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Polyhydroxyalkanoates (PHAs) represent an emerging class of biosynthetic and biodegradable
polyesters that exhibits a considerable potential to replace petroleum-based plastics towards a
sustainable future. Despite the promise, general structure-property mappings within this class of
polymers remain largely unexplored. An efficient exploration of this vast chemical space calls for
the development and validation of predictive methods for accurate estimation of a diverse range of
properties for PHA-based polymers. Towards this aim, here we present and validate results of our
molecular dynamics (MD) simulations based approach aimed at predicting glass transition tem-
peratures (Tg) of PHA-based polymers. Since generally-available and widely-used polymer force-
fields exhibit a relatively poor performance for Tg predictions, we developed a new forcefield by
modifying the polymer consistent force field (PCFF) via refining a selected set of torsion potentials
of the polymer backbone using accurate density functional theory (DFT) computations. After care-
fully assessing the dependence of critical simulation parameters, such as, polymer chain length,
number of polymer chains, supercell size, thermal quenching rate used in the simulation, appli-
cability and transferability of the modified PCFF (m-PCFF) force-field is demonstrated by directly
comparing the computed Tg predictions of various polymers with different chemistries, polymer
side chain lengths and functional groups forming the polymer side chains against the respective
experimentally measured values. Furthermore, transport properties such as self-diffusion co-
efficient and viscosity are computationally determined and their well-known correlations with the
target property is demonstrated. Lastly, we employed the developed approach to predict Tg values
for a number of yet-to-be-synthesized PHA-based polymers with a diverse set of functional groups
in the polymer side chain. The results are further rationalized by correlating the predicted Tg val-
ues with the inter-chain H-bond formation tendencies of the different side chain functional groups.
This work represents an important first step towards computationally guided design of PHA-based
functional polymers and opens up new directions for a systematic investigation of composition-
and configuration-dependent structure-property relationships in more complex binary and ternary
copolymer systems.

1 Introduction
Plastics are ubiquitous in our daily life, so much so that a world
without plastics is unimaginable today. The use of plastics is
growing at an unprecedented rate and as of 2017 an estimated
total of 8300 million metric tons of virgin plastics have been pro-
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duced.1 Only a tiny fraction of all the plastics produced (∼9
%) is currently being recycled and much of the remaining ends
in landfills or oceans.1 While plastic products exhibit many fa-
vorable properties such as lightweight, water resistance, flexibil-
ity, strength, durability, lowcost, and electrical and thermal insu-
lation, most are non-renewable, non-degradable and extremely
harmful to the ecosystem.2,3 Thus there is a pressing need to
discover alternative polymeric materials which are biodegradable
and can be synthesized without taxing the environment.

Polyhydroxyalkanoates (PHAs) are one such class of biodegrad-
able polyesters that are naturally produced by microorganisms,
such as cyanobacteria, as a reserve of energy and carbon stor-
age.4,5 Owing to available chemical diversity within PHAs, this
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class of polymers can, in principle, exhibit a wide range of tun-
able properties such as glass transition temperature (Tg), melt-
ing temperature, and mechanical properties, including Young’s
modulus, tensile strength, % elongation at break, yield strength
etc.6–9 In fact, the polyesters and related classes of polymers have
already shown a potential for applications in a range of diverse
fields, including pharmaceutical, biomedical, and packaging in-
dustries.10–12 However, barring a handful of specific chemistries,
the vast chemical space available in PHAs remains largely unex-
plored and untapped.

While a high throughput exploration effort that is based en-
tirely on an experimental trial-and-error-based route in search
of PHA chemistries with targeted functionalities is unlikely to be
successful, if at all practical, first principles based quantum me-
chanical computations still remain much too expensive to study
structure-property relationships in polymer chemical spaces with
candidates reaching far beyond millions. Towards this end, atom-
istic simulations based on classical force fields (FFs) offer an al-
ternative route, with a manageable tradeoff between computa-
tional cost and predictive accuracy, to explore a wide range of
PHA chemistries in a systematic manner. While molecular dynam-
ics (MD) simulations based on FFs have been widely and success-
fully used in the past to study a variety of polymer properties for
a diverse range of chemistries13,14, the parametrized FFs that are
employed to describe details of the underlying potential energy
surface for a particular chemistry often suffer from poor general-
izability and, therefore, are non-transferable, as such. Thus, the
applicability of a given FF needs to be carefully validated before
one can employ such MD simulations to make predictions on new
chemistries and start exploring general chemical trends across a
wide range of chemistries.

