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Chiral and achiral mechanisms of self-limiting assem-
bly of twisted bundles’

Gregory M. Grason,*¢

A generalized theory of the self-limiting assembly of twisted bundles of filaments and columns is
presented. Bundles and fibers form in a broad variety of supramolecular systems, from biologi-
cal to synthetic materials. A widely-invoked mechanism to explain their finite diameter relies on
chirality transfer from the molecular constituents to collective twist of the assembly, the effect of
which frustrates the lateral assembly and can select equilibrium, finite diameters of bundles. In
this article, the thermodynamics of twisted-bundle assembly is analyzed to understand if chirality
transfer is necessary for self-limitation, or instead, if spontaneously-twisting, achiral bundles also
exhibit self-limited assembly. A generalized description is invoked for the elastic costs imposed
by twist for bundles of various states of intra-bundle order from nematic to crystalline, as well as
a generic mechanism for generating twist, classified both by chirality but also the twist suscep-
tibility of inter-filament alignment. The theory provides a comprehensive set of predictions for
the equilibrium twist and size of bundles as a function of surface energy as well as chirality, twist
susceptibility, and elasticity of bundles. Moreover, it shows that while spontaneous twist can lead
to self-limitation, assembly of twisted achiral bundles can be distinguished qualitatively in terms
of their range of equilibrium sizes and thermodynamic stability relative to bulk (untwisted) states.

1 Introduction

Bundles and fibers formed by supramolecular assembly are com-
mon architectures across a wide range of materials. Fibers of
extracellular proteins (e.g., cellulose, collagen, fibrin) consitute
the basic structural and mechanical elements in plant and animal
tissue’2. Beyond these functional architectures, the formation of
fiber and cable assemblies of misfolded or mutant proteins are as-
sociated with various pathologies, from amyloidosis® to sickle cell
anemia. In synthetic systems, hierarchical assembly of 1D stack-
ing constituents into multi-columnar bundles are widely observed
in condensed phases of discotic liquid crystals®® and worm-like
micelles”, organogels® and supramolecular “polymers”?,

The functional (or pathological) properties of self-associated
bundles and fibers, from their optical transmittance to their lin-
ear and non-linear mechanics, are highly dependent on their size
distribution. While most systems exhibit unlimited growth in the
length of fibers, in many synthetic and biological assemblies, the
lateral widths of assemblies are apparently well defined, or at
least characterized by non-exponential distributions whose most
probable size is finite and non-zero. Motivated by the apparent
reproducibility of this finite width, as well as its functional im-
plications, a range of theoretical models have been proposed and
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explored to understand the finite fiber width as a result of equilib-
rium self-assembly. The emergence of a finite-width falls outside
of the canonical paradigms for equilibrium assembly1?, as generic
considerations of surface energy in an aggregate imply that short
range interactions typically favor macroscopically large dimen-
sions (i.e. unlimited in size) in equilibrium. As a result, physi-
cal mechanisms that have been invoked to explain finite bundle
width, either resort to kinetically-arrested (i.e. nonequilibrium)
aggregation modelsl, or instead, to the presence of long-range
interactions (i.e. much longer range than microscopic filament
diameters)12,

One class of equilibrium mechanisms, which does not rely
on explicitly long-range interactions , but nevertheless provides
a thermodynamically consistent explanation for self-limitation
of diameter is chirality frustration!31%, Crudely speaking, this
mechanism implies forces that, due to lack of mirror symme-
try between constituents, favor local skews in the sub-unit pack-
ingl218  When these local motifs propagate to larger length
scales in the hierarchical bundle structure, they result in an in-
trinsic thermodynamic drive for collective twist. Collective twist
is incompatible with other types of order in the bundle (e.g. ori-
entational, positional), and thus, gives rise to elastic strains that
build-up up with assembly size, ultimately providing an equilib-
rium mechanism to restrain the thermodynamic drive of surface
energy towards unlimited sizes.
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Fig. 1 In (A) a schematic of the geometry of a twisted bundle of filaments
or columns. (B) illustrates the distinct thermodynamics of inter-filament
twist in bundles as a function of the reduced chiralty Q and reduced inverse
twist susceptibility, x~!, which relate to the linear and quadratic coeffi-
cients of terms of the free energy density f as function of bundle twist
Q.

