
Deep Learning for Automated Classification and
Characterization of Amorphous Materials

Journal: Soft Matter

Manuscript ID SM-ART-09-2019-001903.R1

Article Type: Paper

Date Submitted by the
Author: 15-Nov-2019

Complete List of Authors: Swanson, Kirk; University of Chicago, Department of Computer Science;
University of Chicago, Pritzker School of Molecular Engineering
Trivedi, Shubhendu; MIT, Computer Science and Artificial Intelligence
Laboratory; Brown University, Institute for Computational and
Experimental Research in Mathematics
Lequieu, Joshua; University of California Santa Barbara, Materials
Research Laboratory; University of Chicago, Pritzker School of Molecular
Engineering
Swanson, Kyle; MIT, Computer Science and Artificial Intelligence
Laboratory
Kondor, Risi; University of Chicago, Department of Computer Science;
University of Chicago, Department of Statistics; Flatiron Institute, Center
for Computational Mathematics

Soft Matter

Deep Learning for Automated Classification and Char-
acterization of Amorphous Materials†

Kirk Swanson,∗ab Shubhendu Trivedi,cd Joshua Lequieu,be Kyle Swanson,c and Risi
Kondora f g

It is difficult to quantify structure-property relationships and to identify structural features of com-
plex materials. The characterization of amorphous materials is especially challenging because
their lack of long-range order makes it difficult to define structural metrics. In this work, we apply
deep learning algorithms to accurately classify amorphous materials and characterize their struc-
tural features. Specifically, we show that convolutional neural networks and message passing
neural networks can classify two-dimensional liquids and liquid-cooled glasses from molecular
dynamics simulations with greater than 0.98 AUC, with no a priori assumptions about local parti-
cle relationships, even when the liquids and glasses are prepared at the same inherent structure
energy. Furthermore, we demonstrate that message passing neural networks surpass convo-
lutional neural networks in this context in both accuracy and interpretability. We extract a clear
interpretation of how message passing neural networks evaluate liquid and glass structures by
using a self-attention mechanism. Using this interpretation, we derive three novel structural met-
rics that accurately characterize glass formation. The methods presented here provide us with a
procedure to identify important structural features in materials that could be missed by standard
techniques and give us a unique insight into how these neural networks process data.

1 Introduction
Classifying material structures and predicting their properties are
important tasks in materials science. The behavior of materials
often depends strongly on their underlying structure, and un-
derstanding these structure-property relationships relies on ac-
curately describing the structural features of a material. How-
ever, quantifying structure-property relationships and identifying
structural features in complex materials are difficult tasks.

A variety of standard techniques have been developed to an-
alyze material structures. Some of the most common techniques

a Department of Computer Science, The University of Chicago, Chicago, IL 60637. E-
mail: swansonk1@uchicago.edu
b Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL
60637.
c Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139.
E-mail: shubhendu@csail.mit.edu, swansonk@mit.edu
d Institute for Computational and Experimental Research in Mathematics, Brown Uni-
versity, Providence, RI 02903.
e Materials Research Laboratory, University of California, Santa Barbara, CA 93106.
E-mail: lequieu@mrl.ucsb.edu
f Department of Statistics, The University of Chicago, Chicago, IL 60637. E-mail:
risi@cs.uchicago.edu
g Center for Computational Mathematics, Flatiron Institute, New York, NY 10010.
† Electronic Supplementary Information (ESI) available. See DOI:
10.1039/cXsm00000x/

include the Steinhardt bond order parameters,1 Bond Angle Anal-
ysis (BAA),2 and Common Neighbor Analysis (CNA),3 which are
useful for detecting order-disorder transitions and differentiating
between crystal structures in ordered samples.4,5 Radial distribu-
tion functions, which measure a spatial average of interparticle
distances, are also widely used for analyzing different materials
and phases.6

However, these standard techniques have limitations, espe-
cially for analyzing weakly crystalline or amorphous materials.
As discussed in Reinhart et al.,4 the Steinhardt bond order pa-
rameters can be stymied by thermal fluctuations or ambiguous
crystal structures. BAA relies on a small set of crystalline refer-
ence structures that may not be present in amorphous samples.
CNA is more flexible than BAA, but it cannot provide accurate in-
formation about particles that do not exhibit known symmetries,
making analysis of irregular structures challenging. Radial distri-
bution functions rely on spatial averaging, which interferes with
the ability to characterize complex anisotropic structures.

To overcome some of these limitations, recent studies have fo-
cused on developing machine learning algorithms to automate
material structure characterization. Many of these studies have
concentrated on using supervised machine learning for crystal
structure identification and have shown improvements over stan-
dard techniques. Geiger and Dellago and Dietz et al.,5,7 for ex-

Journal Name, [year], [vol.],1–13 | 1

Page 1 of 14 Soft Matter

ample, classify crystalline structures in polymorphic and mixed
phase systems more accurately by using a set of local structure
functions that are fed into a neural network. Ziletti et al.8 use
convolutional neural networks to automate the process of classi-
fying crystal symmetries, even in the presence of substantial de-
fects, using images of computationally generated diffraction pat-
terns. Similar supervised learning methods have been used to an-
alyze a variety of other ordered systems, including graphene.9–12

Other studies have concentrated on crystal structure iden-
tification using unsupervised learning techniques, such as
dimensionality-reduction algorithms. These unsupervised meth-
ods allow for the discovery of previously unidentified local struc-
tural features, a task that is often out of reach for standard meth-
ods and many supervised learning algorithms. For example, Rein-
hart et al.4 use diffusion maps and clustering to identify new lo-
cal structures in colloidal crystals, and Spellings and Glotzer13

use spherical harmonic functions in conjunction with Gaussian
mixture models to automatically identify different crystalline ar-
rangements without relying on a set of reference structures. Un-
supervised learning has also been used to study systems ranging
from Lennard-Jones crystals to proteins.14–19

Although these machine learning approaches have shown sub-
stantial improvements over standard techniques when applied to
a variety of systems, many of them still rely on the development of
complex, hand-crafted descriptors of local particle environments.
The results of machine learning analyses can be quite sensitive
to the definitions of these descriptors.14 Moreover, most of these
studies have focused on characterization of crystalline or semi-
crystalline structures, with little attention given to analysis of
completely amorphous systems such as glassy materials.

The characterization of glassy systems is especially challenging
because their lack of long-range order makes it difficult to define
structural metrics. Nevertheless, several recent studies have been
able to manually identify structural metrics for glassy systems. For
example, Hu et al.20 define a metric, the average degree of local
fivefold symmetry, that can differentiate between configurations
of metallic liquids and glasses and that has a quantitative rela-
tionship with dynamics during glass formation. Reid et al.21 use
a similar fivefold symmetry metric, based on the spherical har-
monic functions, to compare the structures of two-dimensional
liquid-cooled and vapor-deposited glasses.

There are also some recent studies that successfully used super-
vised machine learning to uncover previously unknown relation-
ships between structure and dynamics in glassy materials,22–30 in
addition to some earlier work that explored unsupervised learn-
ing to that end.31 In the supervised learning approaches, an al-
gorithm, called the support vector machine, is used to define a
metric, called "softness," that identifies populations of particles
that are likely to dynamically rearrange. In this context, "soft-
ness" is used to link structure and dynamics, but it is not used
to directly identify local structural features or to classify different
material structures.

