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End-to-End Machine Learning for Experimental
Physics: Using Simulated Data to Train a Neural
Network for Object Detection in Video Microscopy’

Eric N. Minor,% Stian D. Howard,* Adam A. S. Green,“, Matthew A. Glaser?, Cheol S.
Park,* and Noel A. Clark?

We demonstrate a method for training a convolutional neural network with simulated images for
usage on real-world experimental data. Modern machine learning methods require large, robust
training data sets to generate accurate predictions. Generating these large training sets requires
a significant up-front time investment that is often impractical for small-scale applications. Here
we demonstrate a ‘full-stack’ computational solution, where the training data set is generated
on-the-fly using a noise injection process to produce simulated data characteristic of the experi-
mental system.We demonstrate the power of this full-stack approach by applying it to the study
of topological defect annihilation in systems of liquid crystal freely-suspended films. This spe-
cific experimental system requires accurate observations of both the spatial distribution of the
defects and the total number of defects, making it an ideal system for testing the robustness of
the trained network. The fully trained network was found to be comparable in accuracy to human

hand-annotation, with four-orders of magnitude improvement in time efficiency.

1 Introduction

Current generation physics experiments often produce data of
such complexity and volume that belie efficient analysis by clas-
sical algorithms2. The modern renaissance in machine learn-
ing®"> provides a potentially superior method to analyze such
complex data. Indeed, machine learning methods have been suc-
cessfully implemented in many scientific disciplines; from high-
energy physics®? and condensed matter physics®14 to biologi-
cal systems?. These machine-learning algorithms often preform
more robustly than previous state-of-the-art solutions=€,

A characteristic realization of a data set with both volume and
complexity is that of an image sequence produced by video mi-
croscopy, a ubiquitous method of dynamical systems analysis that
occurs in fields as disparate as biological systems1218 and hydro-
dynamics1220,

The analysis of video microscopy has long been stymied by the
inherent difficulty of extracting quantitative information from im-
ages?l. Except for very simple tasks, the classical algorithms to
extract quantitative information from these videos require very
specific conditions®2, requiring significant pre-processing and
strict human oversight. Often these ideal conditions cannot be re-
alized in an experimental setting, necessitating the bespoke anal-
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ysis of individual image frames, where manual extraction of quan-
titative data is required. This results in a significant bottleneck in
experimental analysis.

One common objective in the analysis of video microscopy is
the extraction of the spatial position of a defined target. Ma-
chine learning methods have already been deployed to great ef-
fect in this regard, where they prove capable of both spatially
labelling and categorizing human-defined objects2324, However,
these models are reliant on large, previously analyzed training
sets, where the target has already been identified and annotated.
The generation of these training sets requires a large, upfront
time investment that make them impractical for small-scale ap-
plications.

Here we report on an ‘end-to-end’ method, where the training
data and annotations, the list of spatial coordinates of targets, are
procedurally generated through computer simulation, allowing
for fast deployment of machine learning methods to small-scale
applications.

We demonstrate the robustness of our approach through the
analysis of defect-defect interactions in freely-suspended films of
smectic-C liquid crystal.

1.1 Background

A smectic phase is a liquid crystalline mesophase composed of
elongated molecules, with general orientational order between
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between the molecules and crystalline order along one axis.
The crystalline order segregates the phase into stacked sheets of
molecules that can flow freely in the plane, making smectic lig-
uid crystals ideal realizations of two-dimensional hydrodynamic
systems. Additionally, the molecules in the phase can be oriented
co-linearly with the smectic-plane normal vector (SmA) or can
be tilted with respect to the smectic-plane normal vector (SmC).
In the latter case, the molecular tilt breaks the isotropic nature,
giving the SmC phase a rich topological structure.

To first order, the Frank free energy that describes a sin-
gle smectic-c layer is well approximated by the continuous XY
model, which supports as ground-state solutions stable topolog-
ical defects. The theoretical?>"%%and experimental®%*33/ dynam-
ics of defects in liquid crystal systems has been studied since the
early 90’s. However, it is an open question how well the non-
hydrodynamic XY model describes the interaction of these topo-
logical defects in fluidic systems of liquid crystal materials.