As a first step in this direction, we evaluate and compare per-
formance of generally-available and widely-used polymer FFs to-
wards the prediction of glass transition temperature (Tg)—a key
functional property dictating the thermomechanical behavior in
polymers15. Subsequently, develop a new forcefield by modifying
the polymer consistent force field (PCFF) via refining a selected
set of potential energy contributions describing the polymer back-
bone using ab initio density function theory (DFT) computations.
We then assess the dependence of all critical simulation param-
eters, such as polymer chain length, number of polymer chains,
supercell size, thermal quenching rate, on the predicted Tg. Fur-
ther, we demonstrate the applicability and transferability of the
developed FF by directly comparing the computed Tg predictions
of various polymers with different chemistries, polymer side chain
lengths and functional groups forming the polymer side chains
against the respective experimentally measured values. As an ad-
ditional validation, well known correlations of certain transport
properties such as self-diffusion coefficient and viscosity with the
target property are also demonstrated. Finally, we employed the
developed approach to predict Tg values for a number of yet-to-
be-synthesized PHA-based polymers with a diverse set of func-
tional groups in the polymer side chains and show that the results
of the simulations can be rationalized by correlating the predicted
Tg with the polarizability and inter-chain H-bond formation ten-
dencies of the different side chain functional groups.

2 Methodology
Three most commonly used FFs for organic polymer MD simula-
tions, namely, the CHARMM General Force Field (CGenFF),16,17

the Generalized Amber Force Field (GAFF),18,19 and the Polymer
Consistent Force Field (PCFF)20 were considered to evaluate Tg

values for a prototypical PHA polymer poly(4-hydroxybutyrate)
or P4HB. The chemical structure of the polymer repeat unit for
P4HB, along with all other PHA polymers considered in this study,
is shown in Figure S1 of the Supplementary Information ac-
companying this manuscript. Using each FF, MD simulations for
P4HB in an all-atom representation were performed using Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
30 April 2019 version.21 An amorphous polymer box, with three
dimensional periodic boundary conditions, consisting of 20 poly-
mer chains with each chain consisting of 100 monomer units
(100-mer) was generated at a density of 1.0 g/cm3 using En-
hanced Monte Carlo (EMC) software (version 9.4.4).22 A repre-
sentative snapshot of an initial configuration for P4HB generated
using EMC and rendered using VMD23 is shown in Figure 1 a. In
each case, equations of motion were integrated with a time-step
of 1.0 fs using velocity-Verlet algorithm, long-range corrections
to pressure and energy were included and long-range Coulom-
bic interactions were treated using the particle-particle particle-
mesh (PPPM) method.24 Temperature and pressure were con-
trolled by employing Nosé-Hoover thermostat and barostat, re-
spectively.25,26 To start with, the initial configurations were equi-
librated at 700 K for 4 ns to relax the potential energy (see Fig-
ure S2) and subsequently quenched from 700 K to 140 K at a
rate of 20 K/ns in a NPT ensemble. In agreement with experi-
mental observations of biosynthesized PHA polymers27,28, for all
polymer chemistries with chiral carbon, a monomer unit with an
R-chiral center was employed for an amorphous polymer model
construction. Further details of our computational methodology
are provided in the Supplementary Information.

In addition to crucial simulation parameters, such as, quench
rate, polymer chain length, number of polymer chains used in the
simulation cell (all of which are discussed in detail in the next
section), Tg predictions can also be sensitive to a specific ran-
domly generated amorphous configuration used in an MD run.
To estimate the level of uncertainly as a result of using a particu-
lar randomly generated polymer configuration, we emploed five
different initial configurations of P4HB, all consisting of 20 100-
mer chains in MD simulations with a quenching rate of 20 K/ns.
Our results (presented in Figure S3 in the Supplementary Infor-
mation) suggest the Tg predictions for a given chemistry can be
made within a standard deviation of 2.25 K, leading to a reason-
able accuracy for predicting relative trends across different PHA
chemistries.

