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Inverse problems continue to garner immense interest in the physical sciences, particularly in the context of controlling
desired phenomena in non-equilibrium systems. In this work, we utilize a series of deep neural networks for predicting
time-dependent optimal control fields, E(¢), that enable desired electronic transitions in reduced-dimensional quantum
dynamical systems. To solve this inverse problem, we investigated two independent machine learning approaches: (1) a
feedforward neural network for predicting the frequency and amplitude content of the power spectrum in the frequency
domain (i.e., the Fourier transform of E(¢)), and (2) a cross-correlation neural network approach for directly predicting
E(r) in the time domain. Both of these machine learning methods give complementary approaches for probing the
underlying quantum dynamics and also exhibit impressive performance in accurately predicting both the frequency
and strength of the optimal control field. We provide detailed architectures and hyperparameters for these deep neural
networks as well as performance metrics for each of our machine-learned models. From these results, we show that
machine learning approaches, particularly deep neural networks, can be employed as a cost-effective statistical approach

for designing electromagnetic fields to enable desired transitions in these quantum dynamical systems.

I. INTRODUCTION

Inverse problems arise in many domains of quantum dy-
namics, with quantum optimal control being one of the most
well-known examples. In the context of molecular systems,
the field of quantum optimal control! seeks to steer a chemi-
cal system from a known initial state to a desired target state
via an external field, E(¢), typically a tailored electromag-
netic pulse. Predicting the explicit time-dependence of E(¢) is
central to providing critical initial conditions for experiments
across multiple chemical physics domains including light-
harvesting complexes,”® quantum information processing,’”
laser cooling,'®!! and ultracold physics.!>!3 As such, the ca-
pability to fully harness these optically-driven systems has
tremendous potential to grow as we understand how to con-
trol the excited-state quantum dynamical processes that gov-
ern these systems.

Although several approaches and algorithms have been pro-
posed on optimizing quantum control fields (each with their
own purposes and advantages'*"!7), all of these prior ap-
proaches are iterative in nature and require complex numer-
ical methods to solve for these optimal control fields. Due
to the nonlinear nature of these dynamical optimization prob-
lems, the number of iterations and floating point operations

YElectronic mail: bryan.wong@ucr.edu; http://www.bmwong-group.com
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required by these algorithms can be extremely large, lead-
ing to extremely slow convergence (even for relatively simple
one-dimensional problemslﬁ’lg). Furthermore, when an opti-
mal control field for a new quantum mechanical system is de-
sired, the entire iteration process has to be re-started de novo
since the algorithm has no prior “memory” of previously con-
verged cases. Because of these computational bottlenecks, we
wondered whether machine learning, particularly deep neural
networks (DNNs), could offer a promising approach for ob-
taining solutions to this complex, inverse problem in quantum
dynamics.

In recent years, machine learning has emerged as a power-
ful tool in the physical sciences for finding patterns (particu-
larly those that evade human intuition) in high-dimensional
data. While the majority of machine learning efforts in
the chemical sciences have focused on equilibrium proper-
ties such as thermodynamic,lg‘m, structural, 222> and ground-
state properties”®28 (to name just a select few), considerably
less attention has focused on non-equilibrium dynamical pro-
cesses, such as the explicitly time-dependent optimal fields
discussed previously. As such, the use of machine learn-
ing in this largely unexplored application of quantum dy-
namics is a first step towards the design of machine-learned,
time-dependent fields for efficiently controlling directed elec-
tron/energy transfer in these complex systems.

To this end, we present the first machine learning ef-
fort for solving time-dependent quantum control problems
in reduced-dimensional chemical systems. These dynamical
time-dependent systems pose a unique challenge for conven-
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tional machine learning techniques, and we investigate a vari-
ety of approaches for predicting optimal control fields, E(t),
in these systems. The present paper is organized as follows:
Section II briefly outlines the basic concepts of quantum con-
trol and the requisite datasets used by the machine learning
approaches in our work. Section III describes a neural net-
work approach for predicting the frequency and amplitude
content of the power spectrum in the frequency domain (i.e.,
the Fourier transform of E(z)), whereas Section IV provides
a cross-correlation neural network approach for directly pre-
dicting E(¢) in the time domain. Finally, Section V concludes
with a brief discussion and perspective look at potential future
applications of our machine learning approach.

