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Confined thin structures are ubiquitous in nature. Spatial and length constraints have led to a
number of novel packing strategies at both the micro-scale, as when DNA packages inside a
capsid, and the macro-scale, seen in plant root development and the arrangement of the human
intestinal tract. Here, we investigate the resulting packing behaviors between a growing slender
structure constrained by deformable boundaries. Experimentally, we vary the arc length of an
elastic loop injected into an array of soft, spherical grains at various initial number densities.
At low initial packing fractions, the elastic loop deforms as though it were hitting a flat surface
by periodically folding into the array. Above a critical packing fraction φc, local re-orientations
within the granular medium create an effectively curved surface leading to the emergence of a
distinct circular packing morphology. These results bring new insights into the packing behavior
of wires and thin sheets, and will be relevant to modeling plant root morphogenesis, burrowing and
locomotive strategies of vertebrates & invertebrates, and developing smart, steerable needles.

Under rigid confinement, thin structures tend to adopt the geom-
etry circumscribed by their confining boundaries1–5. Draping a
thin sheet or filament onto a rigid flat surface causes it to fold6,7,
leading to the formation of multiple alternating loops as the arc
length is continuously increased8,9. In the presence of a rigid
curved surface, flexible structures may coil, roll-up, or spiral, as
seen in the packaging of household paper products10 or when
pulling a thin sheet through a small aperture11. Similar folding
and circular morphologies have also been observed in thin struc-
tures under flexible/soft constraints12,13. In both types of con-
finement, the material and structural characteristics of the con-
taining space (geometry, rigidity, etc.) are effectively fixed: even
when softly confined, packing thin structures can only slightly
influence their flexible containers14. What happens when the no-
tions of boundary compliance and geometry are less clearly de-
fined is not well understood, yet this situation frequently occurs
when slender objects pack within complex and fragile media.

Drawing inspiration from growth patterns in Arabidopsis roots
[Fig. 1(vi), 1(VI)]15–18 and previous work on the buckling of thin
rods in granular media19–22, we consider the packing of an elon-
gating slender loop within a 2D granular bed, where we observe
the same packing transitions and geometries. In this Letter, using
a combination of experiments and scaling analysis, we character-
ize the emergent behavior of these distinct packing morphologies,

a Mechanical Engineering, Boston University, Boston, MA, 02215, USA
∗djsj@bu.edu; dpholmes@bu.edu
† Electronic Supplementary Information (ESI) available: [details of any supplementary
information available should be included here]. See DOI: 00.0000/00000000.

and the role played by the evolution of the surrounding granu-
lar medium. These elastogranular systems will be helpful in the
study of piercing & penetration at soft-solid interfaces23,24, in the
design of dirigible surgical tools25, and provide a novel approach
for looking at the packing of thin elastic structures across a spec-
trum of confinement strengths14,22,26,27.

Experimentally, we increased the arc length of an elastic loop
within a container filled with a monolayer of grains ‡. The granu-
lar monolayers were prepared with initial packing fractions φ0,
and consisted of soft, spherical hydrogel grains (MagicWater-
Beads) of radius r = 9.28±0.164 mm that were randomly placed
in the experimental enclosure (length L = 279.4 mm, and width
W = 438.15 mm) [Fig. 1]. A long strip of polyethylene tereph-
thalate (PET) film, identical to that used in reel-to-reel cinema
projection, is clamped within a custom-built film sprocket/roller
mount to form a “pinched" elastic loop28,29 with initial arc length
S0 ≈ 75 mm, width b = 35 mm (out of the page in Fig. 1), and
thickness h = 0.138 mm [Figs. 1(i), 1(I)]. This device creates a
single clamped-roller boundary condition allowing for incremen-
tal adjustments ∆ to the loop’s arc length to a new current length
S = S0 +∆, and up to a maximum value S/St = 1 (where the film’s
linear length St = 2435.2 mm; see videos S1 & S2)§.

‡Very similar deformations and packing transitions were observed when an elastic
strip with a free boundary was inserted into a granular array, however the elastic
loop removes any complications with how and where the free edge of the elastica
finds the edge of the container.