In this work, we use deep learning to accurately classify amor-
phous materials and to derive new metrics that characterize their
structures. We use two-dimensional liquids and liquid-cooled
glasses generated by molecular dynamics simulations as archety-

pal examples of amorphous materials. Our classification algo-
rithms make no a priori assumptions about local relationships be-
tween particles and are not dependent on complex hand-crafted
descriptors that define local particle environments.

We explore the application of two different types of deep learn-
ing algorithms: convolutional neural networks and message pass-
ing neural networks. Convolutional neural networks have been
used in a variety of material classification tasks,8–10,12 including
the classification of ordered and disordered configurations from
simulations of the Ising model,32–34 but to the best of our knowl-
edge they have never before been used to classify different amor-
phous material structures from molecular dynamics simulations.
By rendering particle configurations of liquids and glasses as two-
dimensional images, we are able to distinguish between them
with high accuracy using convolutional neural networks. How-
ever, there are several limitations that accompany the use of con-
volutional neural networks, including the potential introduction
of artifacts via image rendering and limited interpretability.

We overcome these issues by using message passing neural net-
works that operate directly on the Cartesian coordinates of parti-
cles by representing a configuration of particles as a graph. Mes-
sage passing neural networks have been used previously to pre-
dict properties of molecules, such as toxicity and solubility,35–42

and to predict properties of crystals, such as formation energy
and shear modulus.43 However, to the best of our knowledge
message passing neural networks have never before been used to
classify different amorphous material structures from molecular
dynamics simulations. By representing particle configurations of
liquids and glasses as graphs, we are able to distinguish between
them with high accuracy using message passing neural networks.
Moreover, by using a technique called self-attention, we are able
to extract an interpretation of how message passing neural net-
works evaluate liquid and glass configurations. Using this inter-
pretation, we derive three novel structural metrics that character-
ize glass formation and that can differentiate between liquid and
glass configurations without the use of machine learning. This
not only provides us with a general method for identifying impor-
tant structural features in amorphous materials, but it also gives
us a unique insight into how these neural networks process data.
This result provides clear proof of concept that message passing
neural networks could be used in more complex and demand-
ing classification and characterization tasks that stymie standard
techniques.

2 Methods

2.1 Simulation Details

Glasses are kinetically arrested states of matter which are gener-
ally prepared by cooling a liquid to temperatures below the glass
transition, Tg, of the corresponding bulk material.21 When cool-
ing is sufficiently rapid, the system avoids crystallization and in-
stead solidifies into a glass, an amorphous state which has an
atomic structure similar to that of a liquid but with the mechan-
ical properties of a solid. The specific properties of these liquid-
cooled glasses depend on the rate at which they are cooled, as
lower cooling rates lead to materials that lie deeper in the under-

2 | 1–13Journal Name, [year], [vol.],

Page 2 of 14Soft Matter

(a) (b)

Fig. 1 (a) Average inherent structure energies per particle as a function of temperature for 10,000 configurations with tcool = 2× 105 and 10,000
configurations with tcool = 2×107. Tg for each curve is calculated as the intersection of linear approximations to the supercooled liquid regime and the
glass regime, as shown by the dotted black lines. We consider configurations at temperatures above Tg to be liquids and configurations below Tg to be
glasses. The magenta and blue points indicate the temperatures at which we select glass and liquid configurations for dataset 6, respectively. Standard
deviations of energy values, not shown here, are on the order of 10−3. (b) Average inherent structure energy per particle as a function of temperature
for the 10,000 configurations with tcool = 2× 107. The magenta point indicates the temperature at which we select glass configurations for datasets 1
through 5. The blue points indicate the temperatures at which we select liquid configurations, labeled by dataset number.

lying potential energy landscape.
To simulate two-dimensional liquids and liquid-cooled glasses,

we used the Kob-Andersen model, which consists of a binary mix-
ture of spheres whose glass-forming behavior in the bulk has been
studied extensively.44 This binary mixture is comprised of 65%
type A and 35% type B particles which have unit mass and which
interact according to the pairwise Lennard-Jones potential,

Vi j(r) =

4εi j

[(
σi j
r

)12
−
(

σi j
r

)6
]

r ≤ rcut,i j

0 r > rcut,i j

i, j ∈ {A,B},

where r is the distance between a pair of particles, εi j charac-
terizes the depth of the potential, and σi j characterizes the finite
distance below rcut,i j at which the potential is zero. Specific pa-
rameter values for different values of i and j, given in Lennard-
Jones units, are shown in Table 1.

Table 1 Lennard-Jones parameters for simulations of liquids and liquid-
cooled glasses. Note that εi j = ε ji, σi j = σ ji, and rcut,i j = rcut, ji

ε σ rcut
εAA = 1.00 σAA = 1.00 rcut, AA = 2.50
εAB = 1.50 σAB = 0.80 rcut, AB = 2.00
εBB = 0.50 σBB = 0.88 rcut, BB = 2.20

We performed 20,000 independent simulations of this model
using LAMMPS. ‡ Each simulation contained a fixed total of 4,320
particles in a simulation box of length 60σAA in the x- and y-
directions.§ Each simulation was performed in the canonical NVT
ensemble with periodic boundaries in the x- and y-directions, and
the temperature was reduced linearly from an initial temperature

‡See https://lammps.sandia.gov/.
§ We chose this system size to be consistent with the simulations in Reid et al. 21 The

units used in these simulations are Lennard-Jones units.

of 2.0 to a final temperature of 0.05 in Lennard-Jones units us-
ing a Nose-Hoover thermostat for tcool simulation steps. During
each simulation we recorded the inherent structure energy per
particle of the system using the FIRE minimization algorithm.45

The inherent structure energy of a configuration, used to quan-
tify a configuration’s stability, is the potential energy brought to
its local minimum.21

Each of these simulations models a liquid that cools and so-
lidifies into a glass below Tg. For 10,000 of the simulations we
used tcool = 2× 107 cooling steps, and for the other 10,000 we
used tcool = 2× 105 cooling steps. We calculated the average
glass transition temperature, Tg, for each cooling rate by identi-
fying two linear regimes in each of the average inherent struc-
ture energy curves, one corresponding to the supercooled liq-
uid regime and the other to the glass regime.46 We then fit the
data in these regimes and calculated the intersection point, as
shown in Figure 1(a), which gives Tg ≈ 0.37 for tcool = 2×107 and
Tg≈ 0.39 for tcool = 2×105. The glass configurations generated us-
ing tcool = 2×107 are at a lower average inherent structure energy
than those generated using tcool = 2× 105 because tcool = 2× 107

corresponds to a lower cooling rate.

2.2 Datasets

Our goal was to train machine learning algorithms to perform a
binary classification task: identify a particle configuration as a
liquid or a glass. To that end, we used the particle configurations
generated by the simulations described in §2.1 to construct six
datasets.

Datasets 1 through 5 are each composed of 10,000 glass con-
figurations and 10,000 liquid configurations, all taken from the
simulations with tcool = 2×107. The glass configurations in each
dataset are all at a temperature of 0.05. In order of increas-
ing dataset number, the liquid configurations are at temperatures

Journal Name, [year], [vol.],1–13 | 3

Page 3 of 14 Soft Matter

1.99, 1.76, 0.96, 0.55, and 0.44, as enumerated in Figure 1(b).