II. THEORY AND COMPUTATIONAL METHODOLOGY
A. Brief Overview of Quantum Control

Since the main purpose of this work is to harness ma-
chine learning techniques for controlling dynamic chemical
systems, we only give a brief overview of quantum optimal
control and point the interested reader to several topical re-
views in this area.”=32 For chemical systems, the quantum op-
timal control formalism commences with the time-dependent
Schrodinger equation for describing the temporal dynamics of
nuclei, which, in atomic units is given by

;9 E 1

i) = =555 V)~ BWED) | Wl ()
In the equation above, x denotes the reduced coordinate
along a chosen reaction path,>*3% m is the effective mass
associated with the molecular motion along the reaction
path,*”38 V(x) is the Born-Oppenheimer electronic energy of
the molecule, f1(x) is the dipole moment function, E(t) is the
time-dependent external electric field, and y/(x,?) represents
the probability amplitude for the motion of the nuclei along
the reduced coordinate path. Both V (x) and p(x) can be ob-
tained from a standard quantum chemistry calculation by car-
rying out a relaxed potential energy scan.’%*0

With x and V (x) properly chosen/computed, Eq. (1) allows
us to mathematically answer the question: “Given an electric
field E(t), how does an initial state, yo(x,# = 0), evolve af-
ter some final time T has elapsed?” However, as mentioned
in the Introduction, the field of quantum optimal control is
an inverse problem and instead seeks the answer to the “in-
verse” question: “If we want to reach a desired final state
Wy—1(x,t =T) attime T (after N — 1 propagation steps), what
does the functional form of E(t) look like?” To be more math-
ematically precise, quantum control seeks the functional form
of an external electric field, E(¢), that maximizes the func-
tional J [Wy_1, E] given by

oo 2 T

£l = [ _viewwa@dx —a [ B0 @
where Yy is a known desired final target wavefunction (given
by the user), and yy_; is obtained after applying N — 1 suc-
cessive propagation steps of the time-dependent Schrédinger

J[WNfla

2

equation (i.e., Eq. 1). It should be noted that the first term in
Eq. (2) is essentially a measure of the similarity of the final
target and the propagated wavefunction. The second term in
Eq. (2) is a fluence and acts as a penalty to prevent unphys-
ically large values of the electric field, where ¢ is a positive
constant (set to 0.001 in this work) to be chosen by the user.
Providing accurate and efficient answers to this inverse ques-
tion is the ultimate goal of the machine learning approaches
described in this work.

B. Generation of Datasets Used for Machine Learning

To generate the data required for our machine learning ap-
proaches, we utilized the NIC-CAGE (Novel Implementation
of Constrained Calculations for Automated Generation of Ex-
citations) program developed in our previous work.*! Given a
potential, V (x), this program iteratively calculates a numerical
representation of E(¢) that enables a ~100% transition prob-
ability between two desired electronic transitions (which, in
this work, are the ground and first-excited state, schematically
shown in Figs. la and 1b. In simple terms, our NIC-CAGE
program can be seen as a black box that accepts potential func-
tions, V (x), as input and subsequently outputs optimal electric
fields, E(t), corresponding to the inputted potentials. It is im-
portant to note that the optimal electric field, E(z), can also
be represented in the frequency domain as a power spectrum,
o (), by applying a fast Fourier transform (FFT) to E(¢) (cf.
Fig. 1c). In this work, we seamlessly switch between the time
and frequency domains to provide different machine learning
approaches for predicting optimal control fields in these dy-
namic systems.

While the NIC-CAGE program*' can obtain transition
probabilities with notable accuracy (typically over 97%), it
can take hundreds of iterations (or longer) to converge to the
final electric field for each potential. Moreover, as mentioned
in the Introduction, when a new potential is inputted, the it-
eration process has to be re-started anew since the program
has no prior memory of previously converged cases. For these
reasons, the prediction of optimal electric fields for a general
potential energy function is a natural application for a data-
driven solution. To generate a large dataset for our machine
learning approaches, a vast number of potentials were gen-
erated as input to the NIC-CAGE program to produce corre-
sponding optimized electric fields. These potential-field pairs
served as the training, validation, and test sets for our DNNs.