To determine the transition temperature, we follow the varia-
tion in the polymer density as a function of temperature during
the course of the MD simulations. As the temperature is system-
atically decreased, the density of the polymer supercell increases.
However, the rate of change is not uniform across the entire tem-
perature range. At the Tg, the polymer undergoes a transforma-
tion from a soft and rubbery substance to a glassy, rigid and brit-
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Fig. 1 (a) Snapshot of the initial configuration of an amorphous polymer box generated using Enhanced Monte Carlo (EMC) 22. The system consists
of 20 chains, each with 100 monomer units, and were colored differently for clarity. Density as a function of temperature obtained from the quenched
simulations of P4HB employing (b) CGenFF, (c) GAFF, and (d) PCFF parameters.

tle material as the temperature is lowered.15,29–33 During this
transition, there is a dramatic increase in the mobility of poly-
mer chains and this is reflected in temperature dependence of
several physical properties, including, density, molar volume, vis-
cosity, mechanical strength, specific heat.34 This transition shows
up as a slope change in the simulated density versus temperature
curve. In the present case, density values were stored for every
0.1 ps of total simulation length of 28 ns. Next, we binned and
averaged computed densities for every 5 K over the entire tem-
perature range from 140 K to 700 K. For each simulation run, Tg

was then determined by fitting straight lines to a very high accu-
racy (with a coefficient of determination R2 > 0.99 or higher) on
either side of the region of slope change.

3 Results and Discussions

3.1 Tg Predictions Using Various Force Fields

Figures 1 b,c,d present our Tg simulation results for P4HB us-
ing CGenFF, GAFF, and PCFF, respectively. A comparison of the
predicted Tg values of 325.61 K (CGenFF), 335.42 K (GAFF),
and 261.57 K (PCFF), with the corresponding experimentally-
measured value of 225.3±2.8 K7,35,36 shows that while CGenFF
and GAFF lead to large errors in the target property (44.5 % and
48.8 %, respectively) PCFF-predicted Tg is relatively much closer
to the measured value (albeit, still over estimated with an error
of 16.1 % with respect to the experimental value). Given the su-
perior performance of PCFF in the Tg prediction of P4HB relative
to the other two FFs, going forward we select PCFF and take a
closer look at the description of the underlying potential energy
surface within this FF.

In general, classical FFs rely on various interatomic interactions
of increasing complexity to describe a polymer system, for in-
stance, two body (bond-terms), three-body (angle-terms), four-
body (dihedral-terms) and non-bonded interactions.20,37 Typi-
cally, these terms are fitted to capture behavior of either a pre-
specified diverse set of polymers or a narrow group of selected
chemistries and may not necessarily be transferable to other
chemistries. It is, therefore, highly desirable to evaluate (and
modify, if necessary) the quality of the fitted details of the po-

tential energy surface in PCFF for PHA-based polymers, before
one attempts to model chemical trends across different PHA poly-
mers. Indeed, there are several examples in the literature where
slight modifications of the potential energy terms, for a given FF
was necessary for an improved description of a target polymer
property.38–40 In particular, four-body torsion potential for the
polymer backbone chain can play a critical role in determining
the polymer configuration and, thus, its properties.41–43 In fact,
McAliley et. al. have demonstrated that the improvement of the
torsion potentials in a FF can significantly enhance the accuracy
in predicting Tg for polylactic acid.40 Towards this end, we start
by comparing different potential energy profiles for P4HB com-
puted using PCFF with the corresponding ones obtained using
more accurate first principles density functional theory (DFT) cal-
culations.

3.2 Refinement of Torsion Potentials

Figures 2 compares potential energy scans, in the case of
P4HB, for different polymer backbone dihedrals computed us-
ing the PCFF and DFT computations. The DFT calculations were
performed with Gaussian-1644 package employing a B3LYP/6-
31+g(d,p) exchange correlation potential.45–48 A trimer model,
shown in Figure S4 of Supplementary Information, was used in
generating the potential energy profiles via geometry optimiza-
tion of the structure while constraining a specific dihedral angle
in discrete steps ranging from -180◦ to 180◦, in steps of 10◦. The
relaxed geometries were subsequently used as an input to ob-
tain the torsion scan energy profiles using PCFF in LAMMPS.21