Direct tests of the XY model could be made by observing the
total number of and nearest-neighbor distance of defects in the
coarsening dynamics of a quenched SmC film, but, as there cur-
rently exists no robust way to spatially track or label the defects
in these textures, this analysis must be done manually- severely
limiting the temporal resolution.

Machine-learning methods have already been successfully de-
ployed in studies of the XY model, with previous work demon-
strating the viability of using basic neural networks to identify
whether a given simulated data set contains a topological de-
fectl?. However, the work was focused on simulated system
states, consisting of molecule locations and orientations, rather
than experimental image analysis. Furthermore, the algorithm
that was utilized is purely for classification and did not give defect
counts or locations, limiting uses in experimental data analysis.

2 Experimental System

In order to confirm the veracity of our system, we collected physi-
cal data from a typical topological defect experiment. To generate
data for training the machine learning system, we used a simu-
lation to generate perfectly annotated images and then ran those
images through a data enhancement pipeline.

2.1 Experimental Defect Data

At the center of our experimental setup, shown in Figure [1} is
a pressure chamber with an open aperture on the top to draw
a film over. Air is pumped into the chamber, increasing pres-
sure and causing the film to bulge outward. A valve on the tube
is then opened to the atmosphere, rapidly equalizing the pres-
sure in the chamber. The valve is controlled by a computer pro-
gram that, upon reaching a predetermined pressure differential
between the chamber and atmosphere, opens the valve, triggers
the high-speed camera recording, and starts saving pressure read-
ings. The collapse of the film results in a mechanical quench,
which creates a high-energy state resulting in a large density of
defects in the film which rapidly annihilate.

SmC liquid crystal defects can be visualized with partially or
fully crossed polarizers. In our setup, polarized light is shined
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Fig. 1 Schematic of mechanical quench experiment. The syringe is cou-
pled to a translation stage, allowing for fine control. When depressed,
the compression increases the pressure in the quench chamber, causing
the film to bulge outwards. The pressure is monitored by a pressure sen-
sor (Honeywell SDX010IND4) which outputs a proportional voltage read
by a digital multimeter connected serially to a computer. The user can
enter a target threshold pressure in a program running on the computer,
which automatically triggers a quench when said threshold is reached.
The quench is triggered by sending a digital signal to a connected micro-
controlled (Arduino Uno) which first instructs the high-speed (Phantom
V12.2) camera to begin recording and then opens the solenoid valve,
venting the system to atmosphere. The resulting dynamics on the film
are captured by the camera as a video, which is then transferred to the
computer for further analysis.

perpendicularly onto the film. The reflected light is collected into
a microscope where it passes through a partially crossed polarizer.
Because of the birefringent nature of SmC liquid crystals, when
viewed under crossed polarizers the orientation of the molecule
is mapped to a reflected intensity as I o sin(20)?, where 0 is the
angle between the in-plane projection of the molecule (refered to
as the c-director) and the polarizer. However, working with fully
crossed polarizers dramatically decreases the reflected light, act-
ing as a significant limiting factor for the exposure time needed
to get viable images.
crossed polarization, which reflects more light. In this regime,
the reflected intensity is well approximated by I « cos(260), giv-
ing a characteristic ‘bowtie’ structure, as seen in Figure @34. A
high speed camera (Phantom V12.1) records the reflected light
in gray-scale at 500 frames per second with an exposure time of
1900 us, allowing us to directly view the coarsening dynamics of
the film.

Each video lasts 12.2 seconds, capturing the entirety of the
short term dynamics. The images, with 1104x800 resolution and
12 bit pixel precision, allow for high contrast to be gained in post
processing. We used PM22 to form a film that exists in a Smectic
C phase at room temperature. Figure |2| provides snapshots of the

Therefore, we work in a regime of de-
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data collected over a range of times.
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Fig. 2 Experimental data showing time evolution of a film with topological
defects viewed under reflection microscopy. Images are labelled with

the time elapsed since quenching. The topological defect appears as a
‘bowtie’ structure.