Our complete dataset consisted of 36,118 randomly gener-
ated potential functions, V(x), each of which was evaluated
across 192 points in one dimension. For all of these potential
functions, the effective mass, m, and dipole moment, p(x),
were set to 1 and x, respectively. To enable statistical flexibil-
ity in this dataset, each potential was constructed by the sum-
mation of three Gaussian functions with varying amplitudes,
widths, and centers, according to the following equation:

3
—- A exp[ ZA‘?)] ()

Specifically, our dataset was created by randomly sampling
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Figure 1: Schematic example of (a) a potential well, V(x), as
a function of intermolecular distance x. The horizontal
dashed lines denote the energy levels of the ground and first
excited state, and their respective probability wavefunctions,
|y (x)|?, are depicted as blue curves above the energy levels;
(b) the optimal electric field E(¢) required to excite the
transition between the ground and the first excited state; (c)
the corresponding power spectrum ¢ (@) as a function of

frequency m, obtained from the fast Fourier transform of
E(r).

each of the parameters with the following ranges: amplitude
A € [1, 10], center u € [-3, 3], and width A € [0.5, 2]. As
such, each potential function can be fully described by nine
randomly generated parameters. In addition, we also visual-
ized this parameter space and found that all parameters were
evenly distributed within the selected range, indicating that
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the randomly generated potential functions sufficiently span
this phase space (cf. Fig. 2). Each of the 36,118 potential
functions was inputted into the NIC-CAGE code, which re-
sulted in an optimized electric field evaluated across 30,000
points in the time domain.
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Figure 2: Plot of all 36,118 potentials sampled in this work.
The center region of the V (x) space is densely packed and
fully sampled, indicating that the full set of these potentials
sufficiently explores this phase space. The side regions of the
figure are not filled by the potential energy curves since the
range of the Gaussian centers, [, were intentionally kept
small to prevent the wavefunctions from spreading outside
the x € [-8.0, 8.0] range.

Of the 36,118 potentials examined in this work 26,000 were
used for the training set, 5,000 were utilized for the validation
set, and the remaining 5,118 potentials were designated for
the test set. We ensured that the number of potentials used
in the training, validation, and test sets were exactly the same
for each training instance to ensure that the results could be
compared.

C. General Neural Network Architectures

We employed feedforward neural networks (FNNs) for this
work due to their simplicity as well as their ability to learn
complicated mappings between input and target spaces. The
FNN architectures used here can be classified as a deep net-
work architecture, with the depth in each network arising from
the stacking of multiple hidden layers. Each hidden layer ac-
cepts output from the previous layer as input, and returns a
non-linear activation as the output. It is worth nothing that the
predictive accuracy of the FNNs can be sensitive to several
key hyperparameters and training methods, such as the num-
ber of hidden layers, the number of nodes in each layer, the
learning rate, and the regularization method. As such, multi-
ple models and parameters were tested in this work (i.e., we
also tested convolutional neural networks but found that the
best results were obtained with FNNs), and we only present
FNN architectures and parameters in Sections III and IV with
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Table I: Hyperparameters and settings of the FNNs used for
predicting the amplitude and frequency of the optimized
E(1).

Output purpose Amplitude Frequency
Neural network structure Feedforward Feedforward
Activation ReLU ReLU
Learning rate 0.0001 0.0005
Loss function MSE MSE
Regularization L2 L2
Regularization coefficient 0.0001 0.0005
Mini-batch size 1024 1024
Number of hidden layers 4 4
Number of units in hidden layers 96, 64, 32,16 96, 64, 32, 16

the best performance.

I1l.  NEURAL NETWORKS FOR PREDICTING THE
RESONANCE FREQUENCY AND AMPLITUDE, ¢(w)

In this section, we describe our first machine learning ap-
proach, which utilizes FNNs to predict the frequency and am-
plitude of the power spectrum, ¢(®), in the frequency do-
main. As briefly mentioned in Section II. B., the power spec-
trum is obtained by a standard numerical procedure in which
a fast Fourier transform of a properly converged E(¢) is first
computed, followed by taking its absolute value. It is worth
mentioning that because of the last absolute value operation,
the phase of the original electric field is inherently lost and,
therefore, only the amplitude and frequency were predicted
with our FNNs in this section. To this end, we utilized two
independent FNNSs to separately learn the frequency and am-
plitude, and a schematic of the FNN architecture used for both
of these predictions is shown in Fig. 3.

Output: Amplitude or Frequency

Input layer
Potential V(x)
192 units

4 hidden layers
Activation: ReLU
96, 64, 32, 16 units

Output layer
Activation: ReLU
Amplitude or frequency
1 unit

Figure 3: Architecture of the FNN used to predict the
amplitude and resonance frequency of the power spectrum,
(). The FNN starts with an input layer composed of 192
units (which correspond to the potential, V (x), evaluated
across 192 points), followed by four hidden layers of various
sizes. The output layer is composed of 1 unit to predict either
the amplitude or resonance frequency of 6 (®).