Interestingly, our results show that potential energy profiles for
dihedrals including the ketone carbon (C=O) in the polymer
backbone exhibit the largest discrepancies when comparing the
FF results (gray squares) with those computed using DFT (blue
circles), as shown in Figures 2 a,b). In particular, the PCFF-
computed potential energy profile for the -CH2-CH2-C(=O)-O-
motif in the backbone, shown in Figure 2 a, presents a qualita-
tively incorrect behavior when compared to that from the DFT cal-
culations. To address this discrepancy, we use the DFT-computed
potential energy profiles to refit the torsional parameters of the
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Fig. 2 Potential energy scan profiles for different polymer backbone dihedrals in P4HB computed using DFT (blue circles), PCFF (gray squares), and
mPCFF (green diamonds). DFT calculations were performed at B3LYP/6-31+g(d,p) level of theory. The highlighted blue region of the polymer repeat
unit shown in each panel (a-d) refers to the specific dihedral considered in each case. In each case, the energies of the potential energy scans are
referenced to the respective 0◦ dihedral angle values.

two dihedrals in the vicinity of the backbone ketone group in
PCFF (c f ., Figures 2 a,b). Hereinafter, the modified PCFF is
referred to as mPCFF. While details of the adopted fitting proce-
dure are provided in the Supplementary Information, it can be
seen from Figure 2 that the potential energy profiles computed
with the mPCFF show a good agreement with corresponding DFT-
computed energetics.

3.3 Influence of Simulation Parameters on Tg Predictions

As briefly alluded to in the previous section, the prediction of a
polymer’s Tg using atomistic simulations can sensitively depend
on a number of simulation parameters, such as, number of poly-
mer chains considered in a simulation, polymer chain-length, and
thermal quenching rate.33,40,55 Therefore, before quantifying the
improvement achieved in the prediction of Tg for P4HB and other

PHA-based polymers with mPCFF (as compared to PCFF), we first
carry out a careful study of the dependence and sensitivity of
the predicted Tg with respect to these simulation parameters for
P4HB, employing mPCFF. More specifically, the following simula-
tion parameter spaces were explored: (i) The number of polymer
chains in the simulation box were varied as 5, 10, 20, 50, and 100,
while keeping the the polymer chain-length and thermal quench
rate fixed to 100-mer and 20 K/ns, respectively. (ii) To study the
effect of polymer chain-length, polymer chain lengths (number
of chains in the simulation cell) of 10-mer (200), 30-mer (60),
50-mer (40), 100-mer (20), and 500-mer (5) were simulated at
a quench rate of 20 K/ns. Note that the number of chains was
varied here in order to have an approximately equal number of
total atoms in each of these simulation runs. (iii) The depen-
dence of thermal quench rate at a fixed system size and polymer
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Table 1 Influence of the simulation parameters on Tg predictions. P4HB polymer chains employing mPCFF parameters were considered for this study.

Number of chains Chain-length Quench rate (K/ns) Tg (K)

System size

5 100-mer 20 251.56

10 100-mer 20 252.72

20 100-mer 20 253.16

50 100-mer 20 254.83

100 100-mer 20 256.01

chain-length

200 10-mer 20 245.78

60 30-mer 20 258.17

40 50-mer 20 266.93

20 100-mer 20 253.16

5 500-mer 20 255.75

quench rate

20 100-mer 10 242.91

20 100-mer 15 252.88

20 100-mer 20 253.16

20 100-mer 50 265.80

20 100-mer 100 270.64

chain length (i.e., 20 chains of 100-mer polymers), where the
quench rates of 10 K/ns, 15 K/ns, 20 K/ns, 50 K/ns, and 100 K/ns
were considered. The results of predicted Tg values as a function
of these simulation parameter sets are summarized in Table 1
and presented in further detail in the Supplementary Information
(Figures S5-S7).

The results presented in Table 1 indicate that for a fixed set
of simulation parameters, increasing the number of chains or in-
creasing the quench rate leads to a systematic increase in the pre-
dicted Tg value, which is in agreement with previous MD studies
in the literature.40,56,57 Furthermore, simultaneously increasing
the chain-length while decreasing the number of chains (to main-
tain approximately same number of total atoms across the MD
simulation runs) leads to a non-monotonic trend in the predicted
Tg. This can be explained as a combined effect of the aforemen-
tioned trend with respect to the number of chains and the well
known Fox-Flory relation capturing Tg dependence with respect
to the polymer chain length.33,55

Guided by the results of these simulations, for subsequent simu-
lations we choose to consistently employ a polymer supercell con-
taining 20 chains, each constructed with 100 monomer units, and
a quenching rate of 20 K/ns,. Note that for accurate predictions,
ideally one would like to employ a simulation cell as large as pos-
sible with very small thermal quench rates nearing those typically
used in experiments (i.e., < 1K/s). However this would be pro-
hibitively computationally expensive and impractical, even with

state-of-the-art computational resources. The particular choice
of the simulation parameters was largely dictated by this cost-
accuracy tradeoff. These simulation parameters were consistently
used for all the Tg simulations performed in the present study, in-
cluding the results reported in Figure 1.

