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Analysis and Visualization of Energy Densities. I. In-
sights from Real-Time Time-Dependent Density Func-
tional Theory Simulations†

Junjie Yang,a,# Zheng Peib,#, Jingheng Denga, Yuezhi Maoc, Qin Wud , Zhibo Yanga,
Bin Wange, Christine M. Aikens f , Wanzhen Liang∗b, and Yihan Shao∗a

In this article, we report a scheme to analyze and visualize the energy density fluctuations during
the real-time time-dependent density functional theory (RT-TDDFT) simulations. Using Ag4–N2

complexes as examples, it is shown that the grid-based Kohn-Sham energy density can be
computed at each time step using a procedure from Nakai and coworkers. Then the instantaneous
energy of each molecular fragment (such as Ag4 and N2) can be obtained by partitioning the
Kohn-Sham energy densities using Becke or fragment-based Hirshfeld (FBH) scheme. A strong
orientation-dependence is observed for the energy flow between the Ag4 cluster and a nearby N2

molecule in the RT-TDDFT simulations. Future applications of such an energy density analysis in
electron dynamics simulations are discussed.

1 Introduction

Real-time time-dependent density functional theory (RT-
TDDFT),1–4 which is also known as time-dependent Kohn-Sham
(TDKS) theory, has emerged in recent years as a powerful
tool in the modeling of various molecular spectra and elec-
tron/exciton transfer.5,6 For single molecules, RT-TDDFT has
been employed to compute the UV/Vis absorption spectra,4,7

near-edge X-ray absorption spectra,8–10 electronic responses of
molecules in strong fields,2,11–14 plasmonic excitations of silver
and gold nanowires15,16 and silver nanoclusters,17 molecular
conductivity,3,18 singlet-triplet gaps,19 electron localization func-
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tions,20,21 dynamical hyperpolarizability,22 frequency-dependent
nonlinear optical responses,23 and electronic circular dichroism.24

RT-TDDFT has also been widely used to study electron/energy
transfer in molecular complexes, such as hydrogen-atom-adsorbed
lithium atom clusters,25 dye-sensitized titanium oxide clusters,26

benzaldehyde clusters,27 ion-irradiated peptide and DNA,28,29

silver nanowire arrays,30 and nitrogen-molecule-adsorbed silver
nanowire.31

RT-TDDFT simulations capture the time-evolution of Kohn-
Sham orbitals and charge density of the system of interest, such
as dye molecules,7 molecular conductors,3,18 and plasmonic
nanoparticles.15–17,30,31 This would allow scientists to “watch” the
charge flow between molecule fragments with time. In plasmon-
modulated catalysis,32 for example, “hot” electrons are expected
to flow from the plasmonic nanoparticle into the anti-bonding
orbitals of nearby adsorbates [such as H2,33–36 O2,37–39 N2,40,41

NH3,42 acetylene,36 nitrophenol, aminophenols,43 and pheny-
lacetylene44], thereby chemically activating these molecules.

In this article, we address a simple question: Can we analyze and
visualize the energy flow in a RT-TDDFT simulation that accompanies
the electron charge flow? To the best of our knowledge, no protocol
currently exists for visualizing such energy flow. Fortunately, as
shown in this article, such a task is rather straightforward given
the Kohn-Sham density functional theory (KS-DFT) energy distri-
bution, which was originally proposed by Nakai and coworkers
to obtain atomic and bond energy components.45–47 (Note that
the energy density analysis was also applied to the correlation en-
ergy from Møller-Plesset perturbation theory and coupled-cluster
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calculations.48) Thereby, via computing the Kohn-Sham energy
density distribution along a RT-TDDFT trajectory, it becomes feasi-
ble to monitor the energy flow within a single molecule or between
different fragments of a molecular complex.

This manuscript is organized as follows. In Section 2, a brief
summary of the RT-TDDFT methodology will be provided, fol-
lowed by a re-introduction of the Kohn-Sham energy density as
proposed originally by Nakai and coworkers.45–47 Section 2.2 also
includes a formula for expressing the TDKS “wavefunction” as a
superposition of the Kohn-Sham ground-state and linear-response
time-dependent density functional theory (LR-TDDFT)49–53 ex-
cited states, with a more detailed discussion in the Appendix.
Implementational and computational details are described in Sec-
tion 3. In Section 4, we model the RT-TDDFT energy density of
Ag4–N2 complexes. To help understand the real-time fluctuation
of the Kohn-Sham charge and energy densities, the representation
of the time-evolving Kohn-Sham determinant “wavefunction” as
a superposition of adiabatic electronic states will be employed. A
discussion will be provided in Section 5, with an emphasis on how
to perturb a molecular system to generate substantial charge and
energy flow between molecular fragments. Concluding remarks
will be made in Section 6. In an accompanying paper,54 we report
the energy densities in LR-TDDFT calculations.

