Notation Definition

IPexpt, EAexpt,
IPcalc, EAcalc

Experimental and calculated ioniza-
tion potential and electron affinity

χP Pauling electronegativity

δ Bonding covalency with oxygen

rs, rp, rd s, p and d valence orbital radii of the
element47

Ratm, R̄ion Atomic radii and averaged ionic radii

P Pettifor’s chemical scale48

Z Atomic number

M Mendeleev number

Ēp p band center in bulk perovskite

θd , θeg , θt2g Filling factor of d band, eg and t2g in
bulk perovskite

ĒO
2p Center of oxygen 2p band in bulk per-

ovskite

χ
ABO3
M Geometric mean of the electronega-

tivity of the perovskite constituents on
a Mulliken scale

Ēϕ =

∞∫
−∞

Eρϕ (E)dE

∞∫
−∞

ρϕ (E)dE
−EF, (2)

and the filling factor of the ϕ band (similarly for eg and t2g bands)
is calculated from

θϕ =

EF∫
−∞

ρϕ (E)dE

∞∫
−∞

ρϕ (E)dE
, (3)

where ρϕ stands for the projected density of states of the ϕ or-
bital. This projection is expressed as

ρϕ (E) =
1

Nk
∑

nk,σ

∫
|〈ψσ

nk|ϕ〉|
2
δ (E−Eσ

nk)dE, (4)

where n, k and σ denote the band index, k-points and the spin
states of the wave function ψ, respectively.

We note that the inclusion of DFT features requires some initial
bulk calculations. Constructing models using only readily avail-
able features such as elemental properties50–52 would overcome
this requirement; however, these DFT features enable us to estab-
lish closer correlation between the work functions and electronic-
structure properties, as further analyzed and discussed below.

3 Results and discussion
3.1 Random forest regression
We develop the random forest models using the SCIKIT-LEARN li-
brary53. The dataset contains 1248 interface work functions and
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is composed of an equal amount of AO and BO2 surfaces. Two
models are trained independently on the work functions of the
AO and BO2 terminations. Before training the models, we note
that some of the selected features are correlated. Although such
correlations would not impact the performance of the model, they
could deteriorate its interpretability. This is because the corre-
lated features carry similar information, thus the feature impor-
tance would be shared among them, causing a ‘dilution’ of the
importance score across the feature group. Therefore, we carried
out a reduction of the feature dimension using the Pearson cor-
relation analysis, as detailed in Supplementary Figure S1. This
process reduces the number of features from 38 to 21 by elimi-
nating the most highly correlated ones. We start the analysis by
using all the features to train the random forest regression mod-
els. For both AO and BO2 terminations, we partition the dataset
into 80% and 20% for training and test set. Using the training
set, the hyperparameters that gives the lowest root mean squared
error (RMSE) are selected. The RMSE is evaluated with fivefold
cross-validations. The obtained model’s performance is then val-
idated using only the test set. Such evaluation is repeated 40
times by shuffling the datasets to obtain an averaged total perfor-
mance. By doing so, we can consistently evaluate the accuracy of
the model.

We first aim to identify the features that are relevant to the
work functions. This is achieved by examining their importance
score. In specific terms, the importance of a feature measures
how much the feature would impact the predictions. For exam-
ple, we can calculate the importance of a feature by adding up
the weighted variance reduction for all nodes that use this fea-
ture as the splitting feature, and then averaged over the trees in
the trained forests. Based on the importance score, we perform
recursive feature elimination43,44, and then re-train the model
each time to obtain a new importance ranking. To optimize the
model’s performance when each feature is removed, the hyperpa-
rameter is re-selected using aforementioned process. The yielded
model contains compatible hyperparameter and number of fea-
tures. The averaged RMSE of the regression with respect to the
number of features are shown in Supplementary Figures S2, along
with detailed descriptions of the model constructing process. We
find that the averaged RMSE of the work function of AO and BO2

terminations are 0.468 eV and 0.531 eV, respectively. The aver-
aged predicted work function Φ are plotted against the DFT val-
ues in Fig. 5 (a) and (b). The prediction accuracy is reasonable
considering that the work functions span a range of 9 eV. For the
six most predominant features that are identified in the models,
we summarize their normalized feature importance in Fig. 6.

Based on the importance ranking, we find that the most rele-
vant features for both surfaces show a consistent pattern despite
the different surface structures. For the BO2 terminations, the
work function is strongly influenced by the the bulk 2p band cen-
ter of oxygen ĒO

2p, which has an importance score of 0.44. Fol-
lowing that, two features that are related to the terminated ele-
ment, namely rB

d and PB, are found to be relatively important for
the work functions of BO2 terminations. This indicates that the
work function of BO2 is largely determined by its bulk properties.
On the other hand, though ĒO

2p is still relevant to the AO work

Fig. 5 Predicted versus computed work functions of AO and BO2 ter-
minations. The performance of the random forest regression models is
evaluated by averaging the results from randomly shuffled datasets. The
averaged root mean squared error for AO and BO2 terminations are 0.468
eV and 0.531 eV, with standard deviations of 0.047 and 0.048, respec-
tively.