Such a mechanism is attractive as an explanation of size se-
lection in a range of biological bundle- and fiber-forming sys-
tems for two reasons. First, the filaments themselves are generi-
cally composed from chiral building blocks (e.g. proteins, nucleic
acids, polysaccharides). Additionally, bundles or fibers of biofil-
aments are widely observed to exhibit collective, helical twist at
the scale of the assemblylZ18, It is based on this reasoning that
Makowski and Magdoff-Fairchild proposed a mechanism of self-
limitation in twisted macrofibres of sickle-hemoglobin protofila-
191" a model that was quickly adapted to address the finite
width of fibrin bundles??. Subsequent to these pioneering stud-
ies, several distinct frameworks have been developed that inte-
grate the chiral preference for collective bundle twist with vari-
ous size-dependent elastic costs for assembly. These include, the
cost of intra-filament stretch in 3D solid bundles?!' as proposed
originally for the sickle hemoglobin and fibrin experiments, the
cost of orientational gradients in polymer nematic bundles2224]
the cost of variable inter-filament spacing in 2D columnar bun-
dles'l3, as well as the costs of inter-filament shearing in general-
ized models of 3D crystalline bundles®#2526l  Along with these
continuum models, coarse-grained simulation models of proto-
filament assemblies with explicitly chiral interactions?Z, all show
well-defined regimes where the minimal free energy occurs for
bundles at finite width, the size of which depends generically on
elasticity of the assembly, cohesive forces driving assembly as well
as “strength” of chirality.

While preferred-twist provides a thermodynamically consistent
mechanism for self-limiting width of bundles of chiral systems,
several recent studies of achiral systems raise the possibility that
chirality at the building block scale may not be a necessary condi-
tion for self-limitation by twist. For example, simulations of fibers
formed by aggregation of “sticky" semi-flexible chains282? or by
assembly supramolecular stacks of discotic molecules2%32 show
the formation of spontaneously twisting structures without chi-
ral building blocks. The resulting double-twisted morphologies
are superficially indistinguishable from chiral bundling systems,
with the obvious exception that spontaneous twist is equally left-

ments
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or right-handed in the achiral systems. Additionally, recent ex-
perimental studies of methylcellulose MC assemblies in aqueous
solution have noted the emergence of fibrous aggregates whose
radii are observed to be larger that the molecular thickness of a
single MC strand®3 but consistently maintain a finite width of
~ 18 nm over a fairly broad range of assembly conditions. It has
recently been proposed that the finite width is consistent with a
structural model of spontaneously, double twisting MC fiber mor-
phology2#3> which is loosely consistent with morphological ob-
servations, although a detailed determination of intra-fiber pack-
ing remains difficult to resolve. As in the case of the achiral fiber
simulations, the influence of molecular chirality in MC has ini-
tially been speculated to be weak4, if it has any impact on the
assembly at all.

While it is perfectly understandable that twist emerges spon-
taneously in many achiral systems, and further may be a fairly
generic effect in cohesive interactions between thread-like ele-
ments=©, these observations raise important questions about the
distinctions between mechanisms of achiral vs. chiral systems.
First, is it possible for spontaneous twist of an achiral fiber to
give rise to thermodynamic self-limitation of assembly, or is intrin-
sic chirality essential to the finite size selection? And second, if
spontaneous twist does indeed lead to self-limitation, how is this
achiral mechanism distinguishable from the chiral mechanism?
Specifically, how do the mechanisms differ in terms of thermody-
namically selected sizes, pitches and regimes of stability of finite
diameter fibers?

