
The Laplace Approach in Microrheology

Journal: Soft Matter

Manuscript ID SM-COM-11-2019-002242.R3

Article Type: Communication

Date Submitted by the 
Author: 04-Mar-2020

Complete List of Authors: Li, Qi; Texas Tech Univ, Chemical Engineering
Peng, Xiaoguang; Texas Tech University, Chemical Engineering; 
University of Connecticut System,  
Chen, Dongjie; Texas Tech Univ, Chemical Engineering
McKenna, Gregory; Texas Tech University, Chemical Engineering

 

Soft Matter



1

The Laplace Approach in Microrheology
Qi Li, Xiaoguang Peng, Dongjie Chen and Gregory B. McKenna

Department of Chemical Engineering, Texas Tech University, Lubbock TX 79409

{March 3, 2020}

ABSTRACT

When coupled with the Generalized Stokes-Einstein (GSE) equation, it is often reported 

that micro-rheology probes the dynamic properties differently than do macroscopic rheological 

measurements, especially in relatively condensed systems. In the present work, we empirically 

examine the GSE in its widely used form: following an analytical continuation, the Fourier 

transformed particle mean-square displacement (MSD) is used to determine the dynamic moduli 

[G’() and G’’()] and we compare the results with those obtained by direct inverse Laplace 

transform calculation of the relevant viscoelastic functions (either relaxation modulus or creep 

compliance) from the MSD. The results show that the inverse Laplace approaches can differ 

from the Fourier approach and give better agreement with macroscopic rheological 

measurements when this is the case. Some instances of agreement between the Fourier approach 

and the direct Laplace transform approaches are also shown. It is recommended that micro-

rheology MSD data be interpreted using one of the direct Laplace transform based approaches.

Controlled by the thermally driven Brownian motion, micro-rheology probes complex 

fluids in a different way than does traditional macroscopic rheology. One significant difference is 

that micro-rheology can probe the sample at shorter and tunable length scales, generally by 

changing the size of a probe particle [1]. Another advantage for micro-rheology is that it can be 

used in a non-invasive setup where viscoelastic properties of the sample can be extracted without 
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applying external forces or perturbations [2]. The important step in micro-rheology is to take the 

measured response of the particle mean-squared displacement (MSD) and establishing the 

relationship between the MSD and the continuum viscoelastic properties of the system through 

the generalized Stokes-Einstein relationship (GSER) as proposed by Mason and Weitz [3]:

                                                                    𝐺(𝑠) =
𝑘𝐵𝑇

𝜋𝑎𝑠〈∆𝑟2(𝑠)〉                                                               (1)

where  and  are the Laplace transformed relaxation modulus and the Laplace 𝐺(𝑠) 〈∆𝑟2(𝑠)〉

transformed mean squared displacement (MSD), respectively.  is the Laplace frequency.  𝑠 𝑘𝐵

denotes the Boltzmann constant.  is the temperature in Kelvin, and  is the particle radius. 𝑇 𝑎

Based on this relationship, Mason [4] further developed the GSER by transforming the modulus 

into the frequency domain by assuming an analytical continuation ( ) and taking the 𝑠 = 𝑖𝜔

Fourier transform of  to obtain the complex modulus :𝐺(𝑠) 𝐺 ∗ (𝜔)

                                                              𝐺 ∗ (𝜔) =
𝑘𝐵𝑇

𝜋𝑎𝑖𝜔ℱ{〈∆𝑟2(𝜏)〉}                                                        (2)

where  is the Fourier transformed MSD. The Fourier transformation of the MSD data ℱ{〈∆𝑟2(𝜏)〉}

can be estimated using the gamma function and local differentiations of the MSD data [4]. The 

storage modulus ( ) and loss modulus ( ) can be further calculated. In some instances, 𝐺′(𝜔) 𝐺′′(𝜔)

e.g. relatively dilute polymer solutions [5,6], the viscoelastic properties of the sample measured 

from micro-rheology agree well with those obtained from macroscopic rheological 

measurements. However, upon increasing the concentration in colloidal systems or the number 

of entanglements in polymer solutions, micro-rheology seems to not fully capture the 

macroscopic viscoelastic properties of the sample [7,8,9,10,11]. The current understanding of 

this situation includes the possibility that physically, non-ergodic or heterogeneous concentrated 
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systems have length-scale-dependent dynamics with the consequence that the microscopic 

viscoelastic behavior may differ from the macroscopic rheological measurements [7,11]. 