2.2 Simulation Data

Two methods were used to generate images for training the ma-
chine learning models to detect topological defects. The first
method procedurally generates textures by linearly adding a ran-
dom number of defects at random locations to an initially aligned
XY grid. In the XY model, a stable, zero-temperature solution
of the XY Hamiltonian is given by the plus/minus defect director
configuration:

¢(x,y) = Larctan (yfy()) + ¢o, (@D)]
X — X0

where ¢y is a phase offset which was also randomized, and (xg, yo)

is the location of the defect.

In this way, arbitrarily complex defect configurations can be
generated. The c-director can be mapped to a scalar intensity
value using the Schlieren mapping I = cos(2¢), giving a reason-
able facsimile of experimental observations of defect configura-
tions in freely-suspended films. Because the method involves lin-
ear superpositions of zero-temperature solutions, it produces very
clean images that are free of thermal noise, as seen in Figure
(a). This simulation method will be referred to as the ‘random
defect’ model.

The second method is based on directly simulating the dynam-
ics of the XY model at a finite temperature as it evolves from
a high-density defect configuration233637, The angle of the c-
director at each lattice site i evolves according to the discretized
Ginzburg-Landau model through the Euler update scheme as:

)4k Y sin(g;(

@it +Ar) = @;(t) — A (ni(f
()

1) — <Pj(t))> 2

where x is a visco-elastic constant, and 1); is a random number
with moments that correspond to the temperature through the
fluctuation-dissipation theorem:

(Mi(t)n; (")) =218 j6(r —1') 3)

Using the Chester-Tobochnik method38, the defect locations can
be extracted by calculating the winding number around each lat-
tice plaquette. This is done by computing the successive differ-
ences in angles as the plaquette is circumnavigated, defined as:
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Fig. 3 Typical image from random-defect simulation (a) and thermal-
defect simulation (b).

A@ = 27n; + 6, where 6 is restricted to the range (—x, 7). The
vorticity of the square is equal to the sum of the n;’s, and can be
either positive or negative. In this way, the locations and number
of the defects for each time-step in the system can be extracted
in an automated annotation process. This method of directly sim-
ulating the XY model is capable of producing a wide variety of
textures with different amounts of director fluctuations, shown
in Figure [3| (b). This method will be referred to as the ‘thermal-
defect’ model. The inclusion of temperature means these simu-
lations more strongly conform to the experimental observations,
making the thermal-defect model the preferred method. When
generating the training set for the machine learning pipeline,
2000 images were created. When using the XY model, 20 sim-
ulation runs were performed with 100 images captured per run.

3 Topological Defect Tracking

In order to make a system viable for usage with real experiments,
we developed a pipeline that makes use of modern deep-learning
object detection and image enhancement techniques to train a
model capable determining both the location and count of objects
in an image.

3.1 Pipeline and Image Enhancement Motivation
For object detection we used darkflow?, a TensorFlow imple-
mentation of the YOLOv2 algorithm™? that offers improved per-
formance when compared to the original YOLO algorithm.
YOLOV2 learns to perform both region proposal and region clas-
sification using the darknet-19 architecture. Training the re-
gion proposal mechanism is important for defect identification
as detection algorithms that rely on traditional heuristic searches,
such as R-CNN%2 and its successors, Fast R-CNN43 and Faster R-
CNN*4, would likely fail to identify defects as objects. Training
and testing darkflow on a set of 2000 simulated 200x200 images,
with each image containing 20 defects, showed that this network
is viable for detecting the locations of defects in simulation data.
However, data enhancement techniques are necessary to make a
network trained on simulated images viable for application to real
data.

Machine learning algorithms, by nature, optimize themselves
to perform as well as their architecture allows on the given train-
ing data. While this can lead to highly effective systems, it is
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the primary reason why training on a set of simulated data of-
ten makes the final model non-viable in the real world; simulated
data is highly predictable and clean while real-world data can
have significant noise and variance in how key objects appear. By
training on the simulated data, the system will over-fit45H6 on
the very specific shapes, textures, and gradients produced by the
simulation. Our solution for training a model on simulated data
to analyze real data is to introduce various artifacts that mimic
real-world inaccuracies into the simulated images.