§ An Arduino with stepper-motor stack (powering two Nema-17 steppers) allows us to
smoothly control the injected arc length ∆. Each film sprocket is mounted atop the
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Fig. 1 A slender elastic loop elongating into granular arrays at varying initial packing fraction φ0. (a) Below a critical initial packing fraction (φ0 < 0.641),
the elastic loop will pack into the granular medium by adopting a characteristic folded geometry. (b) For φ0 ≥ 0.641, a characteristic circular packing
morphology emerges. Inset: Inter-particle angle and center-to-center distances used to define orientational order. Sequences: At low values of
injected arc length, the two morphologies appear the same, where ∆/St ≈ {0.03,0.06,0.12} in frames (i,I), (ii,II), (iii,III) respectively. As the arc length
continues to increase [∆/St ≈ {0.23,0.46} in (iv,IV), (v,V)], distinct packing strategies for the thin loop begin developing. Once set, the resulting circular
and folded morphologies bear a striking resemblance to developing Aribidopsis roots in contact with a hard agar substrate (vi,VI) [Adapted from 15,16].

As the arc length increases by a small amount ∆ at a quasistatic
rate of 2.2 mm/s, the elastic loop maintains its characteristic
racket shape, a geometry observed over a wide range of length
scales in fluid-thin structure interactions30,31 [Figs. 1(i-ii), 1(I-
II)]. In the absence of any externally applied forces, the left-right
symmetry of this configuration hypothetically persists in the limit
∆� 1, however, the presence of the granular medium acts to con-
fine and buckle the elastic loop. Thin structures favor bending
over stretching as a deformation response to applied forces; in-
deed at larger ∆-values, the symmetry of the pinched-loop con-
figuration is lost as the thin structure relaxes stored curvature
(housed primarily in the distal tip region) [Figs. 1(iv), 1(IV)].
Continued increase of the arc length [Figs. 1(v), 1(V)], along with
local re-arrangements in the granular medium [Fig. 2], elicit one
of two distinct packing morphologies in the elastic loop: a dis-
ordered folded phase [Fig. 1(a)] observable over the entire range
of initial packing fractions, 0 ≤ φ0 ≤ 0.828, and an ordered cir-
cular phase [Fig. 1(b)] emerging only in higher density arrays
above a critical initial packing fraction φc = 0.641¶. (Our termi-
nology is chosen to maintain consistency with previous works on
the packing of flexible structures in both rigid and flexible con-
finement1,11,13,14,32–35).

The implication here is that once jammed, the granular
medium acts like a container, housing the loop with a certain

driveshaft of its own stepper motor. Small teeth, circling the upper and lower rim of
each film sprocket, grip the edges of the 35-mm film. As the sprockets begin turning
with a synchronized rotational velocity [white arrows, bottom Fig. 1(a)], the loop
starts lengthening.
¶When φ0 ≥ 0.774, a clear acrylic lid is placed over the enclosure to prevent sections

of the loop from dislodging vertically out of the monolayer at larger ∆-values.

Fig. 2 The role of the granular contour. While a freely injected elastic
loop (i) will drape against a flat surface (I), the introduction of the granular
medium can modify the curvature (ii,iii) and rigidity (II,III) of the surface
against which the loop deforms. The influence of local bond orientation
order ψ6, which provides a measure of confining boundary rigidity, is
apparent in both (II) folded and (III) circular packing morphologies. ( )
ψ6 ≥ 0.66; ( ) 0.33 < ψ6 < 0.66; ( ) ψ6 ≤ 0.33. The experiments shown in
(I-III) are at the same injected arc length (∆/St ≈ 0.46).
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Fig. 3 Penetration depth `p normalized by the length L of the experimen-
tal enclosure, as a function of initial packing fraction φ0 for folding (red
diamonds) and circular (light blue circles) geometries.

level of rigidity and degree of boundary curvature (ranging from
flat to semi-circular) that drives the system to adopt one mor-
phology over the other. Looking at the local orientational or-
der ψ6 =

〈
N−1

b ∑
Nb
n=1 e6iθmn

〉
[inset, Fig. 1(b)], which measures the

degree to which a local granular neighborhood of monodisperse
grains are hexagonally arranged36, provides a visual and quantifi-
able means of assessing rigidity in a given array: highly-ordered
regions (i.e. ψ6 ≥ 0.66) act like a nearly rigid wall of grains
against which the elastic loop deforms [Figs. 2(II), 2(III); videos
S6 & S7]. Determining the extent to which the surrounding grains
form a curved surface is more subtle and requires looking at how
elastic deformations in the loop influence the formation of these
boundaries.