Fig. 6 Normalized feature importance of the 6 most relevant features
for AO and BO2 terminations.
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functions, it only ranked as the fourth most important feature.
The first three features are consistently correlated to the surface
species of AO terminations; they are rA

s , rB
d , and ĒA

p . This result
shows that, in contrast to BO2 surfaces, the surface contribution
to the work function is more significant than the bulk proper-
ties for the AO terminations14. In general, the machine-learning
model correctly recognizes the termination effect, where the va-
lence orbital radii for A and B elements are predicted to be among
the most essential features for the AO and BO2 terminations. In
addition, it is known that the work function is influenced by both
bulk and surface properties14,54,55. The machine-learning models
correctly capture this dependence.

It is interesting to note that, for both AO and BO2 termina-
tions, the energy of the oxygen 2p orbital in the bulk phase plays
a critical role. In fact, ĒO

2p is an important bulk electronic pre-
dictor that has been used to describe many electronic properties
of perovskites, including vacancy formation energies56, oxygen
reduction reactivity of oxide fuel cell46 and oxygen evolution re-
activity57,58. Specifically for work functions, Jacobs et al. have
reported ĒO

2p as a critical descriptor by exploring 20 technologi-
cally relevant perovskite materials that are composed of Sr and La
for the A atoms and 3d transition metals for the B atoms14. Here
our data-driven approach corroborates that ĒO

2p remains an effec-
tive descriptor even for a wide range of metastable perovskites.

Although it helps identify the most significant features, the im-
portance score only indicates how much the predictions are af-
fected by the features, without explaining the specific relation-
ship. To answer this question, we conduct a partial dependence
analysis39 for the two most predominant features. Partial de-
pendence plots (PDP) illustrate the marginal effect (in the prob-
abilistic sense) of the selected features on the predictions after
integrating out the other variables. If we only focus on one spe-
cific feature x, the interactions between x and the response of
the target can be estimated by marginalizing the predictions over
all other features. This partial dependence function f̄s(x) can be
expressed as

f̄s(x) =
1
N

N

∑
n=1

f (x1,n, · · · ,xs−1,n,x, · · · ,xM,n), (5)

where f̄s(x) is approximated by averaging the output of the
trained model for all features except the selected feature x = xs

in the dataset. M is the total number of features in the model,
and N is the total number of samples. Similarly to the previous
analysis, the PDP is obtained by averaging the results using the
shuffled datasets. In Fig. 7, we illustrate the PDP for both AO and
BO2 work functions with respect to Ō2p and the valence orbital
radii rA

s and rB
d .

Despite different surface structures, we find that the general
trend of how ĒO

2p influences Φ is universal, as shown in Fig. 7
(a): with a larger separation between ĒO

2p and the Fermi level
(more negative band center of O 2p in bulk), the work function
shows an approximately monotonic decrease. Interestingly, such
correlation starts to break down for the perovskite interfaces with
low work functions, where the work function reaches a plateau
when the ĒO

2p is below –4 eV, especially for AO termination. To

explain these trends, we examine the density of states, and the
correlations between ĒO

2p and the work function. In general, the
low work function of a perovskite originates from low filling of
the d bands, as shown in Fig. 8(a). One of the representative
compounds of this class is SrVO3

14. Thus, as we move across the
3d transition metal series, the d bands are filled up with electrons
and move down to hybridize with the O 2p band. This can also be
understood by analyzing electron affinities. A more electronega-
tive B site will create a more covalent bond with oxygen, thus
leading to more pronounced band hybridization. A key charac-
teristic for such hybridization is that, the band center of oxygen
2p is almost unchanged with respect to vacuum level [see Supple-
mentary Fig. S5(a)]. This observation is consistent with previous
literature14 and enables one to understand the linear correlation
between the ĒO

2p and the work functions: with increasing d filling,
the d bands hybridize with the O 2p bands and reduce the energy
separation between the Fermi level and the O 2p band center.
Since ĒO

2p remains almost constant with respect to the vacuum
level (indicating moderate charge transfer between the inner and
outer layers), a decrease in the Fermi level and an increase in the
work function is observed.

Yet, we observe that the previously described correlation breaks
down for deep ĒO

2p levels. To understand these deviations, we ex-
amined the compounds with ĒO

2p deeper than –4 eV and found
that those perovskites primarily contain 5d elements, such as Ta,
W and Re. By examining their projected density of states [see
Supplementary Fig. S5(b)], we found that the key difference lies
in the stability of the band center for O 2p. In this case, it is ob-
served that ĒO

2p is no longer constant (indicating charge transfer
between the inner and outer layers), as depicted in Fig. 8(b) by
the shift of ĒO

2p towards the vacuum energy level. This trends ex-
plains the loss of correlation between the ĒO

2p level and the work
function of those compounds. We further study this trend by ex-
amining the partial dependence of the work function with respect
to the ĒO

2p and rA
s for the AO termination in Fig. 7(b). It is appar-

ent that when ĒO
2p is above –4 eV, the isocontours align horizon-

tally, which indeed confirms the strong correlation between ĒO
2p

and the work functions. In contrast, the isocontours are mostly
vertical when ĒO

2p is deeper than –4 eV.