2 Methodology
2.1 One-Electron Basis
Throughout this article, we adopt the orthonormal one-electron ba-
sis spanned by the canonical Kohn-Sham molecular orbitals (CMO)
of the unperturbed system, which are all real and denoted by χp,
χq, χr, and χs. Furthermore, χi, χ j, χk, and χl , represent occupied
CMOs, while χa, χb, χc, and χd stand for virtual (i.e. unoccupied)
CMOs. One-electron core-Hamiltonian integrals between these
CMOs are

hpq =
∫

χp(r) ĥ χq(r)dr (1)

where ĥ contains both kinetic energy and nuclear attractions. The
dipole moment matrices are

~µpq =

[∫
χp(r) x χq(r)dr,

∫
χp(r) y χq(r)dr,

∫
χp(r) z χq(r)dr

]
(2)

Two-electron repulsion integrals are

(pq|rs) =
∫∫

χp(r)χq(r)
1

|r− r′|
χr(r′)χs(r′)drdr′ (3)

The electrostatic potential of each pair of CMOs is

Vpq(r) =
∫

χp(r′)χq(r′)
|r− r′|

dr′ (4)

2.2 Many-Electron Basis for Superposition Analysis
In the weak-field limit, a RT-TDDFT electronic state can be schemat-
ically written as a first-order perturbation to Φ0, the KS-DFT elec-
tronic ground state of an unperturbed system,

Φ(t) = Φ0 +∑
m

am(t)Ψ(m) (5)

Here Ψ(m) are open-shell singlet excited states of the same system
within linear response time-dependent density functional theory
(LR-TDDFT).49–53 Namely, they correspond to solutions to the
Casida equations,49A B

B A

X

Y

= ω

 X

−Y

 (6)

where matrices A and B couple singly-excited electronic config-
urations (Φa

i ).49–51 X(m) and Y(m) (i.e. m-th column of X and Y
matrices) represent the amplitudes for the m-th excited state, and
ω(m) is the corresponding excitation energy. For each state, the
transition dipole moment is

~µ(0,m) = ∑
ai

(
X (m)

ai +Y (m)
ai

)
~µai (7)

The orthonormality between these singlet excited states is

(X+Y)(m) · (X−Y)(n) = ∑
ai

(
X (m)

ai +Y (m)
ai

)(
X (n)

ai −Y (n)
ai

)
= δmn

(8)

Mathematically, we can write the identity matrix in the subspace
of LR-TDDFT open-shell singlet excited states of the unperturbed
system as55(

ILR-TDDFT
)

ai,b j
= ∑

m

(
X (m)

ai +Y (m)
ai

)(
X (m)

b j −Y (m)
b j

)
(9)

which can be used (see Eqs. A14 and A15) to obtain the superpo-
sition coefficients (am) in Eq. 5.

Accordingly, the KS-DFT response kernel is55

[
(A+B)−1

]
ai,b j

= ∑
m

1
ω(m)

(
X (m)

ai +Y (m)
ai

)(
X (m)

b j +Y (m)
b j

)
(10)

2.3 RT-TDDFT Energy and Propagation

Within RT-TDDFT, the electronic state at a given time t is described
by the occupied Kohn-Sham orbitals

ψi(r, t) = ∑
p

Cpi(t)χp(r) (11)

and the corresponding electron density,

ρ(r, t) = ∑
pq

Ppq(t)χp(r)χq(r) (12)

where the one-particle density matrix

Ppq(t) = ∑
i

Cpi(t)C∗qi(t) (13)

contain both real and imaginary blocks.

The KS-DFT energy at a given time t contains several compo-
nents: nuclear-nuclear repulsion (Enuc-rep), core-electron (h, a
sum of kinetic (T ) and nuclear attraction (N) energies), Coulomb
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(J), Hartree-Fock exchange (K), and exchange-correction (XC),

E(t) = Enuc-rep +∑
pq

Pqp(t)hpq +
1
2 ∑

pq
∑
rs

Pqp(t)(pq|rs)Psr(t)

− aK

2 ∑
pq,rs

Pqp(t)(ps|rq)Psr(t)+Exc[ρ(r, t)] (14)

where aK is the ratio of Hartree-Fock exchange for the given func-
tional, and a hybrid electron repulsion operator is needed in this
term for range-separated functionals. Exc[ρ(r, t)] =

∫
fxc[ρ(r, t)]dr

is the exchange-correlation functional. Note that the imaginary
part of the density matrix only contributes to the Hartree-Fock
exchange energy term.56

At each time step, one can build the Fock matrix, F [P(t)],

Fpq(t) = hpq +∑
rs
(pq|rs)Psr(t)−aK ∑

rs
(ps|rq)Psr(t)

+
∫

χp(r)
δExc

δρ(r, t)
χq(r)dr (15)

and use it to drive the time-evolution of the density matrix

i
∂

∂ t
P(t) = [F(t),P(t)] (16)

2.4 Grid-Based RT-TDDFT Energy Density

The electronic portion of the KS-DFT energy in Eq.14 can be
evaluated via a real-space integration,

E(t) = Enuc-rep +
∫

ρ
E(r, t) dr (17)

with the energy density ρE(r) composed of the following compo-
nents,

ρ
E(r, t) = ρ

T (r, t)+ρ
N(r, t)+ρ

J(r, t)

+aKρ
K(r, t)+ρ

XC(r, t) (18)

Since the nuclear repulsion energy, Enuc-rep, cannot be decomposed
on a real-space grid, it is not included in the energy density. Strictly
speaking, the energy density in Eq. 18 should be called “electronic
energy density”.