Upon closer inspection of the original test set used in this

4
Table II: FNN metrics for predicting the amplitude and
frequency, respectively.

Output Amplitude Frequency
Number of epochs for best performance  ~1000000  ~1000000
Loss on original test set 509.1925  286.1925
R? for pruned test set 0.6036 0.9814

work, we noticed that 66 of the optimal E(¢) fields had ex-
tremely large amplitudes (i.e., these specific electric fields
were characterized by amplitudes that were an order of magni-
tude larger than the average E(¢) in the test set). Since electric
fields with these large amplitudes are difficult to construct in a
realistic experiment, we eliminated these 66 data points (they
account for only 1.29% of the 5,118 data points), and we des-
ignated this dataset as our pruned test set. The input for each
of our independent FNNs was the potential V (x) (consisting
of 192 data points), whereas the output was the single value of
the frequency or amplitude, as depicted in the last step of Fig.
3. Both of these two FNNs were constructed and trained us-
ing a Tensorflow* backend with GPU acceleration powered
by NVIDIA CUDA libraries.** In each FNN model, all of the
weight matrices were initialized with random values satisfy-
ing a normal distribution, while all the biases were initialized
to 0.001. We chose our loss function based on the definition
of the mean square error (MSE), given by the following equa-
tion:

Zi'vzl (}’tme - ypred)2
N

loss = 4@
where N is the mini-batch size, yyue is the true fre-
quency/amplitude of o(®) obtained from the NIC-CAGE pro-
gram, and ypreq is the frequency/amplitude predicted by the
machine learning algorithm. An L2 regularization of the
weights was applied to prevent overfitting, and the built-in
Adam optimizer was utilized. The training, validation, and
test sets were kept the same size, and after several tests, we
found that the optimal learning rates and regularization co-
efficients were different for these two FNNs, while all other
optimal hyperparameters had the same values. Table I sum-
marizes the optimal hyperparameters used in each of these
FNNs.

Fig. 4 depicts the results of our machine-learned ampli-
tudes and frequencies. The diagonal line in each plot rep-
resents a perfect match between the machine-learned predic-
tions and true values (obtained with 1,000,000 epochs). To
further quantify this performance, we computed a coefficient
of determination (R?) for measuring the similarity between
Ypred and Yiye:

ngzl (ypred - ytrue)2

RP=1-
Z{'V:l (ypred - )”\pred)2

(&)

where N is the batch size, and $jeq is the average of all the
Ypred Values in the batch. A perfect agreement between ypred
and yyye yields an R2 value of 1. As visually shown in Fig. 4
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and from the R? values listed in Table II, our machine learn-
ing approaches were more accurate in predicting the reso-
nance frequency compared to the amplitude. This difference
in performance suggests that the machine-learned mapping
from the potential to the amplitude is much more compli-
cated than the mapping from the same potential to the reso-
nance frequency. More concretely, the frequency has a more
clear/intuitive physical meaning, which is equal to the energy
difference between the ground- and first-excited state. How-
ever, the amplitude is much more sensitive to the underlying
shape of the potential, V (x), and this sensitivity contributes to
the error in predicting the amplitude with our neural network.
This difference in predictive performance can also be seen by
comparing the figures of the R? values vs. the epoch number
on the validation set. In particular, the R? values for predict-
ing the frequency show a smooth progression, while that for
the amplitude fluctuates significantly as shown in Figs. 5c
and 5d. We also investigated the sensitivity of our results to
the size of our training set and found that the accuracy of the
machine-learned predictions decreased with the training set
size. Specifically, when the training set was reduced to only
10,000 potentials, the R? values for predicting the resonance
frequency and amplitude in the same validation set decreased
t0 0.93 and 0.41, respectively. As such, these statistics showed
that a sufficiently large training set was necessary to enable ac-
curate machine-learned predictions for these optimal control
fields.

We also explored the option of predicting the entire power
spectrum instead of just the primary resonance frequency and

400 (@)

200+

Predicted Amplitude (a.u.)