At the same time, with increasing colloidal concentration or number of entanglements in 

polymer solutions, the shape of the MSD becomes more complex, which can introduce larger 

errors in the estimation of the Fourier transformed MSD when using the local differentiation of 

the MSD [5]. Although these sources of error are recognized and there have been mathematical 

improvements [5,11], there still remain questions about the correct interpretation of the derived 

rheological properties obtained from the micro-rheological methods using the GSER and this is 

particularly true of the question of the probe-size dependence of the response, which has 

ramifications for the understanding of the physics of systems with heterogeneous dynamics or 

spatial heterogeneity. 

In this Letter, we compare the above described widely used micro-rheological method 

where the analytical continuation ( ) and the Fourier transformed MSD are used to obtain 𝑠 = 𝑖𝜔

frequency dependent viscoelastic properties (the Fourier Approach, Equation (2)), with the 

calculation of the time-domain response obtained by directly taking the inverse of the Laplace 

transform of Equation (1) along with the continuum viscoelastic identity (in Laplace space) s𝐽(𝑠)

 [12] to extract the system compliance information ( , the Compliance Approach), 𝐺(𝑠) = 1 𝐽(𝑡)

which is directly proportional to the MSD [13]

                                                                   𝐽(𝑡) = [ 𝜋𝑎
𝑘𝐵𝑇]〈𝛥𝑟2(𝑡)〉                                                              (3)

This approach of calculating the creep compliance was proposed by Xu et al [14] in their 

study on actin filament networks, but it has not been widely used in studies of concentrated 

systems. From the  information, the relaxation modulus, , can be calculated by 𝐽(𝑡) 𝐺(𝑡)
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numerical evaluation of the convolution integral proposed by Hopkins and Hamming [15] as 

well as the linear interpolation method from Evans et al [16]

                                                                  ∫
𝑡

0
𝐽(𝜏)𝐺(𝑡 ― 𝜏)𝑑𝜏 = 𝑡                                                              (4)

Despite having the same starting point of equation (1), unlike the Fourier Approach, the 

Compliance Approach does not use the analytical continuation ( ) to switch the Laplace 𝑠 = 𝑖𝜔

space into the Fourier space. Also, directly relating the creep compliance to the MSD (equation 

3) greatly reduces mathematical errors during the calculations. In the present work, we compare 

the two micro-rheology methods using MSD data for three different systems (a PS-PNIPAM/AA 

model soft colloidal glass, a Laponite suspension, and a concentrated giant-micelle solution). To 

better show the comparisons, and test the validity of the analytical continuation ( ), a third 𝑠 = 𝑖𝜔

Fourier-free calculation method (Laplace Approach) is introduced where a direct numerical 

inversion (Talbot method [17]) on the Laplace transformed modulus  was performed to 𝐺(𝑠)

obtain the relaxation modulus . Then the , , and  information can be G(t) 𝐺′(𝜔) 𝐺′′(𝜔) 𝐽(𝑡)

calculated using basic viscoelastic interconversions [18]. A diagram of the three calculation 

methods used in the present work is given in Figure 1. 

First, we present results for a soft colloidal suspension from our own measurements, 

which led to the present findings, and we provide related analysis of MSD data reported in the 

literature. In all instances we are interested in the conversion from MSD data to the viscoelastic 

domain. For our own work, multi-speckle diffusing-wave spectroscopy (DWS) in backscattering 

geometry was used to characterize the dynamics of the sample and the MSD was determined 

from the intensity autocorrelation function g2(t) [19]. The samples were illuminated by polarized 

light from a coherent laser source (Melles Griot) with a wavelength of 633 nm. A CCD camera
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Figure 1. (a) A summary of the calculation routes used in this work. (b) A detailed calculation processes 

for the three approaches based on the mean squared displacements (MSD). 

 (Basler acA640-120uc) at 120 frames/s was used to collect the multiply scattered light. The soft 

colloidal system used in this work is a 16.0 wt% polystyrene (PS)-poly(N-isopropylacrylamide) 

(PNIPAM)/ acrylic acid (AA) (PS-PNIPAM/AA) latex system as previously investigated with a 

final particle diameter of 210.7 nm (23 oC) [19,20]. 2 μm polystyrene microsphere probes 

a

b
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(Polybead® Microspheres, Polysciences, Inc.) were used in the DWS experiments and the 

concentration of probe particles was 1.0 vol%. Macroscopic rheological measurements were 

performed using a stress-controlled rotary rheometer (AR-G2, TA Instruments) equipped with a 

cone-plate geometry having a diameter of 40 mm and cone angle of 2o. The colloidal sample was 

surrounded by Krytox oil to prevent solvent evaporation during testing. All measurements were 

performed after sudden volume fraction increases (up-jumps) from the liquid state at low volume 

fraction to various final high volume fractions, and then aged into an intransient state, where the 

response became independent of time, thus the final measurements are for samples that have 

achieved a metastable equilibrium. 