In Eq.18, the first two components, kinetic and nuclear attrac-
tion energy densities, can be written as,

ρ
T (r, t) =

1
2 ∑

pq
Pqp(t)

[
∇χp(r)

]
·
[
∇χq(r)

]
(19)

ρ
N(r, t) =−ρ(r, t)∑

n

Zn

|r−Rn|
(20)

The well-known kinetic energy density in Eq. 19 is used in the
formulation of, for example, popular TPSS and M06-series func-
tionals.57,58 The Coulomb (J) and Hartree-Fock exchange (K)

components can be evaluated as,

ρ
J(r, t) = ∑

pq,rs
Pqp(t)Psr(t)χp(r)χq(r)Vrs(r) (21)

ρ
K(r, t) =− ∑

pq,rs
Pqp(t)Psr(t)χp(r)χs(r)Vrq(r) (22)

using the electrostatic potential of each CMO pair in Eq. 4 (again
with a modified electron repulsion operator for range-separated
functionals). Note that the Hartree-Fock exchange energy density
is used in the formulation of the Becke’05 functional and its vari-
ants.59–61 Lastly, the exchange-correlation energy density is just
the functional in the numerical integration,

ρ
XC(r, t) = fxc(ρ(r, t)) (23)

3 Computational Details
The evaluation of grid-based RT-TDDFT energy density, as de-
scribed above in Section 2.4, was implemented in a development
version of the PYSCF software package.62 Also implemented
were fragment-based Hirshfeld (FBH)63 and Becke population
schemes64(see Section 2.3 in the accompanying paper54 for de-
tails) for partitioning the RT-TDDFT charge and energy densities.
Energy densities were evaluated on two sets of grid points. A
cubic grid was used for visualization purposes, whereas an atom-
centered grid64 was used for FBH or Becke integrations over the
fragments.

As noted by Nakai and coworkers,46 there are two schemes
(grid-based or nucleus-based) to partition the nuclear attraction
energy in Eq. 20 onto the fragments,

EN,g
A = −

∫
wA(r)ρ(r, t)∑

n

Zn

|r−Rn|
dr (24)

EN,n
A = −

∫
ρ(r, t) ∑

n∈A

Zn

|r−Rn|
dr (25)

where wA(r) is the Becke or FBH weights at the grid position. A
hybrid scheme, which contains an equal contribution from grid-
based and nucleus-based partitioning as recommended by Nakai
and coworkers,46

EN
A =

1
2

(
EN,g

A +EN,n
A

)
, (26)

was adopted in the computation of fragment energies.

Several functionals (such as PBE,65 PBE0,66 B3LYP,67–69 and
ωB97X-D70) are supported in our implementation. Only PBE0
results are presented in the next section, while the use of other
functionals was found to lead to qualitatively similar results for
the test systems. Stuttgart effective core potential and basis set71

were employed for silver atoms, and 6-31G(d) basis functions
were used on nitrogen atoms.

In this study, three different configurations of Ag4–N2 complexes
were used as model systems for interfacial energy and charge
transfer. Previously, Ag4 and other small silver clusters and their
interactions with guanine molecule were investigated by Dale,
Senanayake, and Aikens.72 As shown in Fig. 1, in the first two
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Fig. 1 Three Ag4–N2 complexes studied in this work: a) stacked-long;
b) stacked-short; and c) T-shape.

of our configurations, the nitrogen molecules were stacked on
top of the Ag4 cluster, with the N≡N bond lying in parallel with
the long axis of Ag4 (labelled as “stacked-long”) or the short
axis (labelled as “stacked-short”). In the third configuration, the
nitrogen molecule formed a T-shaped complex with Ag4 (labelled
as “T-shape”).

Out of the many RT-TDDFT propagation schemes1–4,56,73–77

developed over the years, we have implemented the modified mid-
point unitary transform (MMUT) scheme,2 exponential density
predictor/corrector (EP-PC) and linear Fock linear density pre-
dictor/corrector (LFLP-PC).77 In addition, we proposed a series
of approximate mid-point unitary transform (AMUT) algorithms.
These schemes are illustrated in Fig. S1 of the ESI. For EP-PC
and LFLP-PC, a convergence threshold of ξ = 10−7au was adopted.
Several time steps were tested for the orbital/density propagation,
with results shown only with two time steps (0.05 and 0.50 au) in
the next section. All our RT-TDDFT calculations were initialized
with a fully-converged SCF solution under a weak-field perturba-
tion (field strength is 10−3 au, in the x-direction which points from
Ag4 to N2 fragment). Then the density matrices were propagated
without an external field within the basis of canonical MOs of
the unperturbed system. (We note that, for larger molecules, a
propagation in the atomic orbital basis would be computationally
more efficient.) For all three complexes, the total propagation
time is 200.0 au (i.e. 4.83 fs).

For the superposition analysis of the RT-TDDFT charge and
energy densities, we started from the initial density matrix, P(0),
for a weakly-perturbed Ag4–N2 complex (as represented in the
basis of canonical MOs of the unperturbed system). Its inner
product with the amplitudes for the m-th open-shell singlet state
(Eq. A15) yielded its superposition coefficient, ãm(0). From the
coefficients for the first 200 open-shell singlet states, we then
approximated the time-dependent orbital rotations, ΘΘΘ(t), using
Eq. A20 and the corresponding density matrix, P(t), using Eq.
A7. The electron and energy densities were then generated from
P(t) following Eqs. 12 and 18 and subjected to FBH and Becke
decomposition analyses.