In this article, these questions are addressed in the context of
continuum elasticity models of self-twisting filamentous bundles.
Symmetry considerations are used to construct the generic elastic
costs of gradients in the orientational and positional order im-
posed by collective twist of bundles. In particular, the thermo-
dynamic drive for twist in bundles derives either from a chiral
preference for inter-filament twist, or instead an achiral instabil-
ity for spontaneous twist. In this paper, this distinction is de-
fined in terms of two parameters defined in detail in Sec. 2| be-
low: Q the reduced inverse pitch of preferred cholesteric twist;
and x~!, the reduced inverse twist susceptibility. As illustrated
in Fig. |1} these parameters are defined, respectively, by the first
and second derivatives of the free energy with respect to bun-
dle twist Q. The canonical case for chirality-driven twist corre-
sponds to Q # 0 with a positive stiffness for twist, y ' > 0. A
strictly achiral case of preferred spontaneous twist corresponds to
Q = 0 and negative inverse-susceptibility, x ! < 0. In this arti-
cle, I show that a sharp distinction between thermodynamics can
be drawn between stable (y ! > 0) and unstable (! < 0) twist
thermodynamics. More specifically, the full range of thermody-
namic behavior of self-twisting bundles is controlled by a single
(dimensionless) combination of inverse pitch and susceptibility,
Q?x3. This distinction can ultimately be traced to the variation
of equilibrium bundle twist with size and the mechanical costs of
intra-bundle deformation: bending and shears of 2D and/or 3D
inter-filament order. The equilibrium variation of twist with bun-
dle size can be directly related to the equilibrium size of bundles,
and its dependence on the surface energy parameterizing inter-
filament cohesion of the structure. A central finding of this study

Page 2 of 16



Page3of 16

is the sharp distinction between twist-stable and twist-unstable
bundles with regard to the maximum range self-limited diame-
ter of bundles and the critical value of surface energy that sepa-
rates self-limited (twisted) and bulk (untwisted) assembly. While
the maximum self-limiting size of twist-stable (! > 0) bundles
can grow arbitrarily large with vanishing chirality, the range of
thermodynamic stability of such finite bundles also vanishes with
Q — 0. In contrast, while the self-limiting sizes of twist-unstable
(x~! < 0) bundles are largely independent of chirality, remaining
limited “microscopic” dimensions, their self-limited state is more
stable relative to bulk assembly, and remains so, even as Q — 0.

The remainder of this article is organized as follows. In Sec.
I briefly introduce the continuum model for self-twisting, co-
hesive bundles possessing various states of liquid-crystalline and
crystalline order. Then, in Sec. [3]I describe the thermodynam-
ics of equilibrium twist and size of bundles as functions of elas-
tic parameters, surface energy and the driving forces for twist,
first for 2D columnar order, and then 3D solid order. In Sec.
I discuss the implications of the distinctions between twist-
stable and twist-unstable bundles for studies of chiral and achiral
fiber assembly, and further, outline some open questions regard-
ing the connections between microscopic descriptions of inter-
molecular forces in bundles and continuum parameters describ-
ing the mesoscale behavior.

2 Generalized elasticity model of self-

twisting, cohesive bundles

Here I introduce the model of helically-twisted bundles of
columns and filaments. Bundles are assumed to follow the
“double-twist" geometry, familiar as local motif of liquid crystal
blue phases=Z. Shown schematically in Fig. , this corresponds
to a bundle of filament whose position twists around the z-axis at
a constant rate Q, where the helical pitch is 27/Q. Given the bun-
dle symmetry it is most convenient to describe this configuration
in cylindrical coordinates (p, ¢,z), where p measures the distance
from the central axis and ¢ the polar angle around it. The texture
of the bundle is characterized by the (unit vector) tangent field,
t(x), which gives the backbone orientation of constituent fibers at
position x = pcosd £+ psing $+z 2 in the bundle,

24+ Qpo

m32+gpé7 (D

t(x) =
Here, % and ¢ are the respective unit vectors in pitch and and
azimuthal directions (e.g. Fig. ). Here, and below, I assume
that Qp is sufficiently small to neglect higher order corrections (in
Q) to the unit vector orientation. As our central question focusses
on the role of the twist-thermodynamics in selecting the size of
bundles, we neglect the possibilities of anisotropic bundle cross-
sections®839 as well as defects%42 which can, in part, relax the
cost of geometry frustration in the bundle. Hence, the model
considers bundles with a circular cross-section of radius R and a
length L < R, which is unlimited by equilibrium considerations.
Underlying the model described below are two basic assump-
tions. First, filaments are sufficiently stiff, and interactions be-
tween them are sufficiently cohesive, that condensed bundles
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adopt quasi-parallel, splay-free packings with at a minimum, a
nematic state of order. Second, physical interactions between fil-
amentous and columnar building blocks are treated at the meso-
scopic scale of bundles by the generalized continuum elastic costs
of gradients in the local order. Hence, detailed properties of
the inter-filament forces and intra-filament mechanics, as well as
physical chemical parameters of the solution (e.g. temperature,
ionic conditions), are incorporated in a coarse-grained sense into
a limited set of continuum elastic constants. The connection be-
tween microscopic descriptions of filaments and these mesoscale
elastic constants is discussed briefly in Sec.