From the DWS measurement, the information for the soft PS-PNIPAM/AA 𝑔2(𝑡) 

colloids can be obtained. We emphasize that the samples were all aged into metastable 

equilibrium states after the concentration jumps. From the  information, the corresponding 𝑔2(𝑡)

MSD can be calculated. In the backscattering geometry the relevant calculation method comes 

from Scheffold and coworkers [7]:

(5)𝑔2(𝑡) ―1 = 𝑒𝑥𝑝[ ―2𝛾 𝑘2
0〈∆𝑟2(𝑡)〉 + 𝑏 + 2𝛾 𝑏]

where  quantifies the low-order scattering, and here we take  [7],  is a parameter 𝛾 𝛾 = 1.9 𝑏

characterizing the deviation of the current geometry from that of an idealized semi-infinite slab, 

and  [7].  is the wave number. From the MSD information, the creep 𝑏 = 0.0035 𝑘0 = 2𝜋/𝜆

compliance was calculated using the three methods shown in Figure 1 (the Fourier micro- 

rheology (Fourier App.), the Compliance Approach (Compliance App.), and the Laplace 

approach (Laplace App.)). The results are shown in Figures 2.  Importantly, the compliance 

response calculated from the Compliance Approach for the 2 m probe measurements agrees 

with that from the creep compliance measured in the macroscopic rheology, indicating the size 
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of the probe particles is large enough compared with the structural length-scales of the system 

that the scattering signals observed by DWS were all from the probe particles and that  the 

micro-rheological analysis is valid for this case. Second, among the three different calculation 

methods, the results from the Compliance Approach and the Laplace Approach agree with 

macroscopic rheological measurements. However, the Fourier Approach gives smaller values of 

J(t). This difference in J(t) shows that the Compliance Approach gives better estimations of the 

viscoelastic properties of the system than does the Fourier Approach. 

Figure 2. Compliance calculated with the Compliance Approach, the Fourier Approach, as well as the 

Laplace Approach for a 16.0 wt% PS-PNIPAM/AA system with 2 μm probes (probe concentration 1.0 

vol%). Black squares indicate the creep compliance measured by macroscopic rheology for a same 

system. 

We remark that the difference between the Fourier Approach and the Laplace Approach 

is that the Laplace Approach takes the Laplace transform of the Laplace space relaxation 

modulus while in the Fourier approach, an analytical continuation ( ) is assumed to hold and 𝑠 = 𝑖𝜔
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one goes from the Laplace relaxation modulus to the frequency dependent complex modulus via 

the Fourier transform of the MSD. The above data show us straightforwardly that the Fourier 

approach can be problematic when being used to interpret microrheological responses in 

complex fluids such as the soft colloidal glass examined here. 

To further explore the problem, we used literature MSD data for a concentrated giant-

micelle solution: hexa-ethylene glycol mono n-hexadecyl ether (C16E6) surfactant solution (100 

mg/mL) with sulfate polystyrene latex spheres (diameter 720 nm) embedded as tracer particles. 

The experimental MSD data used come from Cardinaux et al [7] and was determined by DWS in 

both backscattering and transmission geometries with a sample thickness of 2 mm. Macroscopic 

rheological data were also reported in [7]. We compare the dynamic moduli  and  G′(ω) G′′(ω)

calculated from the MSD using both the Fourier and the Compliance Approaches in Figure 3(a) 

and 3(b). We remark that the MSD data from Cardinaux et al [7] is smooth and not noisy or 

Figure 3. (a) Storage modulus, , and loss modulus, , from direct calculations using the G′(ω)  G′′(ω)

Fourier Approach, and from viscoelastic interconversion from J(t) calculated with the Compliance 

Approach, compared with macro-rheological measurements from Cardinaux et al [7]. (b) The calculated 

J(t) from the three different micro-rheological methods. Rheometric J(t) is calculated from frequency 

sweep test results in Figure 3(a). 
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fluctuating, thus minimizing the errors in the numerical treatment of the MSD data when using 

the Fourier Approach [5]. It is clear to see that in Figure 3(a), the dynamic moduli (  and G′(ω)

) calculated from the Compliance Approach are closer to the macroscopic measurements G′′(ω)

than the values calculated from the Fourier Approach and in the data range at high frequencies 

the two approaches differ from the Fourier Approach which gives lower modulus values. Of 

interest is that this deviation is the opposite of that seen in the compliance calculations shown 

above.