0 I 260 I 400
True Amplitude (a.u.)
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amplitude. Several attempts were made along those lines,
including reducing the size of the output to 800 rather than
15,000 (since the resonance peaks typically had small fre-
quencies), choosing a cross-entropy loss function instead of
the MSE, fixing the lineshape of the output to be a Gaussian
or symmetric Lorentzian to reduce the number of units (i.e., to
3) required in the output layer to predict the power spectrum,
etc. Unfortunately, all of these attempts failed in predicting
the correct amplitude of the power spectrum, although some
of them were quite successful in predicting the resonance fre-
quency. We attribute these failures to the sharpness of the
resonance peak in the power spectrum. Due to the limited
resolution inherent to the discrete 6(®) data, each peak only
consisted of a few data points and, therefore, the linewidth
was not well-resolved. In other words, since the linewidth
of the resonance peak in ¢(®) was inherently imprecise, the
FNN was unable to converge to a proper mapping of the power
spectrum. In addition, we also tested one-dimensional convo-
lutional neural networks (CNNs) for predicting the frequency
and the amplitude as well as the entire power spectrum. Un-
fortunately, the results obtained with CNN's were less accurate
than those obtained with the FNN approaches used here. Be-
cause of these limitations, we investigated other FNN archi-
tectures to learn mappings between V (x) and E(¢) in the time
domain. This is motivated by the fact that if E(¢) can be accu-
rately predicted using FNNs in the time domain, o(®) could
also be accurately resolved (since o (®) is merely the Fourier
transform of E(¢)), and we discuss these strategies in the next
section.

800 (b)

600 -

400+

2007 ¢

Predicted Frequency (a.u.)

0 200 400 600 800
True Frequency (a.u.)

Figure 4: Density plots of the machine-learned predicted vs. true (a) amplitudes and (b) frequencies. The diagonal line in each
plot represents a perfect match between the machine-learned predictions and true values. Both plots were obtained with

1,000,000 epochs.
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Figure 5: Plot of loss vs. number of epochs for FNN predictions of (a) the amplitude and (b) resonance frequency. R” values for
the FNN-predicted (c) amplitude and (d) resonance frequency. All plots were generated from the validation dataset.
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IV. NEURAL NETWORKS FOR DIRECTLY PREDICTING
THE ELECTRIC FIELD, E(r)

While Section III focused on predicting the power spec-
trum, o(®), in the frequency domain, we now investigate
whether the electric field in the time domain, E(r), can be
predicted with a machine learning approach. Predicting these
dynamic fields as an explicit function of time presents unique
challenges for machine learning approaches. In particular,
while o(®) in the frequency domain contains no phase in-
formation, E(¢) in the time domain does contain an explicit
phase dependence (cf. Fig. 1b) that requires additional care,
which we discuss in further detail below.

To predict E(r) as an explicit function of time, we con-
structed an FNN with three hidden layers, which was trained
with the same GPU-accelerated Tensorflow*® backend and
NVIDIA CUDA libraries* used in Section III. Our FNN, de-
picted in Fig. 6, was designed such that the number of units
increases as data flows towards the output layer. Specifically,
the input layer was composed of 192 units (which correspond
to the potential, V(x), evaluated across 192 points), followed
by three hidden layers having 300, 500, and 750 units, respec-
tively. The output layer, which outputs the electric field as
a function of time, was composed of 1,000 (or fewer) units.
Similar to the FNN used in Section III, the activation for both
the input and hidden layers was chosen to be a ReLU function
without any leaky or bounded modification. Since the output
array is expected to be sinusoidal with a zero base, the acti-
vation of the output layer was chosen to be a tanh function to
enable the output of negative values. All of the weight ma-
trices were initialized with random values satisfying a normal
distribution, while all the biases were initialized to 0.001. We
chose the same loss function (cf. Eq. (4)), L2 regularization,
and Adam optimizer described previously in Section III for
our FNN. Based on several tests of our data, we found that
a regularization coefficient 0.001 was optimal for balancing
regression speed and overfitting.

Output: Electric Field E(t)

Cross-correlation
Maximum phase
shift: 150 units

Input layer
Potential V(x)
192 units

3 hidden layers Output layer

Activation: RelLU Activation: tanh
1) 300, 400, 500 units  Electric field E(t)
2) 300, 450, 600 units 1) 600, 2) 800,
3) 300, 500, 750 units 3) 1000 units

Figure 6: Architecture of the FNN used to predict the electric
field, E(¢). The FNN starts with an input layer composed of
192 units (which correspond to the potential, V (x), evaluated
across 192 points), followed by three hidden layers of various
sizes. The output layer is composed of 1,000 (or fewer) units
and is directly interfaced with a cross-correlation algorithm
to predict the final electric field, E(¢).

Physical Chemistry Chemical Physics

For the specific case of excitations from the ground to the
first-excited state, we noticed that the optimal electric field,
E(t), could be closely approximated with a sinusoidal func-
tion (with a single frequency and amplitude) regardless of
the potential function used. Because of this periodicity, the
time-dependent trends in these electric fields could be accu-
rately captured by only considering a smaller portion of the
entire periodic signal. To this end, we only extracted 1,000
(or fewer) representative data points within the entire 30,000-
point electric field for our output set. This simplification al-
lowed us to train our machine learning models more easily due
to constraints in holding this large amount of data in RAM, the
immense computing time, and associated GPU resources.