As shown schematically in Fig.|2} a bundle can be characterized
by three types of elasticity associated with gradients of column
orientation, in-plane positional order, and longitudinal positional
order (e.g. for the case of intercalated discotic fibers). The fol-
lowing subsections introduce the continuum energetics associated
with each of these types of order. As many of these elastic costs
have been described elsewherel43%43 here only a brief review
of key results if given, citing previous work where possible, and
relegating details of new analytical results in the appendices.

2.1 Orientational elasticity

To describe the free energy associated with orientational gradi-
ents in the bundle, consider the standard, second-order Frank
elastic description® of a chiral nematic materials with a direc-
tor field, t(x).

1
Faom=>5 /dV {KI(V~t)2+K2[t~(V><t)+q0]2

+K3[(t~V)t]2+2K24V~[(t-V)tft(Vt)]}, )

where the first three terms describe the respective splay, twist and
bend elasticity, while the final term has been traditionally denoted
as the “saddle splay” term>. For a chiral material, gy # 0 param-
eterizes a preference for twist at linear order (i.e. with a pre-
ferred pitch of uniaxial cholesteric order, 27/qg). Fjey describes
the second order derivative contributions to the total nematic free
energy expression, Fpen introduced below.

It is straightforward to show that the double-twist texture of

eq. gives
Vot=0; t-(Vxt)=2Q; (t-V)t=—(Q%p)p 3)

In the following, we will assume the volume integral can be split
into an integral over cross-sectional area dA (uniform up to rigid
rotations) along length increments dz. From this we can evaluate
Fyem (ignoring the effects of ends as L/R — o),

Flom/V = 2K2q0Q +2(Kz — K24)Q? + (p?) 4

K; Q4
2

where (p?) =A~! [ dA p? is the 2nd moment of the cross-sectional
fiber area, equal to (p?) = R?/2 for cylindrical fibers of radius
R. We note that the only quadratic terms in the double-twist de-
rive from the twist and saddle splay. Hence, as has been previ-
ously noted4>"7 when the saddle splay constant is larger than
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Fig. 2 Cartoons highlight the distinct types of order in bundle assemblies, and their associated order parameters: (A) orientational order of backbones in
nematically ordered bundles, with director t(x) describing distortions; (B) transverse 2D order inter-filament positions in columnar ordered bundles, with
u, (x) indicated the transverse displacement relative to 2D lattice positions; and (C) 3D solid order of crystalline bundles, in which mass points (shown
as red spheres) maintain long-range axial correlations between filaments, and with deflections from prefect “layered order" described by longitudinal

displacement i (x).

the twist constant, Kp4 > K, an axisymmetric configuration be-
comes unstable to double-twist, and even the absence of chirality
(g0 = 0), would be driven to spontaneous twist. Several achi-
ral liquid crystalline systems have been observed to undergo this
spontaneous twist, and for the purposes of the present contin-
uum model, I also consider the case of K»4 > K, as a mesoscale
mechanism for driving spontaneous twist in bundles, and reserve
for the discussion the relationship between filament-scale inter-
actions and these second order coefficients. When the elasticity
theory becomes unstable at second order in Q it is necessary to
include higher order gradient costs of twist which stabilize it. For
the present model, it is sufficient to generalize the nematic en-
ergy by Frem = Fyem + (K5 /2) [dV [t-(V x t)r, such that the cost
for nematic gradients become,

K304
Foem/V = 2K>qoQ +2(K> — K24)Q2 + 3TR2 18K, (5)

The higher order twist term only becomes relevant in the limit of
small bundles, in particular when R < \/K}/K3. On dimensional
grounds, it can be argued that the ratios is K} /K, (or K}/K3) de-
fines a length scale squared, and we argue below that this length
scale defines the microscopic cutoff for the elasticity theory. In
other words, we expect that the length scale \/K}/K3 to be pro-
portional to the microscopic dimension of filaments, e.g. their
diameter d. The implications of this microscopic dimension on
bundle size-selection are described below.