Lastly, we note that although the thermal quench rate and sys-
tem size employed in the present MD simulations significantly
differ from those typically used in an experimental setting, due
to the systematic trends and conflicting relations of Tg with these
simulation parameters—a small system size underestimates Tg,
while a higher quench rate leads to an over estimation—a favor-
able error cancellation is expected. As a result, computed qualita-
tive trends across different PHA chemistries are still expected to
be both meaningful and insightful.

3.4 Tg predictions for PHAs with different chemistries

As expected, use of mPCFF leads to a predicted Tg of 253.16 K
for P4HB with a 12.4 % error as compared to the correspond-
ing experimentally-measured value (as compared to the value of
261.57 K with the 16.1% error obtained with PCFF), showing a
further improvement in the prediction accuracy as a result of an
improved description of the torsional parameters in the modified
force field. More importantly, however, we find that mPCFF is
able to predict correct relative trends in Tg values when compar-
ing different chemistries, while the original PCFF fails. For in-
stance, as reported in Table 2, a comparison of predicted Tg val-

Journal Name, [year], [vol.],1–10 | 5

Page 5 of 11 Physical Chemistry Chemical Physics



Fig. 3 Comparison of predicted Tgs for PHAs with different chemistries using mPCFF parameters along with their corresponding experimental values.
The amorphous polymer box consisted of 20 chains, each with 100 monomer units and temperature was quenched at 20 K/ns to determine the Tg.
References for the experimental values are 7,8,35,36,49–54.

Table 2 Tg predictions of all the PHAs studied herein employing mPCFF parameters. In all the simulations, the number of chains was 20, the polymer
chain was 100 monomer units, and a quenching rate of 20 K/ns was used. The values in the parentheses were obtained using PCFF parameters. The
standard deviation in experimental values are shown in parentheses for the available data. All the Tg’s are in K.

Chemical name abbreviation Computed Tg Experimental Tg

poly(4-hydroxybutyrate) P4HB 253.16 (261.57) 225.3 (2.8)7,35,36

poly(3-hydroxybutyrate) P3HB 287.91 (306.66) 277.1 (3.5)8,35,49–53

poly(3-hydroxyvalerate) P3HV 271.46 257.7 (0.5)35,52

poly(3-hydroxyhexanoate) P3HH 267.8 245.035

poly(3-hydroxyheptanoate) P3HHp 262.19 241.035

poly(3-hydroxy-4-phenylbutyrate) P3H4PhB 325.94 307.08

poly(3-hydroxy-5-phenylvalerate) P3H5PhV 291.36 (284.34) 287.4 (1.4) 8,51,54

poly(3-hydroxy-6-phenylhexanoate) P3H6PhH 280.36 271.951

poly(3-hydroxy-7-phenylheptanoate) P3H7PhHp 278.33 259.28

ues for different PHA polymers, namely, poly(4-hydroxybutyrate)
(P4HB), poly(3-hydroxybutyrate) (P3HB) and poly(3-hydroxy-5-
phenylvalerate) (P3H5PhV) using PCFF and mPCFF shows that
while mPCFF is able to correctly predict the experimentally ob-
served relative trends in the Tg values across these polymers (i.e.,
T P4HB

g < T P3HB
g < T P3H5PhV

g ) and always systematically overes-
timates the predicted values with respect to the experimental
values, the predictions using PCFF do not follow any systematic

trend. For instance, using PCFF the predicted Tg of 284.34 K for
P3H5PhV is lower than the experimental value of 287.4 K, while
for P3HB the predicted Tg (306.66 K) is significantly higher than
that of the experimental observation of 277.1 K.