Next, we turn our attention to the influence of the valence or-
bital radii on the work function. We first discuss the AO termina-
tion, and we highlight different groups of elements in Fig. 7 (c).
We find that the work function can be parsed into three regions:
(1) rA

sp < 1.0 bohr, (2) 1.0 bohr < rA
s < 1.3 bohr, and (3) rA

s >1.3
bohr. In fact, these three regions correspond to alkali/alkaline-
earth metals, transition metals, and post-transition metals and
metalloids. The valence orbital radii have been shown to cap-
ture the periodic trends47, except for Li and Na due to their small
radii. For elements belonging to the family of post-transition met-
als and metalloids, the work function tends to decrease with re-
spect to the increase of the valence orbital radii. This can be
explained in terms of the electronegativity: alkali/alkaline-earth
metals (larger rA

s ) show lower electronegativity compared to that
of post-transition metals and metalloids (smaller rA

s ), thereby
yielding smaller work functions. In addition, because of our
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Fig. 7 Partial dependence plots for the AO and BO2 terminations. (a) Dependence of the work function with respect to the orbital energy ĒO
2p for both

interfaces. (b) Two-variable dependence plots of the work functions of both orbital energy ĒO
2p and the orbital radius rA

s for AO-terminated interfaces.
(c, d) Partial dependence of the work function with respect the radius of the p (d) orbital of the A (B) element for the AO (BO2) termination. The
colored regions represent groups of elements in the periodic table.

choice of A cation across the periodic table, we observe a clear
separation of the work function between surfaces that are ter-
minated with alkali/alkaline-earth metals and the post-transition
metals/metalloids. The low work function of the alkali/alkaline
terminated perovskites make them potential candidates for de-
signing thermionic converters.

We can now discuss the trend between the size of the d orbital
radii of the B atoms (rB

d ) and the work function of BO2 surfaces
with similar arguments. Figure 7(d) shows that the work func-
tions also decrease with rB

d . The increasing rB
d radii reflect a de-

crease in electronegativity, thus causing a diminution in the work
function. Compared to the PDP of the AO surface, we do not ob-
serve significant separation in the dependence of the work func-
tions as a function of BO2 surface interactions. This is likely due to
the fact that the B cations are mainly composed of the transition
metals and metalloids, with no alkaline/alkali metals included.
These partial dependence analyses reveal that the work function
is determined by both bulk electronic properties and surface elec-
tronegativity. By controlling compositions and structures, these
two effects can be leveraged simultaneously to design materials

with desired work functions.
In closing, we underscore the practical importance of our sta-

tistical observations. A low work function is a crucial requirement
for designing electron emitters and thermionic energy converters,
and we find here that perovskites with alkali or alkaline-earth
metals at the A site are promising candidates for these applica-
tions, as shown in Fig. 7. We conclude that although the center of
the oxygen 2p band is a sensitive descriptor of the work function
for a number of perovskites, AO-terminated surfaces with shallow
Fermi energy are much better described by the orbital radii of the
A-site elements. This analysis demonstrates the possibility of op-
timizing surface structure and chemistry to effectively reduce the
work function for e.g. thermionic energy conversion.

4 Conclusions
We have examined the work functions of cubic perovskites by sta-
tistical means. We have constructed a database of perovskites and
have employed a random forest regression to predict their work
functions, achieving predictive accuracy with only a few features
included. Two central features that primarily control the per-
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Fig. 8 Schematized densities of states for perovskites that contain (a) 3d transition metals and (b) 5d transition metals. Φ◦ stands for the energy
level of vacuum. The red and blue regions correspond to the p and d bands of oxygen and of the B-site transition metal, respectively. The black and
red dash lines represent the Fermi level and the O 2p band center.

ovskite work functions have been identified: the oxygen 2p band
center and the valence orbital radii of the surface-terminating
cations. The oxygen 2p band center is found to be crucial to the
determination of the BO2-termination work functions, while rA

s
predominantly influences the AO-termination work functions. We
have explained how those electronic descriptors affect the work
functions of perovskites using partial dependence analysis, and
have found that the general trends are related to the stability of
oxygen energy levels and atomic electronegativities. These cor-
relations may benefit the search for metal oxides with desired
surface electronic properties. For instance, optimizing the com-
positions of the perovskites to achieve deep oxygen 2p band cen-
ters while simultaneously terminating the interface with alkali or
alkaline-earth elements may yield optimally low work functions,
which is essential for thermionics. Conversely, the perovskites
that have shallow oxygen 2p band centers, coupled with p-block
metal or metalloid terminations, may be of interest for designing
hole collectors.
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