In datasets 1 through 5, the liquid configurations are at higher
inherent structure energies than the glass configurations. In order
to compare liquid and glass configurations at the same average
inherent structure energy, we constructed dataset 6, labeled in
Figure 1(a). This dataset has 10,000 glass configurations at a
temperature of 0.05 taken from simulations with tcool = 2× 105

and 10,000 liquid configurations at a temperature of 0.55 taken
from simulations with tcool = 2×107.

Each dataset serves as a test for a machine learning algorithm’s
ability to distinguish between amorphous material structures,
and they are numbered roughly in order of increasing difficulty.
Dataset 1 represents a relatively easier test, because the liquid
and glass configurations in this dataset have a large difference
in average inherent structure energy and distinctly different local
structures, as exhibited by their average radial distribution func-
tions (see Figure 1 in the Supplementary Information†). Datasets
2 through 5 represent increasingly difficult tests as the differences
in average inherent structure energy decrease and the radial dis-
tribution functions converge. Dataset 6 represents one of the most
difficult tests, because the liquid and glass configurations are, on
average, at the same inherent structure energy, as shown in Figure
1(a), and have very similar average radial distribution functions
(see Figure 2 in the Supplementary Information†). We chose to
run simulations in the NVT ensemble so that the density for each
configuration is constant, providing a machine learning algorithm
with a more challenging task than if the densities of the liquids
and glasses were significantly different.

2.3 Convolutional Neural Networks

In this section we give a brief overview of convolutional neural
networks (CNNs) and a description of the architecture and train-
ing routine for CNNs used in this work.

Neural networks have been proven capable of approximating
a wide set of functions.47 One of the most fundamental types of
neural network, called a fully connected feedforward network, is
essentially a composition of affine transformations modified by
nonlinear functions. These transformations can be represented
as a series of interconnected neurons arranged in layers through
which input data flows. The transformation corresponding to a
single layer, f , is of the form f (x) = α(Wx+b), where x is a vec-
tor containing input data, W is a matrix of weights, b is a vector
of weights, called the bias, and α is a nonlinear function, called
the activation function. Given a loss function to be minimized,
neural networks are typically trained via the backpropagation al-
gorithm and gradient descent, in which the weights are iteratively
adjusted to reduce their contribution to the loss. The amount by
which they are adjusted in each step of training is partially con-
trolled by a coefficient called the learning rate. One of the most
common activation functions used in neural networks is the recti-
fied linear unit (ReLU), given by α(x) = max(0,x), because it has
been shown to be effective for gradient-based learning.48

Convolutional neural networks, which use convolutional layers
in addition to the fully connected layers that characterize a basic
feedforward network, have been shown to excel at computer vi-

Fig. 2 Convolutional neural network (CNN) architecture used in this
work. Two convolutional layers are followed by a fully connected layer
and an output layer. In order to be analyzed by a CNN, particle configu-
rations are rendered as images.

sion tasks ranging from assessing cancer risk in radiology scans
to galaxy morphology classification in telescope images.29,49,50

As explained in §1, CNNs have also been used to classify a variety
of materials, including crystal structures and Ising model config-
urations.

In a convolutional layer, a set of matrices, or kernels, is con-
volved with an input matrix to produce a set of output matrices,
or feature maps.48 Notably, convolutions are equivariant to trans-
lation, a property that underlies the effectiveness of CNNs in de-
tecting features such as edges and shapes in different locations of
an image, while also significantly reducing the number of param-
eters compared to a basic fully connected feedforward network.

2.3.1 Network Architecture

The CNN that we developed, shown in Figure 2,¶ has two convo-
lutional layers. The first has 6 kernels with dimensions 10×10×3
along with a bias vector and ReLU activation, with no zero
padding and a stride of 1. Adding extra rows and columns of
zeros to the boundaries of an input matrix, a technique called
zero padding, is sometimes used to maintain the original dimen-
sions of an input matrix as it flows through the layers of a CNN.
A stride of 1 means that the kernels are shifted 1 pixel at a time
as they are convolved with an input matrix. The second layer
has 16 kernels with dimensions 5×5×6 along with a bias vector
and ReLU activation, also with no zero padding and a stride of
1. The 16 feature maps that are output by these layers, which
have dimensions 237×237, are then flattened and fed into a fully
connected layer with 80 neurons and a bias vector, followed by
ReLU activation. Dropout, a regularization method that has been
shown to reduce overfitting,51 is applied to this fully connected
layer followed by a final output layer with two neurons. We used
TensorFlow to build and train these models, ‖ and all of our code
is available in our GitHub repository.∗∗

¶This diagram was produced using the tools at http://alexlenail.me/NN-
SVG/LeNet.html.
‖See www.tensorflow.org.
∗∗See https://github.com/ks8/glassML.

4 | 1–13Journal Name, [year], [vol.],

Page 4 of 14Soft Matter

Fig. 3 Representative images of glass and liquid particle configurations
from dataset 1 prepared for a CNN. Orange dots are type A particles and
blue dots are Type B particles.

2.3.2 Training

To prepare a dataset for a CNN, we rendered each particle con-
figuration as a 250 x 250 pixel PNG image, as shown in Fig-
ure 3. During training we use an on-the-fly data augmentation
scheme whereby images are uniformly randomly rotated by 0, 90,
180, or 270 degrees and then flipped across the y = 0.5 axis (up-
side down) with a probability of 0.5, which effectively expands
our dataset size. Each batch array is a tensor with dimensions
nb×250×250×3, where nb is the batch size and the last dimen-
sion corresponds to the three color channels (red, green, blue) for
color images.

Backpropagation is performed using cross-entropy loss with L2

regularization (coefficient of 0.01) on all four layers of the net-
work. L2 regularization, which has been shown to reduce overfit-
ting, refers to including the sum of the L2 norms of the weights
in the loss function. Weights are updated using the ADAM op-
timization procedure.52 We used a learning rate schedule with
a piecewise linear increase and exponential decay: the learning
rate increases linearly from an initial learning rate of 1×10−4 to
a maximum learning rate of 1×10−3 during the first two epochs,
and then it decreases exponentially to a learning rate of 1×10−4

during the remaining epochs.53

2.4 Message Passing Neural Networks
In this section we give a brief overview of message passing neural
networks (MPNNs) and a description of the architecture, training
routine, and interpretation scheme for MPNNs used in this work.

As explained in §1, MPNNs have been used to predict properties
of molecules and crystals by representing them as graphs, with
atoms corresponding to nodes and bonds corresponding to edges.
To the best of our knowledge, however, MPNNs have never before
been used to classify and analyze large ensembles of particles or
amorphous materials such as glasses.

As described in the message passing framework established by
Gilmer et al., MPNNs operate on undirected graphs G with node
features xv and edge features evw.36 The MPNN processes these
graphs in two phases: a message passing phase and a readout
phase. In the message passing phase, the MPNN builds a repre-
sentation of the input graph, and in the readout phase, the MPNN
uses this representation to predict properties of interest.