2.2 Positional elasticity

Fiber assembly of 1D filaments of columns can give rise to differ-
ent states of positional order. Long-range ordering of the inter-
filament spacing associate with a 2D lattice packing transverse to
their backbones, but without long-range order along them, corre-
sponds to 2D columnar order®8. Bundles that also maintain long-
range axial correlations between neighbor columns/filaments
(such as in an interdigitated lattice of 1D discoidal columns),
correspond to 3D crystalline order. Fiber twist generates defor-
mations of both types of long-range positional order, and here I

4| Journal Name, [year], [vol.],1

summarize the generalized positional elastic costs of cylindrical
bundle twist, focussing first on 2D columnar order.

2.2.1 Columnar order

Elasticity of a columnar medium is described by a 2D strain ten-
sor u$ for deformations perpendicular to the main filament axis,
described by the elastic free energy4?,

1
Fi=3 /dV [AL(u,jc)z ou, u,#juﬂ, 6)
where the (non-linear) 2D elastic strain follows,
1
ul-Jj‘« ~ 5(8,u§-+aju,l 71‘,’[]) @

where u is the in-plane displacement (2D vector), related to the
tangent field via t ~ 2+ d,u,. The Lamé coefficients A, and p
describe, at a coarse-grained level, the disruptions of the ideal
2D inter-column lattice, which we assume to be hexagonal for
simplicity. The non-linear contribution to strain from the in-
plane projections of the filament tilt generates unavoidable inter-
column stress, Gﬁ, as has been shown®3 to derive from the com-
patibility condition,

Vioj =-3v, 0’ ®

for non-zero twist, where Y| =4u, (A, +u,)/(AL +2u,) is the
2D Young’s modulus of the columnar array. Solving for equilib-
rium stress for a bundle of circular cross section of radius R the
in-plane elastic free energy has been derived43,

3Y, (QR)*

FLUV="T%

9
This term represents the elastic cost of geometric incompatibility
of a crystalline packing with metric constraints imposed in non-
parallel and twisted bundles?. Note that as the 2D columnar
order melts, the resistance to shear of the inter-filament lattice
vanishes. Hence, the limit ¥, — 4u, — 0 corresponds to the tran-
sition from columnar to polymer nematic order in the bundle.
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Fig. 3 Maps of stresses in twisted, 3D solid (crystalline) bundles plotted for three different bundle aspect ratios. The cutaway shows the normalized
intra-column stress (6. = 6./ [A)(QR)?]) on the left, and the right shows the normalized radial shear (6. = 0./ [4/2uA;(QR)?]) . Notably, away from
the ends of long (and narrow) bundles, radial shear vanishes and intra-column stretching is nearly constant along the length. Distributions are shown

for the case 4 =2y

2.2.2 Crystalline order

Now I consider the additional elastic costs of twist in bundles
whose columns maintain registry of longitudinal stacking (i.e., 3D
crystalline). The additional deformations associated with longitu-
dinal inter-column shears and intra-column stretch are described
by the out-of-plane elastic energy®1,

1
A=5 [av [med+2m (). (10

where ;; is the 3D solid elastic strain tensor (with components in
x,y and z directions),

uij:%(%uj—f—aiuj—i—aiu-aju) an

where u =u | +u;Z is the 3D displacement of column positions
relative to a parallel, hexagonal reference stateﬂ Here A and
parameterize the respective stretching elasticity of columns and
inter-column shear coupling. The equilibrium equation for the
longitudinal displacement u, is

0,0i; = 0; 0 = A (dou; + Q%1% /2); 0 =y (Juz +1;).  (12)

The full solution to these equations is given in Appendix [A] but
here I summarize the essential results, first focusing on the case
of a finite fiber length L. The solid response of bundles to twist
derives from three deformations: i) intra-filament stretch; ii) ra-
dial inter-filament shears; and iii) azimuthal inter-filament shears.
While azimuthal shears are unavoidable for all twisted bundles
(i.e. oy, # 0), sufficiently long bundles avoid the cost of ra-
dial shears at the expense of filament stretch. This deformation

+ Here, I drop a term proportional u..(u + uyy) since this will lead to a small renor-
malization of the energetic term proportional to column stretching A

crosses over to a shear-dominated state for sufficiently short bun-
dles, with a cross-over determined by the ratio , /1 /A (L/R).