4 Results
4.1 Ground State Energy Density of N2 and Ag4

Before proceeding to analyze the RT-TDDFT energy densities, let
us use N2 as a model compound to gain some basic understandings
about the ground-state energy density of molecular systems. First,
one would expect all energy density components to have singular
values at the nuclear positions and decay exponentially away from

Fig. 2 Ground-state electron and energy densities of N2 molecule along
the N–N axis. (a) The absolute value of all energy components and
electron density; and (b) the ratio of different energy components to the
electron density. Obtained from KS-DFT calculations using the PBE0
functional and 6-31G(d) basis set.

the nuclei, just like the electron density. This was confirmed in
Fig. 2a, which showed (the absolute value of) all energy density
components along the molecular axis of N2.

Second, one might expect these energy components to exhibit
slightly different decay rates in comparison to the electron density.
While one can check this by examining the decay behavior in Fig.
2a, a better way is to plot the ratio between a given energy density
component and the electron density along the molecular axis.
Indeed, as clearly shown in Fig. 2b, the nuclear attraction energy
density (ρN), kinetic energy density (ρT ), and the Coulomb energy
density (ρJ) all decayed noticeably faster than the electron density.
In Fig. 2, Hartree-Fock exact exchange energy density (ρK) and
the exchange-correlation energy density (ρXC) also decayed faster
than the electron density, but they were substantially smaller than
other three energy components.

Third, we would expect the nuclear attraction energy density
(ρN) to stay negative throughout the real space, while the kinetic
energy density (ρT ) and the Coulomb energy density (ρJ) remain
positive. This was fully confirmed in Fig. 2b. In fact, these
three energy density components contributed the most to the total
energy density. Furthermore, a dominating negative ρN value
led to a net negative value for the total energy density at most

4 | 1–14Journal Name, [year], [vol.],

Page 4 of 15Physical Chemistry Chemical Physics



Fig. 3 Ground-state energy density (blue = positive; red = negative) of a)
N2 and b) Ag4 molecules. Obtained from KS-DFT calculations using the
PBE0 functional and 6-31G(d) basis set.

positions along the molecular axis. A 2-dimensional plot in Fig. 3a
also clearly showed a negative value (colored in red) for the N2

total energy density at most grid points along or away from the
molecular axis.

However, Fig. 2b also indicated that, in the region close to
the nucleus, ρN decayed faster than ρT and ρJ combined. This
produced a thin positive-valued shell around each nitrogen atom,
which appeared as thin “blue donuts” in Fig. 3a. While mathe-
matically intriguing, these positive energy density regions do not
seem to have much physical significance, at least in the context of
our analysis of the RT-TDDFT energy density fluctuation. Further,
we suspect that such positive energy density regions might be an
artifact stemming from using Gaussian basis functions, whose low
curvature can lead to wrong asymptotic behavior near the nuclei
for the kinetic energy density .

The ground-state energy density for Ag4, another component
of our Ag4–N2 complexes, was shown in Fig. 3b. Similar to N2,
the ground-state energy density of Ag4 was found to be negative
in most regions, which was consistent with an overall negative
electronic energy. On the other hand, a positively-valued shell also
appeared around each silver atom, albeit thinner and much closer
to the nuclei.

4.2 Choice of RT-TDDFT density matrix propagators

The several different RT-TDDFT propagation schemes tested in this
work, such as MMUT, EP-LP, LFLP-PC, and approximate mid-point
unitary transform (AMUT), are similar in that they are all exact
to the second order, meaning that the leading error is O((∆t)3).
For the Ag4–N2 complexes, however, these schemes exhibit rather
different behaviors for the conservation of the total energy.

The MMUT scheme from Li, Schlegel, and coworkers was de-

veloped as the first second-order algorithm for RT-TDDFT simu-
lations.2 Indeed, when a 0.05 au time step is used, MMUT well
conserved the energy of the complex to within 1.0×10−8 au during
the 200 au of the simulation (see Figure S2a). While a systematic
drift in the MMUT energies could be observed over the simulation
period, it was largely caused by our simple implementation of the
scheme. In more sophisticated implementations of MMUT,78 the
trajectory can be reset periodically, thus avoiding such a systematic
energy drift.

Using a 0.05 au time step, AMUT-3, another approximate unitary
transformation scheme but requiring four Fock builds during each
time step (illustrated in Figure S1b), also displayed an energy
drift, though at a smaller scale (see Figure S2a). Among the
two predictor/corrector schemes from Zhu and Herbert,77 EP-PC
produced a large fluctuation, even with a 0.05 au timestep. LFLP-
PC, on the other hand, conserved the energy well with a net shift
of 7.0×10−12 au during the simulation.

When the time step is increased to 0.5 au, the four propagation
schemes followed a similar trend in terms of their performance. As
shown in Figure S2b, our implementation of MMUT and AMUT-3
led to a substantial energy change during the 200 au simulation
period. EP-PC energies fluctuated up to 1.5×10−7 au around the
initial energy, while LFLP-PC conserved the energy well with a
similar net shift of 7.0×10−12 au during the simulation.