The message passing phase runs for T steps. During each step

t, hidden states ht
v and messages mt+1

v at each node v in the graph
are updated using message function Mt and vertex update func-
tion Ut according to

mt+1
v = ∑

w∈N(v)
Mt(ht

v,h
t
w,evw)

ht+1
v =Ut(ht

v,m
t+1
v),

(1)

where N(v) are the neighbors of v in graph G and h0
v is a function

of the initial node features xv. The readout phase uses some func-
tion R to make a property prediction of interest based on the final
hidden states according to

ŷ = R
({

hTv
∣∣∣v ∈ G}

)
. (2)

2.4.1 Network Architecture

Here we describe the particular variant of MPNN that we use in
this work, as described in Yang et al. and proposed in Dai et
al.35,54 This variant, called Directed MPNN (D-MPNN), uses mes-
sages associated with directed edges rather than messages associ-
ated with nodes. Our motivation in using this particular architec-
ture is that having messages passed along edges instead of nodes
in the graph is more conducive to extracting an interpretation of
the network using self-attention, as described in §2.4.3.

The D-MPNN works as follows, as shown in Figure 4. It op-
erates on hidden states ht

vw and messages mt
vw at each edge con-

necting nodes v and w. The edges in graph G are directed, so that
for any two connected nodes v and w, there is an edge from v to
w and an edge from w to v. In this way, the messages are also
directed: ht

vw and mt
vw are distinct from ht

wv and mt
wv. In the mes-

sage passing phase, the hidden states and messages are updated
according to

mt+1
vw = ∑

k∈{N(v)\w}
Mt(xv,xk,h

t
kv)

ht+1
vw =Ut(ht

vw,m
t+1
vw).

(3)

Note that the message mt+1
vw is not a function of the reverse mes-

sage mt
wv from the previous step. Prior to the first step of message

passing, edge hidden states are initialized according to

h0
vw = α (Wi cat(xv,evw)) , (4)

where Wi ∈ Rh×hi is a learned matrix, cat(xv,evw) ∈ Rhi is the con-
catenation of the node features xv for node v and the edge fea-
tures evw for edge vw, and α is the ReLU activation function. The
message passing functions Mt are given by

Mt(xv,xw,ht
vw) = ht

vw, (5)

and the edge update functions are given by a neural network,

Journal Name, [year], [vol.],1–13 | 5

Page 5 of 14 Soft Matter

Fig. 4 Directed message passing neural network (D-MPNN) architec-
ture used in this work. First, particle configurations are transformed into
a graph representation by connecting each particle to its k nearest neigh-
bors (graph construction). Then, after the edge hidden states are ini-
tialized via a fully connected layer, message passing along the edges is
carried out, as in Eqns. 3 - 7 (message passing phase). Finally, prop-
erty predictions are generated via a fully connected neural network, as in
Eqns. 8 and 9 (readout phase).

Ut(ht
vw,m

t+1
vw) =U(ht

vw,m
t+1
vw) = α

(
h0

vw +Wmmt+1
vw

)
, (6)

where Wm ∈Rh×h is a learned matrix with hidden size h. Dropout
is then applied. The presence of h0

vw in the above equation pro-
vides a skip connection to the original feature vector for that edge.
After T − 1 steps of this message passing, a node representation
of the graph is constructed by summing inbound edge features in
a final message passing step according to

mv = ∑
k∈N(v)

hT −1
kv

hv = α (Wa cat(xv,mv)) ,

(7)

where Wa ∈ Rh×h is a learned matrix.
The readout phase is the same as for general MPNNs. For the

readout function R, node hidden states are summed to obtain a
feature vector for the graph

h = ∑
v∈G

hv. (8)

Property predictions are then generated according to

ŷ = f (h), (9)

where f is a feedforward neural network with ReLU activation
and dropout at each layer.

2.4.2 Training

To prepare a dataset for a D-MPNN we extract a matrix of scaled
particle coordinates x,y∈ [0,1] and particle types (A or B) for each
configuration. In order to be processed by a D-MPNN, the raw
coordinate data for a batch of configurations is transformed into
a graph, which happens on-the-fly for each batch that is loaded
for training.

To do this, we first implement a step for each configuration
in a batch that effectively increases the size of the dataset. We
specify a hyperparameter called the window length, lwin ∈ (0,1),
whose square is the area of a square window that we randomly
select from each particle configuration. We select this window by
drawing two random numbers uniformly from the interval [0, 1
- lwin], called xrand and yrand , and then select particles whose x,y
coordinates satisfy xrand ≤ x ≤ xrand + lwin and yrand ≤ y ≤ yrand +

lwin. For example, if lwin = 0.5, we select a subset of particles
in a random square window corresponding to about 25% of the
original set of particles. This process effectively augments the size
of the dataset.

We then transform this batch of modified configurations into a
graph. Each individual configuration is transformed into a graph
by connecting each particle to its k nearest neighbors, as illus-
trated in Figure 4. Each connection is comprised of two edges,
one directed from particle (node) v to particle (node) w, and the
other in the reverse direction. For each edge we compute the Eu-
clidean distance between the connected nodes. Thus, the node

6 | 1–13Journal Name, [year], [vol.],

Page 6 of 14Soft Matter

features xv in this graph are the x-coordinate, y-coordinate, and
particle type, t, for node v, and the edge feature evw is the distance
between nodes v and w. The graphs corresponding to individ-
ual configurations in a batch are then concatenated into a single
larger graph representing the entire batch. In this batch graph,
the nodes corresponding to one configuration are connected to
each other but not to nodes corresponding to other configura-
tions.

During training, backpropagation is performed using cross-
entropy loss. Weights are updated using the ADAM optimization
procedure,52 and we used the same learning rate schedule de-
scribed in §2.3.2. Our code for D-MPNNs, written in PyTorch, ††

is built upon publicly available code. ‡‡ All of our code is avail-
able in our GitHub repository.‡

2.4.3 Interpretation

Currently, interpreting a neural network is very challenging.
However, new techniques are beginning to provide avenues for
accomplishing this task. One such technique is called self-
attention, which is essentially a mechanism that allows us to ex-
amine which features of the data a neural network is paying "at-
tention" to most.53,55 Mathematically, self-attention is akin to a
dot product that yields a set of weights for each feature, which
are then interpreted as "attention" scores.

We place a self-attention mechanism on the edges of a graph
and apply it during the message passing phase for the first T −1
steps. This allows us to examine which edges of a graph the D-
MPNN is paying the most "attention" to while training, which
could give us insight into how the network is making its classi-
fication decisions.

Our self-attention mechanism for D-MPNNs works as follows.
According to Eqn. 3, in round t+1 of message passing, the feature
vector for each edge evw in a graph is updated to ht+1

vw . Each of
these vectors has length h (hidden size), and we assume that there
are n edges in the graph. After Eqn. 3, we insert the following
steps into the D-MPNN algorithm. The feature vectors ht+1

vw are
concatenated as row vectors in a matrix H, where H ∈ Rn×h. We
then apply the following transformation to H:

σ = softmax(α (HWattn)vattn) , (10)

where α is the ReLU transformation, Wattn ∈ Rh×h is a learned
parameter matrix, and vattn ∈ Rh is a learned parameter vector.
The weights σ are then dotted with the initial row vectors to yield
a new set of hidden edge states:

H ′ = σH. (11)

Finally, the row vectors of H ′ replace the corresponding values
of the edge features from Eqn. 3 and are applied as such to the
next round of message passing. The weights σ represent the "at-
tention" that the network is giving to each edge in the graph. As

††See https://pytorch.org/.
‡‡See https://github.com/rusty1s/pytorch_geometric and

https://github.com/wengong-jin/chemprop.
‡See https://github.com/ks8/glassML.

discussed in §3, we then used the networkx package in Python to
quantify attributes of the graph structure of these self-attention
weights for glass and liquid particle configurations.