We begin by quantifying the spatial extent of the slender loop’s
deformation via a penetration depth `p, the maximum distance
(in the y-direction in Fig. 1) which the thin structure can de-
form into an array at a given φ0, and a radius of gyration Rg,
characterizing the (general) area within which elastic deforma-
tions localize. The measurement of penetration depth is straight-
forward and progressively larger φ0-values are seen to result in
lower values of `p overall, regardless of the thin structure’s chosen
morphology [Fig. 3]. The intuitive result that it becomes increas-
ingly difficult to introduce additional arc length into a decreas-
ing amount of available surface area, contrasts with the behavior
observed above φc, in which the circular morphology arises as
a deformation mode. At equal φ0, penetration depths for circu-
lar packing are always greater than or equal to `p-values mea-
sured in folded packing configurations [Fig. 3]. This behavior
suggests that circular packing may be energetically preferable for
thin structures elongating within dense granular media (φ0 > φc)
in finite domains, commonly observed in root-bound plants in
need of re-potting37.

Values of `p remain nearly constant (at their maximum value)
after the initial buckling of the loop, however, inklings of the fi-
nal morphology only become apparent well into the post-buckling
regime [Figs. 1(v), 1(V)]: the loop continues to pack into the
grains, further densifying the surrounding granular network. We
quantify the evolution of the surrounding medium towards a
curved/circular profile by defining a radius of gyration Rg. Re-
call that the area of an ellipse (with semi-major/semi-minor axis’
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Fig. 4 (a) Injection of an elastic loop into a rigid container with R = 117.78
mm leads to periodic folding, while (b) injection into a container with
R = 54.51 mm leads to circular packing. The walls were cut with peri-
odic rounded features to reduce the contact area, and thus the friction,
between the loop and the wall. (c) Radius of gyration Rg, normalized by
the length L of the experimental enclosure, as a function of initial packing
fraction φ0 for folding (red diamonds) and circular (light blue circles) ge-
ometries. The scaling (2) (solid black line) yields a critical initial packing
fraction φt = 0.621.

{a,b}) Ae = πab, is equivalent to a circular area Ac = πR2
g, whose

radius we take as defining the radius of gyration Rg. This ap-
proach allows us to measure Rg in all experiments, as the elongat-
ing loop tends to accumulate in elliptically-bounded regions be-
low φc and in folded configurations [Fig. 2(ii)]. Balancing terms
between {Ae,Ac} shows that the radius of gyration: Rg ∼

√
ab

(where for circular morphologies a = b) [Fig. 2(iii)].
Measuring Rg over the range of φ0-values (using the freely-

available ImageJ platform38), we observe that for granular arrays
prepared at low to mid-range packing fractions, φ0 . 0.6, the elas-
tic loop exclusively adopts a folded geometry. In this regime the
slender structure is only weakly confined14. This behavior per-
sists up until a critical packing fraction φc = 0.641, where we begin
to see the emergence of the circular morphology. This does not
imply that we always observe circular packing for φ0 ≥ φc, only
that conditions within the system are now favorable for its emer-
gence. The absence of the circular morphology at lower initial
packing fractions reinforces the argument made previously with
ψ6 that a certain strength of confinement (i.e. level of rigidity) is
needed by the grains to observe circular packing: the grains must
be able to form and maintain a semi-circular boundary contour
against which the elastic loop deforms.

We speculate that the confining geometry necessary for the
transition between folded and circular patterns is defined by a
critical radius of gyration Rc. Given a 2D array of grains with
packing fraction φ0 ≥ φc, Rc is the circular inclusion that would
cause the array to jam locally, forming an effectively rigid con-
taining space within which the slender loop will pack. It was
previously found19 that the soft hydrogel grains used in these
experiments become jammed at a critical packing fraction φ j =
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Fig. 5 (a) An elastic loop, lengthening into a semi-circular rigid container with R = 54.95 mm, buckles at a critical force Fc in both folded (red diamonds)
and circular (light blue circles) configurations. Throughout the loading path (when S≥ S̃ = arc length at contact with rigid boundary), force values span
the same range as the reaction forces (b) generated in a compressed granular array as φ → φ j

19. (c) Rescaling the radius of gyration Rg by the critical
length Lc = 2π

√
B/Fc eliminates system size dependence. Notably, circular packing emerges when Rg and Lc are of the same order-of-magnitude

(shaded region). (d) Images of the elastic loop i. just prior to buckling and ii. immediately following buckling. iii. Images from i. and ii. overlaid on each
other, with the two regions of the loop that appear to buckle highlighted (dashed red; solid blue). The length of the iv. left and v. right half of the loop
that appears to buckle are labeled sc. Both labeled arc lengths are longer than 2Rg, meaning this structure will pack with a circular morphology.