Based on the performance of four propagation schemes dis-
cussed here, the LFLP-PC scheme was adopted to obtain results
in the remainder of this article. On average, it required 3 and 8
predictor-corrector steps with 0.05 and 0.50 au timesteps, respec-
tively.

4.3 Fluctuation of Different RT-TDDFT Energy Components

In general, the RT-TDDFT energy contains five components in Eq.
18. In a calculation with effective core potentials (ECP) on the
metal atoms, an additional ECP component will be involved. In
contrast to the total energy, which should be conserved along a
RT-TDDFT trajectory, individual energy components are shown
in Figures S3, S4, and S5 to fluctuate with time for three Ag4–
N2 complexes. In particular, the nuclear attraction energy (EV )
and Coulomb energy (EJ) oscillate the most (up to 1.0×10−2 au)
along the trajectory. The kinetic energy density (ET ) also has a
substantial fluctuation up to 1.0× 10−3 au. All other three en-
ergy components, the Hartree-Fock exchange energy (EK), the
exchange-correlation energy (EXC), and the ECP energy (EECP),
has a smaller fluctuations up to 1.0×10−4 au.

Due to the unique format of ECP projection operators,71,79,80

the ECP energy cannot be decomposed onto a real-space grid in a
straightforward way. But, given the small fluctuation of this energy
component, the corresponding ECP energy density was omitted in
the analysis below.

4.4 Charge/Energy Transfer Along RT-TDDFT Trajectories

In our simulations of each Ag4–N2 complex, a weak-field pertur-
bation (field strength: 10−3 au) was applied in the direction from
Ag4 to N2 fragment at time zero. After a fully-converged SCF
solution was reached, the Kohn-Sham orbitals and density matrix
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Fig. 4 Time evolution of (a) the electron density; and (b) the energy density (blue = positive) of the Ag4–N2 complex in the “stacked-long” configuration.
Only the differences against the ground-state densities were shown. Isovalues were 2.0 × 10−5 au for electron densities, and 2.0 × 10−4 au for energy
densities. Obtained from RT-TDDFT calculations using the LFLP-PC propagator, PBE0 functional, and 6-31G(d) basis set.

were propagated in a field-free environment. Since the initial state
was prepared using a weak field, the RT-TDDFT “wavefunction”
can be interpreted as a superposition of the Kohn-Sham electronic
ground-state and LR-TDDFT open-shell singlet excited states as
shown in Eq. 5, where the expansion coefficient can be obtained
using Eq. A15 or A12.

Various energy density components along the RT-TDDFT tra-
jectories were evaluated on the atom-centered grid according to
Eqs. 19–23. They were added together to yield the total energy
densities, which were subsequently partitioned into the two frag-
ments (Ag4 and N2) using fragment-based Hirshfeld (FBH) and
Becke schemes (see Section 2.3 in the accompanying paper54).

For the stacked-long configuration of Ag4–N2, the time-evolution
of the total charge and energy densities (with reference to the
ground-state values) within the first 1.5 au were shown in Figure 4.
Clearly, the two densities evolved in sync with each other, with the
energy density fluctuation always having an opposite sign as the
charge density. This was expected because, when a region gained
more electrons (colored blue in Figure 4a), the energy density
became “higher” (i.e. more negative, shown in red in Figure 4b).

Through FBH and Becke partitioning, fragment charge and
energy on N2 molecule were obtained and their fluctuations are
shown in Figure 5. The actual fluctuation patterns clearly did not
depend on either the partitioning scheme (FBH or Becke) or the
time step (0.05 au or 0.5 au) in use, attesting the robustness of the
LFLP-PC propagator. Observing this, we only showed results with
a 0.5 au time step later for two other complexes.

In Figure 5, the fragment charge/energy densities clearly fluctu-
ated in sync with each other. (Note that panels a and c showed the
net number of electrons on the N2 molecule, which is consistent

with Figure 4a.) Essentially, when more electrons were located
on the N2 molecule, they occupied the unoccupied orbitals of the
molecule, thus increasing its fragment energy. Note that the hybrid
scheme in Eq. 26 for partitioning the nuclear attraction energy
was used in the computation of time-evolving fragment energy
in Fig. 5. When the grid-based scheme in Eq. 24 was used, the
fluctuation in the fragment energy as shown in Fig. S6b was about
50 times larger.

Also in Figure 5, the fluctuation pattern as predicted using
the superposition picture (including up to 200 open-shell singlet
excited states in the superposition) was shown to well reproduce
FBH and Becke ones (based on the instananeous RT-TDDFT density
matrices), thus validating our superposition analysis. In general,
as indicated by Eq. A12, only excited states with a substantial
transition dipole moment along the direction of the initial electric
field can participate in the superposition. For our current test case,
only those states (with pm > 0.01) were listed in Table S1. The
oscillation period of around 1.2 fs for the fragment charge/energy
densities then can be traced to the 5-th open-shell singlet excited
state of the Ag4–N2 complex. As shown in Table S1, this excited
state has an excitation energy of 0.1263 au, corresponding to a
period of 1.2032 fs. Several higher excited states also contributed
to the superposition “wavefunction” at each time step, leading to
the fine features of the charge/energy fluctuations in Figure 5.