2.5 Hyperparameter Optimization and Cross Validation

There are seven hyperparameters in our D-MPNN: window length
lwin, number of nearest neighbors k, number of message passing
steps T , dropout probability p, hidden size h, number of feedfor-
ward layers f , and batch size nb. There are two hyperparameters
in our CNN: dropout probability and batch size. To discover op-
timal values for these hyperparameters, we used a Bayesian opti-
mization scheme called a Tree-structured Parzen Estimator (TPE),
implemented in the hyperopt package. § As described in Bergstra
et al., TPE is a type of sequential model-based global optimization
algorithm which discovers optimal hyperparameters by modeling
the loss function with a surrogate probability model and mak-
ing increasingly well-informed guesses for a specified number of
iterations (see §3 in the Supplementary Information† for more
details).56 These algorithms have been shown to exceed the per-
formance of grid search and random search when optimizing for
multiple hyperparameters. Table 2 shows the range of hyperpa-
rameter values that we explored using hyperopt.

Table 2 Ranges of values used for hyperparameter optimization. To dis-
cover optimal values in these ranges, we used a Bayesian optimization
scheme called a Tree-structured Parzen Estimator (TPE). 56 TPE discov-
ers optimal hyperparameters by modeling the loss function with a sur-
rogate probability model and making increasingly well-informed guesses
for a specified number of iterations. We found that batch sizes greater
than five for D-MPNNs sometimes exceeded GPU memory, so we fixed
nb = 5 for D-MPNNs

Hyperparameter Low High Step Size
nearest neighbors (k) 1 5 1
window length (lwin) 0.1 0.3 0.05
hidden size (h) 300 2400 100
message passing steps (T) 2 6 1
dropout probability (p) 0.0 0.5 0.05
feedforward layers (f) 1 3 1
batch size (nb) 10 100 10

To measure the performance of a CNN or D-MPNN on a dataset,
we used a three-fold nested cross-validation scheme, which works
as follows. We select three disjoint subsets of the dataset, each
containing 20% of the data, which we call outer test sets. For a
given outer test set, we label the remaining 80% of the data as
the outer train set. We then split the outer train set into an 80%
inner train set, 10% inner validation set, and 10% inner test set.
We apply 15 iterations of the TPE algorithm, where each itera-
tion consists of 10 epochs of training using the inner train and
validation sets, to identify an optimal set of hyperparameters on
the inner test set. We train a model with these optimal hyper-
parameters on the outer train set and report performance on the
outer test set. The outer train sets consist of 80% of a dataset,
which is 16,000 configurations. Therefore, each CNN is trained
on 16,000 different samples. Since each D-MPNN is trained on

§ See https://hyperopt.github.io/hyperopt.

Journal Name, [year], [vol.],1–13 | 7

Page 7 of 14 Soft Matter

random square windows of these configurations for 10 epochs,
each D-MPNN is trained on 160,000 different samples. This pro-
cess is repeated for each of the three outer test sets, or folds,
giving us three independent measures of performance for which
we can report the mean and standard deviation.

The primary performance metric that we report, which we also
use to select optimal sets of hyperparameters, is AUC, or area
under the ROC (receiver operating characteristic) curve. Our ma-
chine learning models output a continuous value between 0 and
1 when making a prediction, so a threshold value is used to bi-
narize the prediction. For example, if the threshold value is 0.5,
outputs greater than 0.5 correspond to glass while outputs less
than 0.5 correspond to liquid. The ROC curve is created by plot-
ting the true positive rate against the false positive rate at differ-
ent thresholds. AUC ranges from 0 to 1, where 0.5 indicates that
classification is no better than random guessing and 1 indicates
that classification is perfect across all thresholds. For comparison,
we also report accuracy, or fraction of configurations labelled cor-
rectly using a single default threshold.

We trained the CNNs and D-MPNNs and performed hyperpa-
rameter optimization on NVIDIA Tesla V100 GPUs using Ama-
zon Web Services.¶ As described in §7 of the Supplementary
Information,† the training time for CNNs was less than 7.5 mil-
liseconds per data sample, while the training time for D-MPNNs
ranged from approximately 28 milliseconds to 260 milliseconds
per data sample, depending on the values of the hyperparame-
ters. Since one epoch of training corresponded to 16,000 data
samples, the training time per epoch for CNNs was less than 2
minutes, while the training time per epoch for D-MPNNs ranged
from approximately 7.5 minutes to 70 minutes. Since we trained
each model for 10 epochs, training a CNN took approximately 20
minutes while training a D-MPNN ranged from approximately 75
minutes to 6.5 hours. Figure 8 in the Supplementary Information†

shows D-MPNN training time for three representative sets of hy-
perparameters as a function of input graph size, which we varied
by adjusting the window length lwin while keeping the other hy-
perparameters fixed.

3 Results and Discussion
3.1 CNNs
The CNNs classified liquid and glass configurations in datasets 1
through 6 with greater than 0.98 AUC, as shown in Figure 5 (see
Figure 5 in the Supplementary Information† for a complementary
accuracy report). These results indicate that CNNs are capable
of classifying amorphous materials with no a priori information
about particle interactions and no hand-crafted descriptors of lo-
cal particle environments, even when the material structures are
only subtly different. The CNNs are simply given basic geomet-
ric information - particle coordinates, rendered as an image - and
they are able to classify configurations very accurately.

Moreover, CNNs optimized on one dataset were able to make
accurate classifications of configurations from other datasets, as
exhibited in Figure 6(a). All of the models generalized success-

¶ See https://aws.amazon.com/ec2/instance-types/p3/.

Fig. 5 CNN and D-MPNN average classification AUC for datasets 1
through 6 with error bars showing standard deviation. These average val-
ues were computed using the three-fold nested cross-validation scheme
described in §2.5.

fully to other datasets, but the models trained on the more diffi-
cult tasks (i.e. datasets 5 and 6) performed best across the board.

A central question that arises is how the CNNs are making clas-
sification decisions. Since a CNN can accurately identify liquid
and glass configurations prepared at the same inherent structure
energy (dataset 6), these algorithms are not simply computing
energy as a means for classification. We tried several methods for
interpreting the CNNs, including visualizing feature maps and ex-
amining whether specific geometrical patterns activated compo-
nents of the network (see §4 in the Supplementary Information†

for more details). These methods have been used in previous
work to facilitate interpretation of neural networks.32,34 How-
ever, none of these methods were successful at providing an in-
terpretation. Further work is needed to answer this question.