To further demonstrate the predictive power of mPCFF in pre-
dicting relative variation in Tg values of PHA-based polymers, we
choose two groups of polymer composition with systematically
varying side chain functional group lengths for which accurate
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Tg measurements are available. The polymers in both the groups
can be represented with -CH(X)-CH2-C(=O)-O- as the polymer
backbone repeat unit with the group ‘X’ representing a side chain
functional group. The two groups are comprised of four linear
side chain polymers (with X = -(CH2)p-CH3, where p ∈ [0, 3])
and four phenyl-capped linear side chain polymers (with X = -
(CH2)q-C6H5 where q ∈ [1, 4]) and exhibit a gradual variation in
Tg with respect to the polymer side chain length.9

Table 2 and Figure 3 compare the computed Tg values for the
eight polymers with their corresponding experimental measure-
ments. Note that in Figure 3, regardless of the functional group,
as the polymer side chain length increases, the measured Tg de-
creases. Furthermore, for a given number of aliphatic carbons in
the side chain, the polymers with a phenyl-capped side chain ex-
hibit a slightly larger Tg. It can be seen from Figure 3 that both
of these trends are well captured in the computed Tg values. As
noted earlier, while the computed Tg is consistently overestimated
with respect to the measured value, when focusing on the relative
trends in Tg across these chemistries, there is an excellent agree-
ment with the measured values (see Figure S8 of Supplementary
Information).

3.5 Transport Properties

Lastly, to test the well-known and physically-meaningful variation
of Tg with other dynamical properties, we consider self-diffusion
coefficient (D) and viscosity (η) as two key properties for three
different polymers, namely, P4HB, P3HB and P3H5PhV. The spe-
cific choice of these three polymers was largely motivated by the
fact that these cover a broad range of Tg values, ranging from a
low Tg of 225.3 K for P4HB to a relatively higher value of 287.4 K
for P3H5PhV. Equilibrium simulations were performed at a tem-
perature of 400 K, where the three polymers are significantly
above their Tg and therefore exist in a flexible rubbery state. To
determine the self-diffusion coefficient and viscosity, the system
was equilibrated in an isothermal isobaric ensemble (NPT) for 10
ns followed by a production run of 50 ns using an NVT ensemble.
To reduce the fluctuations, mean-square displacements (MSDs)
associated with the center of mass of each polymer chains and
viscosities were determined up to a correlation length of 20 ns.
The self-diffusion coefficient of each polymer system was then
evaluated as one-sixth of the slope of the MSD versus time curve
in the diffusive regime (i.e., MSD ∝ t) using the Einstein relation,
as shown below in Equation 1:58,59

D =
1
6

lim
t→∞

d
dt

〈(
ri(t)− ri(0)

)2
〉
. (1)

Here ri(t) represents the position vector of the center of mass for
a polymer chain i at a time t and angular bracket is used to denote
an ensemble average over all the polymer chains.

In addition to the self-diffusion coefficients, the pressure tensor
values for each of the three polymers were stored at 1 fs intervals
and subsequently utilized in the Green-Kubo relation, given by
Equation 2 below, to determine the shear viscosity η from the
equilibrium simulations.60,61

η =
V

kBT

∫
∞

0

〈
P̃xy(0)P̃xy(t)

〉
dt (2)

Here V represents the volume of the simulation cell, kB is Boltz-
mann constant, T is the simulation temperature, 〈...〉 is ensem-
ble average and P̃xy is used to denote the off-diagonal element
of the stress tensor. Note that the integral in Equation 2 over a
longer time yields the shear viscosity (η) via computing the stress-
stress time autocorrelation. This autocorrelation generally decays
rather slowly with time, leading to a plateau region. Thus, here
we performed simulations for sufficiently long times to determine
the reported shear viscosity results.

The results of our simulations for the three polymers are pre-
sented in Figures 4 (a) and (b). The computed self-diffusion
coefficient and viscosity values for P4HB, P3HB, and P3H5PhV
are 1.08, 0.71, and 0.13 (in 10−12m2/s), and 0.015, 0.109, and
1.34 (in Pa.s units), respectively. These obtained results are well
aligned with the intuitive notion that the lower the Tg (relative
to the simulation temperature), the more dynamic the polymer
becomes, exhibiting a relatively higher diffusion coefficient and a
lower viscosity. Further, following the Stokes-Einstein relation62

the self-diffusion coefficient and viscosity are inversely propor-
tional to each other.