In the limit of narrow (long) fibers R < (1 /A)"/2L, the solu-
tion (except for a small boundary layer at the fiber ends) becomes
u; = 0, leading to a lateral stretching between shear-coupled fila-
ments, u,; — Q?(r> —R?/2)/2, which is zero net tension when av-
eraged over the bundle cross section. In the opposite limit of short
(wide) fibers R >> (1) /A)!/?L, the cost of filament stretching be-
comes prohibitive and the equilibrium tends towards inextensible
uy; — 0 and u, — —zQ2r%/2, leading to radial shears u,, ~ Q%zr
that grow with length. The crossover from shear to stretch dom-
inated stress with increasing aspect ratio is illustrated for stress
profiles in Fig. [3] For both cases, twist generates azimuthal shears
uy, = Qr/2. Together these lead to the strain energy dependence
on twist,

LQR)? + QR R< (/AL
Fy/V= (13)
QR+ GLQ'RL2, R> (/A" /2L

oo"'t:

The Appendix - egs.(32) and — give the exact result that
crosses over continuously from the shear dominated to stretch
dominated regime with decreasing values, ,/u/A(L/R). No-
tably Fj| — 0 as shear coupling between columns vanishes p — 0,
leaving only the 2D elastic (columnar) terms.

Below, I consider only the case of narrow bundles, R «
(w/ AH)I/ 2L, relevant to fibers that assemble end-to-end without
constraint on lengths (i.e. L — 0 while R may remain finite).
This twist dependent costs of intra-filament stretch in 3D crys-
talline fibers was first proposed to limit their diameter in works
by Makowski® and Weisel2?, followed by more detailed ana-
lytical models in ref. 21 . Here, it should be noted that these
previous studies neglected the unavoidable costs of azimuthal
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shears, which unlike the radial shear cannot be relaxed by lon-
gitudinal displacement. Eq. shows that azimuthal shear in
solid bundles generates second order costs for twist, growing as
(QR)?, well known in mechanics for the twist elasticity of solid
beams™L, and more important, at lower order than the quartic
intra-filament stretching energy.

2.3 Total free energy and reduced variables

The total free energy is constructed from the terms described
above along with a surface energy cost of X per unit area of the
cylindrical sides of the bundles,

Fot = Faem + F| + FH +27nRLY. 14

In what follows, the thermodynamics of finite-size, twisted bun-
dles is more conveniently analyzed by rescaling energy densities
in terms of the effective positional modulus,

3
y =

=5 (15)

1
Y + EAH R
and length scales in terms the ratio of bending modulus to posi-

tional modulus
Ap=+/ Kg/Y7

a quantity related to the bend penetration length of columnar
systems. Note, in terms of the this length scale, the transition
from 2D columnar to purely nematic bundles is characterized by
Ap — oo, since Y vanishes as lattice order melts.

(16)

In terms of the reduced bundle radius r = R/Ap and twist @ =
QAp, the reduced free energy density f may be written in the
following general form,

~1
1) o, BO)

_ Fo _
Qw+ ) 4

=7y = a7

fl@,r) o'+ 2,
where ¢ = 27Y/,/YK; is the reduced surface energy. In terms
of the generalized elastic theory, the reduced chirality is simply
0 = 2K»q0/+/YK3, which is proportional to the preferred inverse
cholesteric pitch. The inverse twist susceptibility has the general
form,

= (18)
where 1= 2(Ky — Ko4) /K3 derives from the twist elasticity of
orientational (nematic) order, while the size-dependent contribu-
tion derives from the shear-elastic cost in solid bundles, x, I =
y/(8Y). Notably, this shows that twist instability x'<0),
which arises for large saddle-splay constants, is only possible
in 3D solid bundles of sufficiently narrow radius due to size-
dependent costs of inter-filament shears. The coefficient of the
quartic twist term grows with radius,

B(r)=rg+r*+r* (19)

due to the respective r> and »* costs of bending and positional
elasticity. The constant term ry = 4/2K} /K3 /Ap derives from the
higher-order twist in the nematic energy, eq. (5). It can be argued
that the ratio of bend to positional elasticity in a filament bundle
gives bend penetration length that is at least as large as the mi-

6| Journal Name, [year], [vol.],1

croscopic inter-filament dimension, d E] , that is, Ap 2 d. Again,
taking the estimate 4,/2K) /K3 ~ d then gives us that rp S 1, a
parameter estimate used in the analysis below.