0.8305±0.0135. As ∆ increases in the limit that φ → φ j, the total
surface area (available to the grains) within the array will change
by an amount proportional to a circular area ∼ πR2

c , such that:
φ j ∼ Nπr2/(LW −πR2

c)
‖. Rearranging to isolate for Rc yields the

scaling for the critical radius of gyration as:

Rc ∼
√(

LW
π

)
−
(

Nr2

φ j

)
. (1)

The RHS of Eq.(1) is composed entirely of known values, which
yields Rc ' 94.32 mm. We corroborate this scaling argument by
performing a set of additional “toy model" experiments where the
elastic loop is injected into circular, rigid walled confinements of
different sized internal diameters. This has the effect of removing
the granular part of the problem and creates a truly rigid con-
fining boundary with which we can test our initial assumption
of treating the jammed grains as a rigid, curved surface above
φc [Figs. 4(a)-4(b); videos S3 & S4]. Experiments using this toy
model produce a value for the critical radius of gyration Rt ' 99.19
mm, close to the value obtained using the scaling in Eq.(1).

Although the grains are absent in the toy model experiments,
we can still infer hypothetical values of φ0 associated with each
Rg tested for these idealized rigid boundaries. A simple rewriting

‖We can account for the surface area of the film by either ignoring it in the limit h� 1,
a safe assumption here, or considering it as being included in the measurement of
Rg.

of Eq.(1) yields the hypothetical φ0-value for a particular rigid
circular confinement region found in the toy model experiments
as:

φ0 ∼ φ j

(
1−

πR2
g

LW

)
. (2)

Rearranging to isolate for Rg/L, Eq.(2) is plotted as a solid
black line in Fig. 4(c), alongside experimental measurements
for both folded (red diamonds) and circular (light blue circles)
runs. The scaling (2) is in very good agreement with experi-
ments; it validates Rg as a measure of system physics and pro-
vides a lower bound to the experimental data expressing the pro-
visional/nominal system size14.

Normalizing Rg by an arbitrary system dimension creates de
facto system-size dependence; ideally, we want to be able to de-
scribe these elastogranular interactions in a scale-invariant way.
As a length scale of granular origin, Rg can be regarded as a proxy
for the geometric constraints a given grain configuration imposes
on the slender loop. The coupling between buckling in the thin
loop structure and the evolution of its granular containing space
depends on elasticity of the loop. Drawing on similarities with
other physical systems involving slender structures7,31,39–41, we
expect that a characteristic length scale will play an important
role in this coupled system.

Given the negligible effects of stretching and the fact that the
film’s width is much smaller than its length (b� S), we can invoke
the so-called “thin strip limit"42, in which the plate equations nor-
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mally needed to describe this problem become analogous to the
equations for thin rods. Therefore, the slender loop can then be
treated as an Euler column, where buckling occurs when S is in-
creased to a critical length Lc, such that42:

Lc = 2π
√

B/Fc. (3)

The bending rigidity B = EI of the slender loop (with Young’s
modulus E and second moment of area I = h3b/12) is calculated
using the “free-fold test” via the formula: B = 1.342µδ 3 (where µ

is the weight per unit length and δ is the height of the loop when
laying/placed on its side)43. The result, B = 20.70 N·mm2, com-
pares quite well with that obtained using material parameters for
PET commonly cited in the literature44, B = 21.46 N·mm2. Us-
ing the toy-model experiments, we directly measured the critical
buckling force Fc for the idealized case of a truly rigid confin-
ing boundary. We observe a buckling force of Fc ≈ −0.12 N for
both folded [red diamonds; Fig. 5(a)] and circular [light blue
circles; Fig. 5(a)] packing morphologies. We independently com-
pared this value to the reaction force of the grains measured as
the size of the container was decreased19, i.e. as φ is increased.
The critical buckling force of the elastic loop is proportional to
the reaction force measured at or just above the jamming point
φ j for these particular grains, where an effectively rigid, locally
jammed region of the granular boundary generates a reaction
force [Fig. 5(b)].