3.2 Standardization and Simulated Image Enhancement
The first issue that needs to be dealt with is lighting and con-
trast. In simulated defect images, the intensity of a pixel ranges
from perfectly black to perfectly white depending on the director
orientation, maximizing the gradients and contrast in the image.
The mean intensity of the image will also generally be around 0.5
on a scale from 0 (black) to 1 (white) since there is no offset to
the image brightness. When using an experimental image, the
difference in brightness between perfectly aligned and perfectly
misaligned directors is much smaller than the full dynamic range
of the image, which causes smaller gradients. The average bright-
ness of the experimental data is rarely 0.5, so what constitutes
bright and dark pixels is more complex than just the intensity of
the pixel. To make the simulation and experimental images as
similar as possible in regards to average intensity and dynamic
range, a variant of the basic feature standardization procedure®”
is used. Each pixel’s intensity value is set according to the feature
standardization formula

¥Y=""Y40s @

60

where x’ is the output pixel intensity, x is the input intensity of
each pixel and o is the standard deviation of the global image
pixel intensities. The output images have a mean pixel intensity
of 0.5 and a dynamic range of six standard deviations. This pro-
cedure reasonably standardizes the lighting and contrast of the
images regardless of the actual lighting and camera conditions,
providing consistency across multiple data sets.

Adding imperfections to the simulated images emulates the ex-
perimental data and improves the robustness#49 of the neural
network model. Gaussian blurring, Fourier noise, randomized
image variance, randomized lighting boundaries, and arbitrary
objects each target identified inconsistencies between simulation
and experimental data. The alterations increase the image variety
in our training data-set and teach the model that these imperfec-
tions are to be ignored when attempting to detect defects.

Due to the relatively low lighting of the experimental images,
the camera read noise, generated by the camera hardware when
reading information from the CCD (Charge-Coupled Device), is
significant relative to the signal size. Applying a 2-D discrete
Fourier transform, the composition of the image is extracted in
the frequency domain®Y, shown in Figure E where the periodic
read noise appears as regularly-spaced lines. This characteristic
camera noise is added as low-frequency noise to the simulated
data set to increase similarity to experimental data, shown in Fig-
ure@lc.
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Fig. 4 Image standardization and periodic noise extraction. a) Raw im-
age with an island. b) Standardized image. c) Magnified Fourier trans-
form of standardized image. d) Magnified noise extracted from the image.

When collecting experimental data, it is rare that perfect fo-
cus is consistently achieved. In the quenching experiment, there
are additional film fluctuations as the pressure on the two sides
of the film equalize, resulting in a shifting focus point as the film
moves. The lighting conditions can change significantly for differ-
ent experimental setups. In particular, film thickness and camera
settings have an impact on the intensities of light captured by the
camera. Randomized Gaussian blurring emulates the non-perfect
and variable focus of the experimental data, shown in Figure [f]
(b). The overall brightness and dynamic range of the simulated
images is randomized to prevent the model from being dependant
on specific light intensities or gradient magnitudes unique to the
simulation.

The final additions to the simulated images are randomized
lighting domains and circular artifacts. Observing the pattern of
defect detections from previous models, it was discovered that
detections would be made along lines where the lighting abruptly
shifts. The microscope aperture and the boundaries between CCD
sectors, which consistently read slightly different pixel intensities,
generate the light shifts. To prevent this, the simulation images
were broken into four quadrants of randomized size, with each
quadrant having slightly different brightness. False detections
were also made around the boundaries of islands, which are re-
gions in liquid crystal films with additional layers of material. To
prevent this, circles of random brightness were added to the sim-
ulation data to provide neutral examples®! of non-defect objects
that should not affect detections, shown in Figure |§kc).
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3.3 Effects of Simulated Image Enhancements

To evaluate the effectiveness of each component in the pipeline,
several models were trained on simulated images enhanced by
various combinations of pipeline components. The models were
validated using a hand-annotated set of experimental images to
determine how well they performed on real data relative to hu-
man performance. The efficacy of the machine learning can be
quantified through the precision and the recall. Precision describes
the accuracy of object detection. Recall describes how many of
the objects in the image we detect. Rigorously, these quantities
are defined as follows, where TP represents the true positive de-
tections, F P represents the false positive detections, and FN rep-
resents the false negative detections.