Besides the challenge of interpreting the CNNs, there were sev-
eral other issues. The CNNs do not incorporate rotational invari-
ance, a symmetry that is present in our data, and they require
each input image to have the same size, limiting their flexibility.
Moreover, rendering particle configurations as images introduces
an artificial radius to these particles which is not present in the
underlying system. These issues motivated our study of message
passing neural networks. As discussed below, we found that mes-
sage passing neural networks overcome all of these challenges.

3.2 D-MPNNs
D-MPNNs classified liquid and glass configurations in datasets 1
through 6 with greater than 0.98 AUC. As shown in Figure 5,
the D-MPNNs performed at least as well as the CNNs on all six
datasets and had a higher average AUC than the CNNs on datasets
4 through 6 (see Figure 5 in the Supplementary Information† for
a complementary accuracy report). These results show that, like
CNNs, D-MPNNs are capable of classifying amorphous materi-
als with no a priori information about particle interactions and
no hand-crafted descriptors of local particle environments, even
when the material structures are only subtly different. It is true
that we created the particle graphs by connecting nearest neigh-
bors, but we do not restrict the D-MPNN to focus on any specific
local environments in the graph (different values for number of

8 | 1–13Journal Name, [year], [vol.],

Page 8 of 14Soft Matter

(a) (b)

Fig. 6 These plots show how models trained on one dataset perform on all other datasets. In each of the plots in this figure, the number in row i,
column j is the average classification AUC on dataset j of the optimal models trained on dataset i. For i = j we report the average three-fold nested
cross validation AUC. For i 6= j, we report average AUC using an outer test set of dataset j. The optimal models, three CNNs and three D-MPNNs for
each dataset, were generated from the three-fold nested cross validation procedure described in §2.5. (a) shows average CNN AUCs and (b) shows
average D-MPNN AUCs.

Fig. 7 D-MPNN AUC on an outer test set of dataset 1 with different
values of lwin (number of particles). This model was trained on dataset 1
using only lwin = 0.2 (approximately 173 particles), which is highlighted in
purple.

nearest neighbors (k) are explored during optimization).
Similar to the CNNs, the D-MPNNs trained on one dataset were

able to make accurate classifications on configurations from other
datasets, as exhibited in Figure 6(b). Again, the models trained
on the more difficult tasks perform best across the board. All of
the D-MPNN models, on average, generalize better than the CNN
models.

Besides their superior performance, the D-MPNNs have several
distinct advantages over the CNNs. Because information from
neighboring particles in the graph is summed, the D-MPNNs are
invariant to permutations and rotations of the graph, taking ad-
vantage of a natural symmetry in the system. The D-MPNNs also
operate directly on the particle coordinates without introducing
any unnecessary artifacts that might appear in an image repre-
sentation. In addition, they are flexible and can process differ-

ent graph sizes (number of particles). We took one of the op-
timal D-MPNNs trained on dataset 1, which was trained using
lwin = 0.2 (approximately 173 particles per graph), and success-
fully performed inference on both smaller and larger graphs from
dataset 1, as shown in Figure 7.

Perhaps the most significant advantage of D-MPNNs is that,
when imbued with the self-attention mechanism described in
§2.4.3, they are able to produce a clear interpretation of how
they are making classification decisions. We illustrated this by
training a D-MPNN on one of the outer train sets of dataset 1
with the self-attention mechanism in place and using an optimal
set of hyperparameters. The model achieved an AUC of 0.995 on
the corresponding outer test set. We then visualized the attention
weights from configurations in the outer test set. Representative
visualizations for glass and liquid configurations are shown in Fig-
ures 8(a) and 8(b), respectively.

There are clear differences in the graph structure of self-
attention weights in these visualizations. The high attention
weight edges form one large connected graph in the glass but
multiple smaller disjoint graphs in the liquid. Several type B
(blue) particles are connected to each other with high attention
edges in the liquid, but none are connected in the glass. There
are a larger number of type A (orange) particles that are isolated
from high attention weight graphs in the liquid compared to the
glass. Isolated type A particles and pairs of type B particles con-
nected with high attention edges are highlighted in Figures 8(c)
and 8(d). Also, all of the high attention edges in both liquid and
glass are connected to at least one type B particle (there appear
to be no isolated type B particles).

We also tested this model, which was trained using lwin = 0.2
(approximately 173 particles per graph), on larger configurations
generated with lwin = 0.3 (approximately 389 particles per graph).
The model successfully generalized to these larger configurations,

Journal Name, [year], [vol.],1–13 | 9

Page 9 of 14 Soft Matter

(a) (b)

(c) (d)

Fig. 8 Self-attention visualizations, with the attention weights computed
on the T − 1th step of message passing. All connected particles in the
graph are joined with a green line whose width is proportional to the
magnitude of the attention weight. Some of the edges have such small
attention weights that these lines are just barely visible. Note that each
connected pair of particles actually has two edges, because the graph is
directed. Here, we visualize the edge with the higher weight. (a) Glass
configuration generated with lwin = 0.2. (b) Liquid configuration generated
with lwin = 0.2. (c) and (d) show the same attention weight visualizations
as (a) and (b), respectively, but with isolated type A particles highlighted
with red circles and pairs of type B particles connected by high attention
edges highlighted with blue ellipses.

achieving an AUC of 0.957, and yielded similar self-attention fea-
tures, as shown in Figure 6 in the Supplementary Information.†

We quantified these features by computing the average num-
ber of disjoint graphs, average number of high attention edges
connecting pairs of type B particles, and average number of iso-
lated type A particles in dataset 1 configurations generated with
lwin = 0.3, as shown in Figure 9. We confirmed that the differ-
ences in these values for glasses and liquids are statistically sig-
nificant by using one-sided Wilcoxon signed-rank tests,‖ which
returned p-values less than 1×10−4 .The number of isolated type
B particles, not shown in the figure, was approximately 0 for all
configurations, confirming that type B particles are nearly always
adjoined to high attention edges. These features provide a clear
interpretation of how the D-MPNN is making classification deci-
sions: the network is focusing on type B particles and their rela-
tionship to nearby neighbors.

Not only can we clearly interpret the D-MPNN – a task that is
typically very challenging in neural networks – but we can also
derive three novel structural metrics from this interpretation that
characterize glass formation. For any configuration of particles,

‖We used the function wilcoxon in the Python scipy package.

Fig. 9 Average number of disjoint graphs, B-B high attention edges, and
isolated type A particles in an outer test set of dataset 1. High atten-
tion edges were determined with a hard cutoff. Here, a disjoint graph is
a subset of the particles in a configuration connected by high attention
edges. B-B high attention edges are edges connecting pairs of type B
particles. Isolated type A particles are those not connected to a high
attention edge.

we construct a graph by connecting every type B particle to its
two nearest neighbors, and then we count: the number of disjoint
graphs, the number of edges connecting pairs of type B particles,
and the number of isolated type A particles. We use two near-
est neighbors in this procedure because k = 2 was the optimal
value used for the D-MPNN with self-attention, and we only con-
nect type B particles to nearest neighbors because the D-MPNN
with self-attention focused on edges connected to type B parti-
cles. Note that this new graph construction procedure does not
necessarily yield graphs equivalent to the attention graphs gener-
ated by a D-MPNN. It is also different from the graph construc-
tion procedure described in §2.3.2 because only type B particles
are connected to nearest neighbors.