In the same spirit of reducing the number of physically rel-
evant parameters needed for our machine learning efforts, we
also explored whether the transition probability was sensitive
to the specific phase factors or amplitudes directly obtained
from the NIC-CAGE code. To test the first assumption, we
inputted several electric fields with different phase shifts, ¢
(but having the same optimized frequency and amplitude that
gives the desired transition), as an initial guess into the NIC-
CAGE code (cf. Fig. 7a). All of these phase-shifted elec-
tric fields gave a transition probability close to unity (with
the NIC-CAGE code exiting immediately without further it-
erations), indicating that the transition probability was not de-
pendent on the phase. However, when we tested the second as-
sumption by inputting electric fields with different amplitudes
as an initial guess into the NIC-CAGE code (cf. Fig. 7b), we
observed a completely different phenomenon. Specifically, all
of these initial conditions resulted in several subsequent iter-
ations that eventually reverted/converged to the same optimal
E(t) form (cf. Fig. 7c). Taken together, both of these bench-
mark tests indicate that the optimal E(¢) is insensitive to the
phase but highly dependent on the amplitude. As such, these
tests allow us to construct a streamlined FNN using a cross-
correlation technique for predicting E(¢) in the time domain
(without having to directly predict the phase factor, since it
has no physical effect on the dynamics), which we describe in
further detail below.

For the ground to first-excited state transitions examined
in this work, each of the optimal control fields, E(¢), can
be nearly characterized by a single amplitude, frequency, and
phase, ¢. Since we showed previously that the transition prob-
ability is insensitive to @, a conventional neural network may
be unable to learn any patterns that map between V (x) and ¢,
since the phase is arbitrary and has no physical meaning. To
sidestep this difficulty, we used a cross-correlation approach
to shift the predicted E(¢) by a series of different phase values.
In essence, this generates multiple E(¢) functions with exactly
the same frequency and amplitude but with a variety of differ-
ent phases. To this end, 150 shift-matrices were constructed
by shifting the identity matrix along rows with a “roll” func-
tion. To more concretely illustrate how we automated these
phase shift operations in our machine learning approach, we
denote E(t) as a row vector given by
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Figure 7: (a) Optimized electric field, E(¢), with various phase shifts, ¢. The blue data points denote the optimized E(z)
obtained directly from the NIC-CAGE code. The red curve is the same E(¢) with a phase shift of 71/2, and the green curve is
E(r) with a phase shift of 7. When each of these electric fields are used as initial guesses for propagating the time-dependent
Schrodinger equation, all of them gave a transition probability close to unity (which shows that the transition probability is
insensitive to the phase, @). (b) Optimized electric field, E(z), with various amplitudes. The blue data points denote the
optimized E () obtained from the NIC-CAGE code, and the red and green curves denote the same E(¢) with amplitudes
multiplied by 2 and 0.5, respectively. When each of these electric fields were used as initial guesses for time propagation, all of
them reverted/converged back to the E(¢) with the original amplitude shown in panel (c), which indicates that the transition
probability depends critically on the electric field amplitude. (d) Power spectra, 6 (@), of the various E(t) fields depicted in (a),
showing that they coincide with each other, as expected.

of E(¢) can be “rolled” or shifted as follows:

T

T E1000\ E 01 ...00
Ex E | = A . ®
E(t) = : 6 : : . :
(1) : (6) Eooo 00 01
Eg99 Eo9 E1000 10...00
E1000

Using this approach, the predicted E(¢) can be shifted along
the time axis by 0 to 150 increments when multiplied by the
matrix in Eq. 8. As such, each output array was spanned to a
set of 150 arrays with exactly the same frequency and ampli-

Therefore, E(¢) can be trivially written as

T T tude, but with different phases, ¢. We also tested the accuracy

E, E, 10..00 of this approach by using a smaller number of shift matrices
E E 01 00 but found that at least 100 of these arrays were needed to suffi-

: = -l - (7)  ciently sample the entire phase space of ¢ € [0, 27] (i.e., each
Eog9 Eogo 00 10 new array shifts the phase, @, by at least 27r/100, and 100 or
E1000 E1000 00..01 more arrays were necessary to ensure that the phase within

the interval [0, 27r] was sufficiently represented to give accu-
rate results). With these 150 shift matrices in hand, the MSE
By shifting the diagonal entry of the identity matrix, the phase loss was computed for each prediction, and when the phase
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Table III: Hyperparameters and settings of the FNN used for
predicting E(¢) in the time domain.