TP

Precision = ———— 5
recision TP+FP ( )
TP
Recall = ————— (6)
TP+FN

The model provides a confidence score for each detection. A
threshold is set to drop low confidence detections. A low thresh-
old will increase recall while lowering precision; a high threshold
will have the opposite effect by only using the few detections that
have a high likelihood of being correct. mAP and peak F1 scores
are used to characterize the model across all thresholds. AP is the
Average Precision across all recall scores and is a general mea-
sure for the effectiveness of the model across all thresholds. mAP
is the mean AP across all detected classes, however since we are
only training to identify defects, mAP is effectively equivalent to
AP. The F1 score is the harmonic mean of the precision and recall,
and it provides an overall ‘goodness’ measure in regards to recall
and precision at a specific threshold. We recorded the maximum
F1 score of each model to provide a measure of the peak model
performance when choosing an ideal threshold. The mAP>% score
can be thought of as measuring average performance without set-
ting a minimum confidence threshold while peak F13 score mea-
sures the highest obtained performance over all thresholds. Using
p(r) to represent the precision at a given recall value and » to rep-
resent the total number of detections, AP and F1 can be defined
as follows:

Precision x Recall

Fl1=2 7

¥ Precision+ Recall

AP = /Olp(r)dr

however, in order to use AP for real data the formula must be
discretized into
n
AP = Z pinterp(r) (8)
r=1
where
pinterp(r) = max?:?>rp(f)
Using the max function smooths the AP curve, preventing the lo-
cal dips at each false detection from affecting the global score. In
Fig. the mAP score is represented by the area of the shaded
region.
Simulated training images enhanced with only blurring, ran-
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Fig. 5 Precision-Recall plot for the highest scoring model, with inset
showing a characteristic annotated video still, with blue circles showing
hand labelled defects and red crosses showing YOLO detections. mAP
score is the percentage of area shaded between (0,0) and (1,1). Con-
ceptually, this means that an average precision of 81.78% was achieved
across all possible recall values

dom islands, random lighting quadrants, or randomized image
brightness and contrast produced models that performed poorly
on experimental images. On validation, these models received
mAP scores of < 30%. Simulated images enhanced only with
noise extracted using the Fourier transform produced a viable
model, however the mAP score only reached 53.3%.

Adding multiple types of noise to the simulated images pro-
duced greatly improved models. Combining all types of arti-
facts produced a model with a mAP score of 59.0%, however this
was outperformed by a model trained using only Fourier noise
and randomized blurring which achieved a mAP score of 69.3%.
Adding all forms of noise at a lower intensity to the simulated
images produced a model with a mAP score of 74.9% [Fig. []d].
This suggests that a balance must be struck between making mod-
ifications and maintaining enough clarity to identify objects when
training.

The original YOLOv24? paper reported an average mAP score
of 73.4% when tested using the Pascal VOC2012 test set, which
puts the detection accuracy of our model trained with simulated
images on par with models trained using real images. This sup-
ports the viability of training YOLO object detection models with
simulated data for use on experimental data.

3.4 Improvements Using the XY Model
Models trained with data produced from the simulation using a
Landau-Ginzberg implementation of the XY model yielded im-
proved accuracy. Landau-Ginzberg simulations provide thermal
noise, as we see in our real data, and emulate natural defect sys-
tems. With no image modifications, a model trained on simu-
lated images from the XY simulation attained a 47.4% mAP score,
a significant improvement over the 2% achieved with the model
trained on the raw random defects data.