Average values of the three metrics are plotted as a function
of temperature for configurations from simulations with tcool =

2× 107 in Figure 10. All three of these structural metrics exhibit
a similar dependence on temperature. They decrease at rapid
rates above Tg, but immediately below Tg, these rates change and
the metrics decrease more slowly. We fit each metric to a linear
regression model of the form

yi = α0 +α1Ti +α21+α31Ti + εi (12)

using ordinary least squares, where T is temperature, 1 is an indi-
cator variable with a value of 0 below Tg and a value of 1 above Tg,
and ε is a random error term. The regressions returned positive-
valued interaction coefficients α3 with p-values less than 0.05,
confirming that the difference in slopes above and below Tg is
statistically significant for all three metrics. Figure 7 in the Sup-
plementary Information† shows these metrics plotted separately
as a function of temperature along with predictions from the lin-
ear regression models. Similar to the five-fold symmetric metric
in Hu et al., which was derived by hand, these metrics have a
temperature dependence that describes the structural evolution
of a liquid during glass formation.

10 | 1–13Journal Name, [year], [vol.],

Page 10 of 14Soft Matter

Fig. 10 Average number of disjoint graphs, edges connecting pairs of
type B particles, and isolated type A particles in configurations from sim-
ulations with tcool = 2× 107 at a variety of temperatures. Graphs of con-
figurations were generated by connecting every type B particle to its two
nearest neighbors. Averages were computed over 1,000 configurations
at each temperature.

We were able to derive novel structural metrics for two-
dimensional liquid and glass configurations directly from the self-
attention features generated by a D-MPNN. The neural network
generated these features based on raw particle coordinates alone
and did not rely upon complex local descriptors, extensive spatial
averaging, or a set of reference structures. This provides clear
proof of concept that D-MPNNs are an effective tool not only for
classifying amorphous materials but also for identifying structural
features in complex systems.

4 Conclusions
In this work, we showed that CNNs and D-MPNNs are both ef-
fective tools for amorphous materials classification, as they can
classify two-dimensional liquids and liquid-cooled glasses with
greater than 0.98 AUC. We also demonstrated ways in which D-
MPNNs are superior to CNNs in this context, including their abil-
ity to operate on raw particle data without introducing artifacts,
to achieve better classification performance, to process configura-
tions with different numbers of particles, and to provide a clear
and quantifiable interpretation of the classification process. Using
the interpretation that we extracted from D-MPNNs with a self-
attention mechanism, we derived three novel structural metrics
that characterize glass formation.

Moving forward, we believe that D-MPNNs could be applied to
more difficult classification tasks that elude standard techniques.
Specifically, we are interested in applying D-MPNNs to analyze
other types of glassy materials, such as vapor-deposited glasses.
A natural next step also includes using D-MPNNs to classify three-
dimensional liquids and glasses, which could provide new insight
into the local structure of these materials. We would be able to
test the feasibility of classifying three-dimensional materials with-
out changing the D-MPNN architecture by adding a third node

feature representing the z-coordinate of particles and by chang-
ing the edge feature to be the Euclidean distance between pairs of
particles in three dimensions. Depending on the outcome of this
experiment, which would also require generating new datasets
with particles in three dimensions, modifications to the neural
architecture might be necessary. Recent studies have used graph-
based neural networks to successfully classify three-dimensional
shapes represented by a set of points, which suggests that classify-
ing three-dimensional materials using D-MPNNs or similar graph-
based architectures is feasible.57 These architectures are invari-
ant to rotations and translations, which are desirable properties
for classifying three-dimensional structures. Moreover, new meth-
ods are being developed that are tailored specifically to operate
on sets of points in three-dimensional space while respecting Eu-
clidean symmetries.58–60

In our work we performed graph-level predictions, but it is
also possible to use D-MPNNs to perform node-level predictions,
which could be used to extract even more granular information
about local structures around specific particles or to identify de-
fect sites in materials. And finally, further steps can be taken
to improve the interpretability of attention mechanisms in these
networks, including incorporating node attention in addition to
edge attention and using multi-headed attention or other atten-
tion pooling techniques. In our work, we manually analyzed self-
attention visualizations, but as the field of neural network inter-
pretation advances,61 future work on developing tools that im-
prove and automate this process would make deep learning anal-
ysis of amorphous material structures even more effective.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The authors are grateful to Ashley Guo and Cody Bezik for useful
discussions and comments and to Juan J. de Pablo for support.
Shubhendu Trivedi’s work was supported by the National Science
Foundation under Grant No. DMS-1439786 while the author was
in residence at the Institute for Computational and Experimental
Research in Mathematics in Providence, RI, during the non-linear
algebra and computer vision programs. Risi Kondor was partially
supported by DARPA HR00111890038 and this project used com-
putational resources provided by NSF MRI 1828629.

Notes and references
1 P. J. Steinhardt, D. R. Nelson and M. Ronchetti, Phys. Rev. B,

1983, 28, 784–805.
2 G. J. Ackland and A. P. Jones, Phys. Rev. B, 2006, 28, 054104.
3 J. D. Honeycutt and H. C. Andersen, J. Phys. Chem., 1987, 91,

4950–4963.
4 W. F. Reinhart, A. W. Long, M. P. Howard, A. L. Ferguson and

A. Z. Panagiotopoulos, Soft Matter, 2017, 13, 4733–4745.
5 C. Dietz, T. Kretz and M. H. Thoma, Phys. Rev. E, 2017, 96,

011301.
6 M. E. Tuckerman, Statistical Mechanics: Theory and Molecular

Simulation, Oxford University Press, 2010.

Journal Name, [year], [vol.],1–13 | 11

Page 11 of 14 Soft Matter

7 P. Geiger and C. Dellago, J. Chem. Phys., 2013, 139, 164105.
8 A. Ziletti, D. Kumar, M. Scheffler and L. M. Ghiringhelli, Na-

ture Communications, 2018, 9, 2775.
9 J. Madsen, P. Liu, J. Kling, J. B. Wagner, T. W. Hansen,

O. Winther and J. Schiotz, Nature Communications, 2018, 9,
2775.

10 R. Kondo, S. Yamakawa, Y. Masuoka, S. Tajima and R. Asahi,
Acta Materialia, 2017, 141, 29–38.

11 Y. Liu, Q. Ye, L. Wang and J. Peng, Bioinformatics, 2018, 34,
773–780.

12 L. Pu, G. Govindaraj, J.-M. Lemoine, H.-C. Wu and M. Brylin-
ski, PLoS Comput. Biol., 2019, 15(2), e1006718.

13 M. Spellings and S. C. Glotzer, AIChE J, 2018, 64, 2198–2206.
14 P. Gasparotto, R. H. Meisner and M. Ceriotti, J. Chem. Theory

Comput., 2018, 14, 486–498.
15 N. E. R. Zimmermann, M. K. Horton, Z. Jain and M. Ha-

ranczyk, Front. Mater., 2017, 4, 1–13.
16 N. Laanait, M. Ziatdinov, Q. He and A. Borisevich, Adv. Struct.