Fig. 5(c) shows Rg as a function of φ0, where Rg has been
rescaled by the critical length Lc = 82.52 mm. Circular packing
necessitates buckling of the slender loop (allowing it to accommo-
date excess length or “buffer-by-buckling"45) and the presence of
a circular confining boundary, conditions which become possible
when Rg and Lc are of equal orders-of-magnitude:

Rg = Rc ∼ Lc . (4)

The existence of this length scale helps illuminate the lack of
physical information provided by the penetration depth: Lc is the
length scale of elastic buckling. While we calculate Lc from inde-
pendent measurements of B and Fc, a natural question is: what
length of the elastic loop does Lc correspond to? Returning to
the toy model experiments, we isolate two images of the elastic
loop just prior to buckling [Fig. 5(d)–i.] and just after buckling
[Fig. 5(d)–ii.] Overlaying these images [Fig. 5(d)–iii.], we iden-
tify two portions of the elastic loop that appear to buckle at the
same time (one on the left half of the loop, the other on the right
half). Isolating each length that appears to buckle, and labeling
it sc, we would expect these structures to pack with a circular
morphology if we take Lc ≡ sc/2 and find that sc/2 ' Rg. We find
that both lengths are approximately greater than or equal to the
radius of gyration containing the loop (Rg = 67.2 mm; sc/2 = 66.9
mm [dashed red], sc/2 = 70.6 mm [solid blue]), which suggests
these lengths that appear to buckle are what drives the selection
of the packing morphology∗∗.

∗∗The transition between periodic folding and circular packing occurs when Rg/Lc . 1.
However, the curvature near the elastic loop is dictated by the local arrangement
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Fig. 6 Normalized maximum measured curvature κm as a function of
initial packing fraction φ0 for folding (red diamonds) and circular (light
blue circles) geometries. The yellow pentagon represents the anticipated
limiting behavior of this elastogranular system Inset: As φ0 → 0.907, the
maximum observable loop-tip curvature will approach a limiting value κh,
with a radius of curvature on the order of the average size grain radius in
an array.

In circular morphologies, the energy minimization strategy for
the elastic loop is essentially fixed once the circular profile is
formed. Additional injected arc length will wrap around this in-
ner circle similar to DNA spooling within a capsid46. We can
measure this radius value experimentally, or infer a value using
the scaling in (1). In folded morphologies, we observe the for-
mation of a cascade of loops increasing in number as either ∆ or
φ0 become larger, with loop-tip curvature values appearing to ap-
proach a limiting value κh. A similar situation has been observed
numerically in elastic rings with self contact47. The limiting cur-
vature κh is the largest amount the loop may be bent by the gran-
ular medium without inducing any plastic deformation. Due to
the monodispersity of the grains, we know a priori the granular
medium will approach a hexagonal-packing configuration as an
equilibrium geometry48,49. We thus anticipate that a loop-tip has
a limiting radius of curvature, 1/κh, on the order of the average
size grain radius r [inset, Fig. 6].

Along with material considerations, how slender structures de-
form depends intimately on their boundary interactions. For the
canonical case of elongating thin objects confined within rigid
containers, the geometry, stiffness, and boundary continuity of
the confining space can each contribute to the deformation mor-
phologies adopted by these objects. By studying elastogranular
packing, we are able to probe a system in which large elastic de-
formations occur within transitional boundaries. The discrete,
flexible network of the granular medium surrounding the loop
(at low packing fractions) will change under increasing confine-
ment, becoming more analogous to a continuous, rigid contain-
ing space. Simple experimental systems such as these provide a
novel investigative tool for looking at how macroscale geometric

of grains. If the grains pack with a large radius of curvature, the loop will pack
periodically, even if Rg/Lc . 1. To confirm this using our toy model, we injected an
elastic loop into an ellipse of Rg = 67.2 mm [see video S5], and find that it folds
periodically even though packing into a circular profile with equal Rg = 67.2 mm led
to circular packing [Fig. 4; video S4].
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features can arise in complex media, and how these features in
turn affect interactions with inclusions.
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An elastic loop, lengthening in 
a 2D granular array, will buckle 
into a characteristic folded or 
circular packing morphology.
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