The Landau-Ginzberg simulations are highly time-dependent
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Fig. 6 Simulated images enhanced with various types of noise. (a) Im-
age with dramatic lighting shifts and added circles (islands) (b) Image
with Gaussian blurring (c) Image with Fourier noise (d) Image with all
three

Table 1
Scoring of Models Trained
on Simulated Images with Various Artifacts

Artifacts Added Peak F1 mAP
LG, L-FN, L-RV, L-RB, L-GB, L-DC, RD, LR  0.811 0.818
LG, L-FN, L-RV, L-RB, L-GB, L-DC, RD 0.817 0.808
LG, FN, RV, RB, GB, DC, RD 0.806 0.783
L-FN, L-RV, L-RB, L-GB, L-DC, RD 0.754 0.749
FN, RB 0.744 0.738
FN, RV 0.726 0.725
FN, RV, RB, GB, DC, LT 0.740 0.700
FN, GB 0.707 0.693
FN, RV, RB, GB, DC, RD 0.683 0.663
FN, RV, H-RB, GB, DC, RD 0.661 0.643
FN, RV, RB, H-GB, DC, RD 0.635 0.626
FN, RV, RB, GB, H-DC, RD 0.632 0.620
H-FN, RV, RB, GB, DC, RD 0.640 0.617
FN, RV, RB, GB, DC 0.613 0.590
FN, H-RV, RB, GB, DC, RD 0.587 0.579
FN 0.569 0.533
LG 0.513 0.474
RB 0.442 0.270
RV 0.423 0.260
GB 0.296 0.116
Raw Random Defect Sim 0.099 0.020
Key

FN: Fourier Noise

RV: Random Variance
RB: Random Boundaries
LR: Long Simulation Run

GB: Random Gaussian Blurring LT: Longer Training Time

DC: Randomized Decross Angle  L-XX: Lowered randomization of XX
RD: Randomized Defect Number H-XX: Higher randomization of XX
LG: Used LandauGin Simulation

with defect counts following a power law. This means that a linear
reduction in defect number requires an exponential amount of
time. If we train a model with only early time simulation images,

6| Journal Name, [year], [vol.],1-|§|

where there is a high density of defects in the training data, the
model will perform worse on images with a lower defect density.
As such, the best performing models require long simulation runs
to generate training data with a wide variety of defect densities.

Similar to the random defect simulation data, the best results
are attained with a lower intensity of many different forms of
noise, achieving a mAP score of 81.8%7] A full account of the
artifacts added when training models and the evaluation metrics
for each model can be found in Table 1.

3.5 Model Applications

When applying the model to data, a threshold needs to be set
to eliminate low-confidence detections. To maximize the trade-
off between precision and recall, the threshold corresponding to
the model’s peak F1 score is used. To evaluate the applied per-
formance of the system, we use the top-scoring model that em-
ployed Landau-Ginzberg simulation and moderate levels of image
enhancement.

A straightforward application of the model is counting the de-
fects per frame in a video. Accurately resolving the defect number
as a function of time would allow direct experimental probes of
the applicability of the XY model in these systems of SmC liquid
crystals. The model results, as seen in Figure|2| (a, ¢, and e), show
broad agreement with results obtained from human annotations.
Furthermore, it should be noted the human annotations started
when annotators judged that defects could be reliably marked.
However, the model was capable of producing defect counts at
significantly earlier times consistent with the observed scaling.

The spatial distribution of the defects can also be studied. The
XY model makes definitive predictions for the spin-spin correla-
tion length®®, If the YOLO detections can accurately resolve the
spatial distribution of the defects, then measuring the average de-
fect nearest-neighbor distance would allow for a high-resolution
test of the XY predictions. The accuracy of the nearest neighbor
distance is demonstrated in Figure |2| (b, d, and f). Though there
appears to be a systematic bias, where the YOLO detections are,
on average, farther apart than the hand-labelled defects, the im-
portant dynamics are captured by the scaling of the nearest neigh-
bor distance with time, which is resolved by the slope. As the the
slope of both methods are consistent, this gives confidence for
using the YOLO method for spatial analysis.

Additionally, as seen in Figure 7, the YOLO model was able to
reliably detect defects at early times where the high density of
defects distorts the signature ‘bowtie’ shape. This is a significant
advantage over human-based detection efforts, which were un-
able to reliably detect defects in these textures (the first panel of
Figure 2 is an example of what these early textures look like).