Feedforward
ReLU (hidden layers)
tanh (output layer)

Neural network structure

Activation

Learning rate 0.0001
Loss function MSE
Regularization L2
Regularization coefficient 0.001
Mini-batch size 1024
Multiplicative pre-factor of E(t) 80

Maximum phase-shift in cross-correlation 150 increments

Table IV: FNN metrics for predicting E(¢) in the time
domain with the 600-, 800-, 1000-output-layer-unit models.

Number of output layer units 600 800 1000
Number of epochs for best performance ~30,000 ~40,000 ~50,000
Loss on original test set 25.0653 44.5876 68.2800
R? for amplitude on pruned test set 0.3702 0.2594 0.1485
R? for frequency on original test set 0.9550 0.9381 0.9370

of the prediction matched that of the true E(z), the MSE loss
was minimized. The weights and biases of the neural network
were then updated using a back-propagation algorithm based
on the minimum loss value. It is worth noting that our cross-
correlation approach was only used to train the neural net-
work, and after the neural network was successfully trained,
the cross-correlation procedure was no longer needed to pro-
cess/predict new data.

We optimized some of the hyperparameters used by our
cross-correlation neural network approach for the training set,
and the optimal learning rate was chosen to be 0.0001. A
mini-batch of 1,024 input arrays was chosen from the train-
ing set for each training epoch, and the training set was fully
shuffled after each epoch. Since the electric fields outputted
by the NIC-CAGE program had amplitudes on the order of
~0.01, all of the electric fields were multiplied by 80 to avoid
numeric underflows and allow the weights and biases to con-
verge faster in our machine learning algorithms. We chose a
scaling factor of 80 to ensure that the processed electric field
would not exceed 1, since the tanh function used in our output
layer has a range of [-1, 1]. Table III summarizes our selec-
tion of hyperparameters and settings used to predict E(¢) in
the time domain.

To reduce the large RAM requirements and computational
effort for our machine learning algorithms, we reduced the
number of units for predicting E(¢) to 600 and 800 from our
original 1000-output-layer-unit model. The number of hid-
den layer units were also reduced to 300, 400, 500, and 300,
450, 600, while the size of the input layer remained the same.
This reduction in the number of points had a negligible effect
on predicting the frequency of E(z), as shown in Figs. 8 a-
c. In these plots, the predicted E(t) is shifted with the proper
phase to allow a more straightforward comparison. Both the
frequency and amplitude agree well, and these results show
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that our cross-correlation approach is able to address the pre-
vious issues associated with the random phase of E (7). Simi-
lar to the tests carried out in Section III, we also investigated
the sensitivity of our results to the size of our training set and
found that the accuracy of the machine-learned predictions de-
creased with the training set size. Specifically, when the train-
ing set was reduced to only 10,000 potentials, the R> values
for predicting the resonance frequency and amplitude in the
same validation set decreased to 0.89 and -0.02, respectively.
Similar to our findings in Section III, these statistics showed
that a sufficiently large training set was necessary to enable ac-
curate machine-learned predictions for these optimal control
fields, even in the time domain. Nevertheless, it is still worth
noting that when the cross-correlated FNN approach was ap-
plied to E(¢) fields with large amplitudes (which were origi-
nally pruned from the test set as discussed in Section III), the
machine learning algorithm was able to still accurately pre-
dict the resonance frequency, as shown in Fig. 8(d), which
indicates the robustness of this approach.

To quantitatively demonstrate that the machine-learned and
true E(¢) are in excellent agreement, a fast Fourier transform
was applied to both of these data sets. The amplitude and fre-
quency of o(w) were then compared for each data point in
the validation and test set. As before, we computed R? values
(cf. Eq. 5) for each of our 600-, 800-, and 1000-output-layer-
unit models, and all of these configurations showed similar R?
statistics, which are summarized in Table V. The loss and R?
of the training and validation sets were recorded every 1,000
epochs. The figures in the Supplementary Information show
that the 1000-output-layer-unit DNN was sufficiently trained
at ~50,000 epochs, and further training introduces overfitting
(~30,000 and ~40,000 epochs were required for the 600- and
800-output-layer-unit DNN to reach a minimal loss). It is also
worth mentioning that batch normalization and dropout ap-
proaches (among others) are machine-learning techniques that
could also be used to prevent overfitting of the data; however,
since we did not observe any severe overfitting of our training
set, we did not employ these techniques in our work. Never-
theless, the R” for predicting the frequency on the validation
set converged to an impressive ~0.95 value for all three mod-
els (cf. Supplementary Information), and both Figs. 8 and 9
show that reducing the number of units in the layers of our
cross-correlation neural network approach did not adversely
affect its predictive performance.
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Figure 8: Comparisons of true (red) and machine-learned predicted (blue) E(¢) fields. The electric fields correspond to the
same potential, but with (a) 600, (b) 800, and (c) 1,000 units. (d) True (red) and machine-learned (blue) E(¢) for a different
potential characterized by a large amplitude. When the true E(¢) has a much larger amplitude, the machine learning algorithm
is able to still accurately predict the resonance frequency but underestimates the amplitude.