Having observed differences between the Fourier Approach and the Compliance or 

Laplace approaches and the use of the approach is widespread, the question arises as to whether 

or not there are instances in which the results are the same? To answer this question, the Fourier 

Approach and the Compliance Approach were used to analyze MSD data for a Laponite® clay 

dispersion (1 wt%) obtained by multiple particle tracking micro-rheology (MPT) [21]. The probe 

particles were Fluoresbite® YG Carboxylate Microspheres having sizes of 110 nm, 161 nm, 258 

nm, and 463 nm. Figure 4 presents the J(t) calculated from the MSD of a 45-min-aged Laponite 

with probes of different sizes. In the Laponite system, the Compliance Approach and the Fourier 

Approach give similar results and show the same probe size effects. In this case, the two 

approaches seem to probe the system heterogeneity in a similar way. Thus, in some situations, 

the Fourier approach seems adequate to capture the heterogeneous dynamics in an equivalent 

fashion to the Compliance or Laplace Approaches. 

From the results above for the three different systems several things are clear. First, the 

different results calculated from the Compliance Approach and the Fourier Approach do not 

simply originate from the fitting of the MSD data since the results are from the same MSD data. 

Second, we remark that the different results between these two approaches seem to arise from the 

Page 9 of 15 Soft Matter



10

Figure 4. Calculated J(t) using the Compliance Approach and the Fourier Approach for 1 wt% Laponite 

dispersion with four different sizes of probes after aging of 45 minutes. J(t) calculated from MSD data 

from Rich et al [21]. 

analytic continuation ( ) approximation. Equation (2) is derived from Equation (1) by 𝑠 = 𝑖𝜔

assuming an analytic continuation. This assumption switches the Laplace transform in Equation 

(1) into a Fourier transform equation in Equation (2). Mathematically, the Fourier space is an 

imaginary part of the Laplace space ( ). However, in a relaxation process, both the real 𝑠 = 𝜎 + 𝑖𝜔

and the imaginary parts affect the results when converting time domain data into the frequency 

domain. It is important to note that not only has the Laplace transform been used in going from 

time to frequency domain in dielectric spectroscopy[22,23,24]  but there have also been 

discussions of the use of Fourier transforms being problematic in transforming time domain data 

with corrections applied to specific functional forms for the time domain behavior [25,26]. We 

have not identified the underlying mathematical reason for the problem, but we can say from the 

work presented above and from an empirical perspective the use of the Fourier transform may be 
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problematic [27,28] and it seems appropriate to recommend that microrheology data in general 

should be treated with one of the approaches based on the Laplace transform. Even though the 

full implications of the present results require further investigation, this analytic continuation 

‘crisis’ provides a partial explanation for discrepancies between macro- and micro-rheological 

results in non-ergodic (or heterogeneous) systems such as colloidal glasses or gels [7,11] and 

beyond the arguments related to length-scale dependent dynamics, which can exist but need to be 

treated carefully as the quantitative values can depend on the method of data analysis used to go 

from the time domain to the frequency domain as illustrated in the above results. 

To summarize, the micro-rheological behaviors for three different systems (a PS-

PNIPAM/AA soft colloidal latex glass, a concentrated C16E6 giant-micelle solution), and a 

Laponite® dispersion were determined from MSD data using three different calculation methods 

(Fourier Approach, Compliance Approach and Laplace Approach) and were compared with the 

corresponding macroscopic rheological properties, when available.  It is shown that the use of 

analytical continuation to go from the Laplace transform of the relaxation modulus to the 

frequency domain (Fourier) dynamic moduli can be problematic and that a preferred method 

would be to use the Laplace transform of the MSD directly in order to obtain the creep 

compliance (Compliance Approach) or the relaxation modulus (Laplace Approach).  While in 

the instance of the Laponite systems we found agreement between the Laplace based methods 

and the Fourier Approach, this was not observed for the soft colloid or the giant micellar systems 

and we take a comment famously made by D.J. Plazek ‘With compliance comes comprehension’ 

[29] and extend it to microrheology by recommending the use of the Compliance Approach to 

convert the MSD data to creep compliance, which can then be converted to the dynamic moduli 

using standard linear viscoelastic interconversions, if necessary, to obtain the dynamic moduli. 
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The widely used Fourier micro-rheological approach is empirically examined in concentrated systems, in finding that the direct 

inverse Laplace approach gives better agreement with macroscopic rheology and reduces the apparent probe-size dependence of 

the viscoelastic properties deduced from the Fourier micro-rheology approach.
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