This increase in detection ability allows the XY model’s scaling
predictions to be tested at times that have previously never been
experimentally accessible in liquid crystal systems®. Further dis-
cussions of this will be presented in an upcoming publication.

+ To benchmark the performance of our system, we can directly compare it to a model
trained solely on experimental data. Using a 60/40 train/test split of the 141 exper-
imental image set resulted in a mAP score of 38.93%.
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Fig. 7 Validating YOLO defect detections. (a,c,e) show number of defects vs. time for three separate videos, comparing YOLO results with hand
annotated results. (b,d,f) show defect nearest neighbour distance vs. time for three separate videos, comparing YOLO results with hand annotated

results.

Another application of the YOLO model to these systems is in
measuring the dynamics of isolated defects. Reliable defect track-
ing requires the model to be consistently capable of precisely lo-
cating defects over a larger number of frames — a common yet
challenging goal in the machine learning paradigm. We make use
of the Trackpy Python module, a package of functions specializing
in particle tracking, to link identified objects through consecutive
images over time. The end result is a linked path for each defect,
as seen in Figure

To numerically rate the performance of our defect tracking, we
compare the track to human annotated defect locations. Error
is calculated by taking the root mean square of the distance in
pixels between each human annotated defect location and the
nearest neighbour path. For the test case in Fig. using the
best performing model, we found the error to be 1.03 pixels. This
shows that our machine learning pipeline is capable of tracking
objects to a similar quality as a human, making it a viable method
for high precision automation.

Fig. 8 Computer tracked paths are represented by lines. Human annota-
tions are represented by X’s. The defects being tracked are circled. Not
all tracked defects were present in a single frame, resulting in there be-
ing more tracks than circled defects. Some false detections were made,
however tracks with few defect detections were omitted for clarity.
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3.6 Computational Performance

Running the model on 1104x800 images takes approximately
0.07 seconds per image with an 8 second startup overhead on
a 2017 GeForce® GTX 1080 GPU. Using an i7-7700K CPU, the
model took 4.62 seconds per image with a 10 second startup
overhead. When trained on the aforementioned GPU, it took
0.51 seconds per iteration using a batch size of 8 with a 12 sec-
ond startup overhead, or approximately 0.064 seconds per image.
When trained on the CPU, the time per image was approximately
3 seconds. This demonstrates the viability of using a YOLO model
for rapid image data analysis, especially when used in conjunc-
tion with a modern GPU. Using a GPU, a model trained for 40
epochs on a training-set of 1000 images takes approximately 1-
1.2 hours. Training an identical model on the CPU is estimated to
take between 20-40 hours, however this was not explicitly mea-
sured.

4 Results and Discussion

We examined the viability of using simulated images to train a
modern machine learning, object detection algorithm for use in
small scale applications. We demonstrate a general methodology
for creating diverse training data that results in viable models
with predictive power. By pairing a randomization process with
the injection of characteristic experimental noise, we were able to
build viable training data from simple computational simulations.

It was found that a model trained on unmodified simulated im-
ages produced a model that performed poorly on experimental
images. After increasing the diversity of simulated images via our
general modification pipeline, it was found that model perfor-
mance was greatly improved on experimental images, with mAP
score peaking at 0.818 from a raw score of .02, with a correspond-
ing peak F1 score of 0.811. A model was also trained on the small
dataset of annotated experimental images we produced. The re-
sulting model had an AP score of 38.93%, showing that for small-
scale purposes, enhanced simulated data can produce superior
models. The model resulted in comparable spatial and number
resolution to the human annotations, with significant decrease in
the time-per-frame (faster analysis), resulting in a dramatic in-
crease in the time-resolution (more frames analyzed). Addition-
ally, the model was able to out-perform human analysis in high
defect density images, which significantly supplemented the us-
able data.

When used in conjunction with Trackpy, the model was able
to track defects with an error of 1.03 pixels compared to human
annotations. This could potentially be generalized to other non-
trivial targets, such as active-matter nematic defects22120
tracking biological systems such as cells®Z. This method is fast,
accurate, and easily trainable on new object types, making it a
useful and versatile method for video data analysis.

or even
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