Chem. Imag., 2016, 2, 14.
17 B. A. Helfrecht, P. Gasparotto, F. Giberti and M. Ceriotti,

Front. Mol. Biosci., 2019, 6, 24.
18 Y. Liu, Q. Ye, L. Wang and J. Peng, Bioinformatics, 2018, 34,

773–780.
19 M. Giulini and R. Potestio, Interface Focus, 2019, 9, 20190003.
20 Y. C. Hu, F. X. Li, M. Z. Li, H. Y. Bai and W. H. Wang, Nature

Communications, 2015, 6, 8310.
21 D. R. Reid, I. Lyubimov, M. D. Ediger and J. J. de Pablo, Nature

Communications, 2016, 7, 13062.
22 D. M. Sussman, S. S. Schoenholz, E. D. Cubuk and A. J. Liu,

PNAS, 2017, 114, 10601–10605.
23 E. D. Cubuk, S. S. Schoenholz, E. Kaxiras and A. J. Liu, J.

Phys. Chem. B, 2016, 120, 6139–6146.
24 E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone,

J. Rottler, D. J. Durian, E. Kaxiras and A. J. Liu, Phys. Rev.
Lett., 2015, 114, 108001.

25 X. Ma, Z. S. Davidson, T. Still, R. J. S. Ivancic, S. S. Schoen-
holz, A. J. Liu and A. G. Yodh, Phys. Rev. Lett., 2019, 122,
028001.

26 E. D. C. et al., Science, 2017, 358, 1033–1037.
27 S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras and

A. J. Liu, Nature Physics, 2016, 12, 469–471.
28 S. S. Schoenholz, E. D. Cubuk, E. Kaxiras and A. J. Liu, PNAS,

2017, 114, 263–267.
29 R. J. S. Ivancic and R. A. Riggleman, Soft Matter, 2018, 15,

4548.
30 M. Harrington, A. J. Liu and D. J. Durian, Phys. Rev. E, 2019,

99, 022903.
31 P. Ronhovde, S. Chakrabarty, D. Hu, M. Sahu, K. K. Sahu, K. F.

Kelton, N. A. Mauro and Z. Nussinov, Scientific Reports, 2012,
2, 1–6.

32 P. Suchsland and S. Wessel, Phys. Rev. B, 2018, 97, 174435.
33 H. Munoz-Bauza, F. Hamze and H. G. Katzgraber, Learn-

ing to find order in disorder, e-print arXiv:cond-mat.ds-
nn/1903.06993, 2019.

34 K. Mills and I. Tamblyn, Phys. Rev. E, 2018, 97, 032119.
35 K. Y. et al., J. Chem. Inf. Model, 2019, 59, 3370–3388.
36 J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and G. E.

Dahl, Neural Message Passing for Quantum Chemistry, e-print
arXiv:cs.LG/1704.01212, 2017.

37 P. C. S. John, C. Phillips, T. W. Kemper, A. N. Wilson, Y. Guan,
M. F. Crowley, M. R. Nimlos and R. E. Larsen, J. Chem. Phys.,
2019, 150, 234111.

38 T. S. Hy, S. Trivedi, H. Pan, B. M. Anderson and R. Kondor, J.
Chem. Phys., 2018, 148, 241745.

39 R. Kondor, H. T. Son, H. Pan, B. Anderson and S. Trivedi,
Covariant Compositional networks for learning graphs, e-print
arXiv:cs.LG/1801.02144, 2018.

40 K. T. Schutt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko
and K.-R. Muller, J. Chem. Phys., 2018, 148, 241722.

41 P. B. Jorgensen, K. W. Jacobsen and M. N. Schmidt, Neural
Message Passing with Edge Updates for Predicting Properties
of Molecules and Materials, e-print arXiv:stat.ML/1806.03146,
2018.

42 S. Kearnes, K. McCloskey, M. Berndl, V. Pande and P. Riley,
Molecular graph convolutions: moving beyond fingerprints, e-
print arXiv:stat.ML/1603.00856, 2016.

43 T. Xie and J. C. Grossman, Phys. Rev. Lett., 2018, 120, 145301.
44 W. Kob. and H. C. Andersen, Phys. Rev. E, 1995, 51, 4626–

4641.
45 E. Bitzek, P. Koskinen, F. Gahler, M. Moseler and P. Gumbsch,

Phys. Rev. Lett., 2006, 97, 170201.
46 J. Helfferich, I. Lyubimov, D. Reid and J. J. de Pablo, Soft

Matter, 2016, 12, 5898–5904.
47 G. Cybenko, Math. Control Signal Systems, 1989, 2, 303.
48 I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT

Press, 2016.
49 C. D. Lehman, A. Yala, T. Schuster, B. Dontchos, M. Bahl,

K. Swanson and R. Barzilay, Radiology, 2018, 290, 1.
50 S. Dieleman, K. W. Willett and J. Dambre, Rotation-invariant

convolutional neural networks for galaxy morphology predic-
tion, e-print arXiv:astro-ph.IM/1503.07077, 2015.

51 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and
R. Salakhutdinov, Journal of Machine Learning Research, 2014,
15, 1929–1958.

52 D. P. Kingma and J. Ba, Adam: A Method for Stochastic Opti-
mization, e-print arXiv:cs.LG/1412.6980, 2017.

53 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser and I. Polosukhin, Attention Is All You Need,
e-print arXiv:cs.CL/1706.03762, 2017.

54 D. Duvenaud, D. Maclaurin, J. A.-I. R. Gomez-Bombarelli,
T. Hirzel, A. Aspuru-Guzik and R. P. Adams, Convolutional
Networks on Graphs for Learning Molecular Fingerprints, e-
print arXiv:cs.LG/1509.09292, 2015.

55 K. Swanson, L. Yu, J. W. C. Fox and T. Lei, Build-
ing a Production Model for Retrieval-Based Chatbots, e-print
arXiv:cs.CL/1906.03209, 2019.

56 J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl, Algorithms
for Hyper-Parameter Optimization, Advances in Neural Infor-

12 | 1–13Journal Name, [year], [vol.],

Page 12 of 14Soft Matter

mation Processing Systems 24, 2011.
57 Y. Zhang and M. Rabbat, A Graph-CNN for 3D Point Cloud

Classification, e-print arXiv:cs.CV/1812.01711, 2018.
58 R. Kondor and S. Trivedi, On the Generalization of Equivari-

ance and Convolution in Neural Networks to the Action of Com-
pact Groups, e-print arXiv:stat.ML/1802.03690, 2018.

59 C. R. Qi, L. Yi, H. Su and L. J. Guibas, PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space,

e-print arXiv:cs.CV/1706.02413, 2017.
60 M. Weiler, M. Geiger, M. Welling, W. Boomsma and T. S. Co-

hen, 3D Steerable CNNs: Learning Rotationally Equivariant
Features in Volumetric Data, Advances in Neural Information
Processing Systems 31, 2018.

61 R. Ying, D. Bourgeois, J. You, M. Zitnik and J. Leskovec, GNN
Explainer: A Tool for Post-hoc Explanation of Graph Neural Net-
works, e-print arXiv:cs.GL/1903.03894, 2019.

Journal Name, [year], [vol.],1–13 | 13

Page 13 of 14 Soft Matter

We use deep learning to automatically classify liquid and glass structures and to derive novel
metrics that describe glass formation.

Page 14 of 14Soft Matter