4 Tg predictions on Yet-to-be Synthesized
PHAs

While the development and validation of an MD-based atomistic
simulation route for the estimation of Tg in the vast PHA polymer
chemical space is encouraging, the true potential of such an ap-
proach lies in making predictions on hitherto unknown and yet-
to-be synthesized polymers. As an illustration, here we choose
five different polymers, composed with a common backbone, and
distinguished by a set of distinct functional groups as the poly-
mer side chain. For the choice of side chain functional groups,
we select carbonyl (-CHO), amine (-NH2) hydroxyl (-OH), car-
boxyl (-COOH), and benzoyl (-COPh) groups, as shown in Fig-
ure 5a. The results of the MD simulations for Tg predictions—
employing mPCFF and following the consistent methodology and
simulation parameters as established in this work—are presented
in Figure 5b. The results clearly suggest a strong dependence of
Tg on the chemical nature of the side chain functional group and
the predicted trend can be qualitatively understood in terms of
strengthening of the polymer interchain interactions due to a po-
lar side chain functional group, which leads to a relatively higher
Tg. When comparing different functional groups with approxi-
mately similar size, as the polarity of the side chain pendent group
systematically increases, interchain electrostatic and Hydrogen
bonding (H-bonding) interactions gradually grow stronger. As
a result of these interactions, neighboring polymer chains are
locked strongly in an amorphous structure and are able to push
the dynamical transition to relatively higher temperatures, and
thus, leading to an increased Tg. We further note here that while
PCFF is known to capture non-bonding interactions, including
H-bonding interactions63,64, we also explicitly demonstrate this
capability for the mPCFF in case of poly(3 carboxy propionate)
or P3CoxyP. Figure S9 in Supplementary Information clearly ex-
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Fig. 4 Comparison of transport properties for three polymer systems in a rubbery state above their Tg. (a) Mean-square displacement, (b) Viscosity.
Simulation cell consists of 20 chains, each with 100 monomer units and equilibrium simulations were carried out at 400 K for 50 ns in an NVT ensemble.
The diffusive regions and the plateau regions are highlighted for the three polymer chemistries in (a) and (b), respectively.

Fig. 5 (a) PHA motifs with five side chain functional groups, (b) Tg predictions from the MD simulations employing mPCFF parameters, (c) Correlation
between glass transition temperature (Tg) and net absolute partial charge on the side group.

hibits the presence of a significant level of H-bonding interactions
between the carboxyl side chain functional groups, both below
(400 K) and above (700 K) the transition temperature. Further,
the extent of the interchain H-bonding interactions at the lower
temperature is found to be about twice as much as compared to
the higher temperature.

To further quantify these chemically intuitive notions, we com-

pute the total absolute atomic Gasteiger partial charges65,66 for
each of the five functional groups as a measure of the group po-
larity and correlate with the computed Tg values. As shown in
Figure 5c, there is a strong correlation between the group polar-
ity and Tg, providing a rationale for the predicted trends in the
target property.
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5 Conclusions
We have developed a systematic approach based on atomistic
force-field based MD simulations, that can accurately predict Tg

values of PHA-based biopolymers. To accomplish this, we devel-
oped a new forcefield by modifying the polymer consistent force
field via refining a selected set of torsion potentials of the polymer
backbone using accurate DFT computations. We then carefully as-
sessed the dependence of critical simulation parameters, such as,
polymer configurations, polymer chain length, number of poly-
mer chains, supercell size, thermal quenching rate used in the
simulation on the computed Tg values. Next, the applicability and
transferability of the designed force-field was demonstrated by
directly comparing the computed Tg predictions of various poly-
mers with different chemistries, polymer side chain lengths and
functional groups forming the polymer side chains against the
respective experimentally measured values. Furthermore, trans-
port properties such as self-diffusion coefficient and viscosity were
computationally determined and their well-known correlations
with the target property is demonstrated. Lastly, we employed
the developed and validated approach to predict Tg values for a
number of yet-to-be-synthesized PHA-based polymers with a di-
verse set of functional groups in the polymer side chain. The
results were further rationalized by correlating the predicted Tg

values with side chain functional group polarity and inter-chain
H-bond formation tendency for a fixed polymer backbone motif.
This approach can easily be extended to polymer properties be-
yond Tg and can potentially open new avenues for a high through-
out exploration in PHA-based biodegradable chemistries with tar-
geted functionalities. Upon success, such a computational ap-
proach can allow for identification and screening of novel poly-
mer chemistries offering an optimal balance between durability
and environmental degradability for various applications, provid-
ing a potential sustainable solution for the daunting plastic prob-
lem.
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