In addition, we also investigated the effect of using only
2 hidden layers to predict E(¢) with 1,000 units. As shown
in the Supplementary Information, the density plot obtained
with a 2-hidden-layer FNN was more sparse and spread out.
Furthermore, the R? values for predicting the frequency on
the validation set never exceeded 0.87, showing that the 2-
hidden-layer neural network underfitted the data (cf. Supple-
mentary Information). On the other hand, we also recognized
that increasing the number of hidden layers beyond 3 would
possibly improve the accuracy of our neural network; how-
ever, this modification would also incur an immense compu-
tational cost. Specifically, training our 3-hidden-layer FNN
to predict E(¢) required ~256 GB of RAM and 20 hours on
high-performance GPUs. Further training with additional lay-
ers would require even more memory and GPU time, which
we felt was impractical since we already obtained impressive
R? values greater than 0.95 with our 3-hidden-layer FNN. As
such, these benchmark configuration tests indicated that the
use of 3 hidden layers in our neural network was sufficient and
practical for accurate predictions. Most importantly, the den-
sity plots in Fig. 9 show that both the resonance frequencies
and amplitudes predicted by our cross-correlation neural net-
work approach demonstrate an impressive agreement with the
brute-force (and computationally expensive) quantum control
results obtained with the NIC-CAGE program.

V. CONCLUSION

In conclusion, we have presented the first machine learn-
ing effort for solving explicit time-dependent quantum con-
trol problems in reduced-dimensional chemical systems. Us-
ing a variety of deep neural networks, we have shown that
the prediction of optimal control fields is an inverse problem
that naturally lends itself to a machine learning approach. In
terms of efficiency, we have shown that our machine learning
approach only requires knowledge of the potential, V(x), to
yield a reliable prediction of an optimal control field, E(t).
In other words, a user can simply input a variety of poten-
tials into our neural network model to obtain optimal control
fields without having to do a computationally expensive time-
dependent quantum control calculation. In terms of accuracy,
we have shown that deep neural networks can predict these
optimal control fields within 96% accuracy by directly learn-
ing the underlying patterns between V (x) and E(¢).

While this work focused on reduced-dimensional quantum
systems, we anticipate that the machine learning techniques
explored in this work could be applied to other applications
of increasing complexity. For example, we envision that some
of the machine learning tactics used here could serve as a first
step towards solving more complex quantum dynamics prob-
lems in higher dimensions. The use of reduced-dimensional
techniques to address full 3D quantum dynamics problems is
similar in spirit to ongoing efforts that use machine-learned,
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Figure 9: Density plots of the predicted and true amplitude for the (a) 600-, (b) 800-, and (c) 1000-output-layer-unit model,
respectively. Density plots of the predicted and true resonance frequency for the (d) 600-, (e) 800-, and (f)
1000-output-layer-unit model, respectively. The diagonal line in each plot represents a perfect match between the

machine-learned predictions and true values.

ground-state, 1D exchange-correlation functionals*>* for full
three-dimensional chemical problems.*® Finally, we also an-
ticipate that the machine learning techniques used here could
be harnessed to predict optimal electric fields for other higher-
lying transitions, which are known to exhibit more complex
patterns in the time and frequency domains.*! In particu-
lar, cross-correlation neural network approaches, which were
used to overcome problems associated with the random phase
of E(t), could be useful in (1) predicting optimal electric fields
for other higher-energy excitations in the time domain or (2)
enabling the prediction of the full absorption/emission spectra
of molecules since the absorption spectra is merely the Fourier
transform of E(¢). Taken together, these machine learning
techniques show a promising path towards cost-effective sta-
tistical approaches for designing control fields that enable de-
sired transitions in quantum dynamical systems.
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