Surprisingly, it was the T-shape configuration (rather than the
stacked-short one) that more closely resembled the stacked-long
configuration. For instance, the fragment charge fluctuation for
the T-shape complex in Figure 7a appeared very similar to those
in Figure 5. This happened because, as shown in Tables S1 and
S3, excited states with similar excitation energies from the two
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Fig. 5 Time evolution of (a, b) the fragment charge and (c,d) fragment energy of N2 molecule in the “stacked-long" configuration of the Ag4–N2 complex.
Obtained from RT-TDDFT simulation using the PBE0 functional.
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Fig. 6 Time evolution of (a) the fragment charge and (b) fragment energy
of N2 molecule in the “stacked-short” configuration of the Ag4–N2 complex.
Obtained from RT-TDDFT simulation using the PBE0 functional.

configurations became populated (i.e. had significant expansion
coefficients) at time zero upon the perturbation by the weak field.
On the other hand, the stacked-short configuration was shown
in Figure 6 to exhibit a faster oscillation of the fragment charge,
largely because the leading excited-state contributions (12-th and
34-th) had periods of 0.9487 and 0.7627 fs.
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Fig. 7 Time evolution of (a) the fragment charge and (b) fragment energy
of N2 molecule in the “T-shape” configuration of the Ag4–N2 complex.
Obtained from RT-TDDFT simulation using the PBE0 functional.

5 Discussion
In the catalysis of an adsorbate reaction on a metal nanoparticle,
the chemical bonds in the adsorbate (such as the N≡N bond in
the N2 molecule) are weakened by injecting electrons to partially
occupy its antibonding orbitals. A key challenge is then how
to selectively (and partially) populate some excited state(s) to
achieve a substantial electron flow to the adsorbate molecule.

In our RT-TDDFT simulations, a fluctuation in fragment charges
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was indeed observed for the model Ag4–N2 complexes. To under-
stand such fluctuations at the weak-field limit, a TDKS state was
expressed as a superposition of the electronic ground state and
open-shell singlet excited states. Specifically, the time-evolving
TDKS density matrix P(t) in Eq. A7 could be readily obtained from
the instantaneous orbital rotations ΘΘΘ(t) in Eq. A20, where the
real component is a linear combination of excited-state transition
density matrices (X+Y) in CMO representation. In other words,
the leading excited-state contribution to the TDKS electron density
came from the excited state transition densities, each of which
weighted by coefficient am. Therefore, when it comes to selecting
which excited states to (partially) occupy, one should focus on the
fragment decomposition of excited-state transition densities instead
of difference densities (i.e. detachment/attachment densities,81

hole-particle densities).
In contrast to such a simple prediction of the fragment charge

fluctuation from the excited state transition densities, though,
there is no easy way yet to predict the observed fragment energy
fluctuation from the initial superposition. Such energy fluctua-
tion arises from an interplay among all energy components in
Eq.18, which are not directly connected to the LR-TDDFT excita-
tion energy density components described in the accompanying
article.54

6 Conclusions
In this work, starting from Nakai and coworkers’ concept of grid-
based Kohn-Sham energy density, we analyzed and visualized the
fluctuation of the total energy density (and its individual com-
ponents) along an RT-TDDFT trajectory. This complements the
widely-studied motion of electron densities in RT-TDDFT simula-
tions.

After a weak-field perturbation to three Ag4–N2 model com-
plexes, their fragment energies on the adsorbate (N2) were found
to oscillate in sync with the charge density. This was explained by
expressing the time-evolving TDKS density matrix as a superposi-
tion of the ground-state KS-DFT state and LR-TDDFT open-shell
singlet states. Based on this interpretation, it was suggested that
we can focus on selected open-shell singlet states, whose transition
density has a substantial partitioning on the adsorbate, in order
to steer an effective transfer of the electronic charge towards the
adsorbate to weaken its chemical bonds.

On the other hand, our work has several limitations that we shall
address in the future. First and foremost, we have focused on RT-
TDDFT simulations, where the molecular complex (consisting of a
metal nanocluster and an adsorbate) adopts a fixed geometry. This
analysis needs to be extended to mixed electron/nuclear dynamics
simulations,82,83 such as Ehrenfest dynamics,84–86 where nuclear
motions enable chemical reactions to occur on the adsorbate.

Secondly, the computational cost of evaluating the TDKS energy
density, especially the exact Hartree-Fock energy component,59–61

will become prohibitively high beyond the small model systems.
This arises because various energy density components were com-
puted using exact integrals and a fine numerical integration grid.
In order to make energy density analysis feasible to larger sys-
tems, the pseudospectral method87 has been used in previous
works.46 Alternatively, we can use the resolution-of-the-identity

(RI) approximation60,61,88–95 and other techniques to speed up
the computation.