3 Thermodynamics of twist- and size-

selection

Based on the model introduced in the previous section and sum-
marized in the scaled free energy in eq. (I7), I now describe
the thermodynamics of self-assembled, twisted fibers. Here, con-
sider the case where the total concentration of subunits is suf-
ficiently large that all but a negligible concentration exists in a
self-assembled aggregate. In this regime, thermodynamics can be
modeled by considering all filaments assembled into bundles of
equal size r, and twist o, whose values correspond to the min-
imum of the free energy density f(w,r), that is, neglecting the
effect of size dispersity on the free energy of the distribution (see
e.g.sz).

To address the central questions about the role of twist-stability
vs. twist-instability on bundle formation, I describe three inter-
related behaviors for columnar (2D solid) and crystalline (3D
solid) bundles. First, I describe the dependence of equilibrium
twist @, (r) on bundle size r and its relation to the accumulation
of elastic twist energy with radius. Second, I show accumulating
elastic energy in self-twisting bundles leads to self-limited equi-
librium radii r, for sufficiently low surface energy o. In general,
r, increases with o up to a maximum self-limiting size, rmax and
surface energy omax, beyond which surface energy drives equi-
librium states to untwist and reach infinite size. Last, I describe
how this maximal size and surface energy of stable finite-width
bundles varies with chirality and twist susceptibility. In what fol-
lows, these results are illustrated in Figs. [4] - [0} with details on
the numerical analysis of the equilibria of f(w,r) provided in Ap-

pendix

3.1 Columnar bundles

Considering first the case of columnar bundles, which corre-
sponds to a twist susceptibility that is independent of bundle size,
X = Xo- For purposes of illustration, I highlight the comparison
between chirality driven, twist-stable bundles (Q # 0;x~! > 0) to
spontaneously twisting, achiral bundles (Q = 0;x~! < 0), and then
summarize the general dependence of self-limiting assembly on
Q and y.

3.1.1 Chirality-driven twist

Figure plots the equilibrium twist @, as a function of bundle
radius r for several examples of chirality-driven, twist-stable bun-
dles. For twist-stable bundles, the higher order twist contribution
to the Frank elastic energy plays a relatively minor role in the
qualitative behavior, and hence I set it to ry = 0 for these exam-
ples. These curves all show a maximal twist in the limit of nar-

t This follows from a simple estimate of the intra-filament elasticity, in terms of a solid
elastic modulus E. The bending modulus of a single filament follows beam mechan-
ics®l) B Ed*, such that K3 ~ Ed?. The inter-filament modulus Y, is determined by
the softer of either inter-filament cohesion, or the intra-filament deformabilty itself.
Hence, Y| S E (note that A ~ E). Hence, this gives K3/Y 2 d”.

Page 6 of 16
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Fig. 4 Thermodynamic behavior of chirality-driven, twist-stable 2D columnar bundles (i.e. Q #0;x~ ' > 0; iy = 0). (A) shows the equilibrium twist . as
a function bundle radius r, normalized by the value of r — 0 bundles. Behaviors for a series of chiralities Q different by factors of 102. (B) shows plots of
the energy density for equilibrated twist (i.e. @ = w,) versus bundle radius r for fixed chirality |Q| = 0.1, plotted for a series of increasing surface energy
o up to a maximal value of oyax, at which point finite bundles are in equilibrium with bulk untwisted assembly (i.e. r — « and @ — 0). The accumulating
elastic energy of bend and columnar strain is shown as a dashed blue curve, and equilibrium bundle radii r, are marked by red dots. In (C), plots of
equilibrium radii r. versus surface energy, o, for an increasing series of chirality values. Curves terminate at the on,, with the maximal self-limiting

size shown as red dots. Plots in (A-C) are shown for y=0and y~' = 1.