Lastly, the superposition-state analysis was limited to a simple
RT-TDDFT simulation, where the system was prepared by applying
a weak static electric field at time zero. Further study is needed
to better understand the superposition of electronic states follow-
ing a strong perturbation or a frequency-dependent electrostatic
perturbation.
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APPENDIX. RT-TDDFT with a Weak Static
Electric Field at t = 0

A1. Orbital Rotations in a RT-TDDFT Simulation

As mentioned in Section 2.1, we use the KS-DFT canonical MOs
for an unperturbed system as the one-electron basis. In such a
basis, the RT-TDDFT orbitals of the unperturbed system would
evolve as

C(up)(t) = exp

−iF(up)
oo t 0

0 −iF(up)
vv t

 (A1)

where F(up)
oo and F(up)

vv are diagonal matrices containing occupied
and unoccupied orbital energies of the unperturbed system, re-
spectively.

When the system is perturbed (initially or constantly), its Kohn-
Sham orbitals at a given time t can be written as a unitary trans-
formation of the orbitals of the unperturbed system

C(t) = U(t)C(up)(t) (A2)

where

U(t) = exp

 0 −ΘΘΘ
†(t)

ΘΘΘ(t) 0

 (A3)

depends on the current orbital rotation, ΘΘΘ(t), which is complex.
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Such a unitary transformation can be symbolically written as96,97

U(t) =

 cos
√

ΘΘΘ
†(t)ΘΘΘ(t) − sin

√
ΘΘΘ

†(t)ΘΘΘ(t)√
ΘΘΘ

†(t)ΘΘΘ(t)
ΘΘΘ

†(t)

Θ(t) sin
√

ΘΘΘ
†(t)ΘΘΘ(t)√

ΘΘΘ
†(t)ΘΘΘ(t)

cos
√

ΘΘΘ(t)ΘΘΘ†(t)

 (A4)

The corresponding density matrix can be computed from the occu-
pied orbitals as

P(t) = Co(t)C†
o(t)

=

 cos2
√

ΘΘΘ
†(t)ΘΘΘ(t)

sin
[
2
√

ΘΘΘ
†(t)ΘΘΘ(t)

]
2
√

ΘΘΘ
†(t)ΘΘΘ(t)

ΘΘΘ
†(t)

Θ(t)
sin
[
2
√

ΘΘΘ
†(t)ΘΘΘ(t)

]
2
√

ΘΘΘ
†(t)ΘΘΘ(t)

sin2
√

ΘΘΘ(t)ΘΘΘ†(t)

 (A5)

In the limit of small orbital rotations, Θ(t)→ 0, the unitary trans-
formation and density matrix can by approximated by retaining
only up to the first-order term,

U(t) =

 Ioo −ΘΘΘ
†(t)

Θ(t) Ivv

+O(ΘΘΘ2) (A6)

P(t) =

 Ioo ΘΘΘ
†(t)

ΘΘΘ(t) 0

+O(ΘΘΘ2) (A7)

A2. Initial Superposition Due to a Weak-field Perturbation

In this work, the initial electronic state for RT-TDDFT calcula-
tions will be prepared by applying a weak static electric field of
strength ~f =

[
fx, fy, fz

]
at time zero (t = 0). The corresponding

change to the core Hamiltonian is a linear combination of dipole
moment matrices in Eq. 2,

(δh)ai =
~f ·~µai (A8)

Such an electrostatic perturbation causes a unitary transformation
in Eq. A6 from the unperturbed CMOs to the initial occupied MOs
(of our RT-TDDFT calculations), which can be explicitly written as

ψi(0) = χi +∑
a

χaΘai(0) (A9)

These orbital rotations can be determined using the KS-DFT re-
sponse kernel in Eq.10,

Θai(0) = −∑
b j

[
(A+B)−1

]
ai,b j

(δh)b j

= − ∑
m,b j

1
ω(m)

(
X (m)

ai +Y (m)
ai

)(
X (m)

b j +Y (m)
b j

)
(δh)b j

= −∑
m

~f ·~µ(0,m)

ω(m)

(
X (m)

ai +Y (m)
ai

)
(A10)

where ~µ(0,m) is the transition dipole moment for the m-th excited
state as defined in Eq. 7. Note that these orbital rotations have
real elements, thus yielding all real Kohn-Sham orbitals at t = 0
for all RT-TDDFT simulations in this work.

As mentioned above in Section 2.2, the “single-determinant”

pseudowavefunction based on ψi(0) can be interpreted as a super-
position of electronic states in Eq.5, which means

ΘΘΘ(0) = ∑
m

am(0)(X+Y)(m) (A11)

Comparing this to Eq. A10, the expansion coefficients are clearly

am(0) =−
~f ·~µ(0,m)

ω(m)
(A12)

One can multiply the identity matrix in Eq. 9 and the orbital
rotations.

ΘΘΘ(0) = ∑
m
(X+Y)(m) (X−Y)(m) ·ΘΘΘ(0) (A13)

Comparing it to Eq. A11, one arrives at an equivalent way to
compute the superposition coefficients

am(0) = ΘΘΘ(0) · (X−Y)(m) (A14)

In this work, we focus on the weak-field limit, where the orbital
rotations can be inferred from the vo-block of the initial density
matrix (see Eq. A7). Accordingly, the expansion coefficients were
approximated as

ãm(0) = Pvo(0) · (X−Y)(m) (A15)

which are shown in Tables S1, S2, S3 to deviate by no more than
5% from am(0) values computed using Eq. A12 for our three Ag4–
N2 test cases. In our work, the “superposition" results in Figs. 5, 6,
and 7 were based on expansion coefficients computed using Eq.
A15.

On the other hand, one can define a “conjugate” set of expansion
coefficients,

bm(0) = ΘΘΘ(0) · (X+Y)(m) (A16)

which can also produce the orbital rotations at t = 0,

ΘΘΘ(0) = ∑
m

bm(0)(X−Y)(m) (A17)

Combining Eqs. A11 and A17, one obtains

ΘΘΘ(0) ·ΘΘΘ(0) = ∑
ai

Θai(0)2 = ∑
m

am(0)bm(0) (A18)

Therefore, the relative weight for the contribution from each ex-
cited state is

pm(0) =
am(0)bm(0)
ΘΘΘ(0) ·ΘΘΘ(0)

(A19)

A3. RT-TDDFT Time-Evolution Following an Initial Weak-field
Perturbation

Beyond time zero, each electronic state component in Eq.5 is
going to evolve independently in a field-free environment. For the
m-th state, its X and Y amplitudes evolve with the frequency of
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ωm,98,99 leading to the following orbital rotation

ΘΘΘ(t) = ∑
m

am(0)
[
exp

(
−iω(m)t

)
X(m)+exp

(
iω(m)t

)
Y(m)

]
= ∑

m
am(0)cos

(
ω
(m)t
)
(X+Y)(m)

− i∑
m

am(0)sin
(

ω
(m)t
)
(X−Y)(m) (A20)

which can be plugged into Eqs. A6 and A7 to get the unitary
transformation and density matrix at a given time.

The corresponding Fock matrix is

F(t) =

 F(up)
oo FRe, T

vo − iFIm, T
vo

FRe
vo + iFIm

vo F(up)
vv

+O(ΘΘΘ2) (A21)

whose vo and ov blocks can be easily shown to be

FRe
vo = ∑

m
am(0)cos(ω(m)t)

[
ω
(m) (X−Y)(m)

−F(up)
vv (X+Y)(m)+(X+Y)(m) F(up)

oo

]
+O(ΘΘΘ2) (A22)

FIm
vo =−∑

m
am(0)sin(ω(m)t)

[
ω
(m) (X+Y)(m)

−F(up)
vv (X−Y)(m)+(X−Y)(m) F(up)

oo

]
+O(ΘΘΘ2) (A23)

The total dipole moment, ~µ(t), is dependent only on the real
part of the density matrix. As expected, it oscillates around ~µ(up),
the dipole moment of the unperturbed system

~µ(t) =~µ(up) +2∑
m

am(0)cos
(

ω
(m)t
)
~µ(0,m) (A24)

This underlies the standard practice of Fourier transforming the
dipole moments from a RT-TDDFT simulation within a weak field
to produce the LR-TDDFT absorption spectrum of a system.

Furthermore, since the vo-block of the time-evolving density
matrix in Eq. A7 are

Re(Pvo(t)) = ∑
m

am(0)cos
(

ω
(m)t
)
(X+Y)(m) (A25)

Im(Pvo(t)) = −∑
m

am(0)sin
(

ω
(m)t
)
(X−Y)(m) (A26)

their Fourier transforms lead to (X+Y)(m) and (X−Y)(m), whose
combination produces LR-TDDFT amplitudes (X and Y) of each
absorption peak. This constitutes the basis of “wavefunction”
analysis10,100,101 for excited states from RT-TDDFT simulations.

Given a set of orbital rotations, ΘΘΘ, the energy change from the

converged SCF solution is known to start from the second-order99

E(ΘΘΘ)−E(ΘΘΘ = 0)

=
1
2
[ΘΘΘ∗ ·A ·ΘΘΘ+ΘΘΘ ·A ·ΘΘΘ∗+ΘΘΘ ·B ·ΘΘΘ+ΘΘΘ

∗ ·B ·ΘΘΘ∗]+O(ΘΘΘ3)

=
1
4
[(ΘΘΘ+ΘΘΘ

∗) · (A+B) · (ΘΘΘ+ΘΘΘ
∗)− (ΘΘΘ−ΘΘΘ

∗) · (A−B) · (ΘΘΘ−ΘΘΘ
∗)]

+O(ΘΘΘ3) (A27)

where u ·M ·v is a short-hand notation for ∑ai,b j uaiMai,b jvb j.

Plugging in the orbital rotations in Eq. A20, the second-order
contribution to the RT-TDDFT energy in Eq. 14 is

E(t)−E(up)
0 = ∑

m,n
am(0)an(0)

×
[
cos
(

ω
(m)t
)

cos
(

ω
(n)t
)
(X+Y)(m) · (A+B) · (X+Y)(n)

+ sin
(

ω
(m)t
)

sin
(

ω
(n)t
)
(X−Y)(m) · (A−B) · (X−Y)(n)

]
= ∑

m,n
am(0)an(0)

[
cos
(

ω
(m)t
)

cos
(

ω
(n)t
)

ωmδmn

+sin
(

ω
(m)t
)

sin
(

ω
(n)t
)

ωmδmn

]
= ∑

m
a2

m(0)ωm (A28)

which clearly remains constant during a RT-TDDFT simulation.
This, together with higher-order terms that must also remain
constant, ensures that RT-TDDFT energy is conserved in a field-
free environment.
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