row bundles proportional to reduced chirality, w.(r — 0) = —x0,
as there is no mechanical obstruction to achieving the double-
twist state preferred by nematic twist elasticity. As bundle sizes
increase, the equilibrium begins to unwind from this preferred
value due to the mechanical costs of intra-filament bending and
inter-filament lattice distortion. This unwinding of helical pitch
can be characterized by a size scale ry,, the unwinding size, at
which the elastic cost of either bending or lattice distortion (i.e.
(Qx)*r* /4 or (Qx)*r*/4, respectively) equals and begins to ex-
ceed the favorable energy of chiral twist at the preferred pitch,
—Q%x/2. Based on this criterion the unwinding size is roughly
run ~ min[(Q%x)71/2,(0?%?)~/#], and allows us to distinguish
between two regimes of chirality: weak chirality where 0% <« x 3
and ry, > 1; and strong chirality where 02 > ¥ =3 and ry, < 1. For
larger sizes, r > ryy, bundles unwind toward zero twist, and the
rate of unwinding with size can be estimated from the balance of
chirality induced torque Q and the torque induced by mechanical
costs of twist, @] (r? + r*), which yields a power-law unwinding
that crosses over from bending dominated unwinding o, ~ r~2/3
for ryn < r < 1 to a more rapid columnar strain-dominated un-
winding @, ~ r~%/3 at larger sizes r > 1.

The free energy density of twist equilibrated bundles, that is,
taking the value ® = w,(r) in the f(w,r), is plotted in Figure
for a fixed chirality and an increasing series of surface energies
o. For 0 =0, the dashed line shows the monotonically increasing
accumulation of elastic energy with size. Narrow bundles achieve
the optimal twist without the expense of bending or columnar
strain costs. At intermediate sizes, the elastic energy exhibits a
power law growth (either as ~ 1 or ~ r*) which then crosses over
to an asymptotically unwinding state with f(r > ry,) — 0. While
the elastic energy generically favors narrow bundles, the (per vol-
ume) cost of surface energy, ¢/r, drives bundles to larger sizes.
The balance between elastic energy and surface energy results in
an equilibrium at finite size r. for sufficiently small ¢ As surface
energy increases, the size and energy of this minimum grow, un-
til it reaches a point where f(@.,r.) = 0 at omax and finite size
bundles are in equilibrium with bulk, untwisted assembly. A nar-

row range of metastable finite bundles persists above this surface
energy, but the equilibrium state for ¢ > o, is bulk, untwisted
assembly (i.e. @ — 0 and r — o).

The equations of state, relating equilibrium radius r, to sur-
face energy o are plotted for a sequence of chirality values in
Figure [4[C, with the curves terminating a the maximal size and
surface energy for self-limitation. The size dependence exhibits
two regimes of assembly: weak-chirality when |Q| < ¥ ~3/2; and
strong-chirality when |Q| > y~3/2. For strong-chirality the bun-
dles begin to unwind (due to bending) for sizes well below the
mesoscopic length scale Ag. In the bending dominate regime, the
residual free energy from chiral twist ~ —@.Q ~ —r~2/3 vanishes
more slowly than the surface energy cost ¢/r for large bundle
radii, implying the existence of a stable equilibrium size with the
power law dependence r, ~ 3. However, when bundles grow
larger than Ap (i.e. when r>> 1) the cost of columnar strain drives
a much more rapid untwisting such that the chiral free energy
~ —0,Q ~ —r—*/3 cannot restrain the stronger ~ r—! dependence
of surface energy for r — «, indicating the disappearance of the
stable minimum at finite size for r, 2 1 for strong-chirality. This is

~

consistent the rpax — 1 behavior for large Q shown in Figure .

For weak-chirality, ryy, > 1, so that the bundles accumulate
stress over a large size range, well into the lattice-strain dom-
inant regime, before untwisting. Balancing the surface energy
cost 6/r of the boundary with the dominant elastic cost results
in two power law regimes of bundle size below the untwisting
size: ry ~ 61/3(Q%)4/3 for bending dominated sizes (r. < 1); and
re o ol/ 5(Q)()4/ 5 for lattice-strain dominated sizes (r, > 1). Note
that, for the same arguments as above, because the columnar
strain energy forces the bundles to unwind too rapidly to be at
finite size in equilibrium surface energy, there can be no stable
equilibrium sizes larger than ry, in this weak-chirality regime.
Hence, the power law growth of r, with o persists until termi-
nating at a maximum Size, rmax & Fun ~ \Q|_1/ 2 x‘3/ 4. consistent
with the low |Q| scaling of ryax in Figure .

To summarize, for chirality-driven bundles, the maximal size of

Journal Name, [year], [vol.], 1{15] | 7
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Fig. 5 Thermodynamic behavior of spontaneously-twisting, achiral 2D columnar bundles (i.e. Q # 0;x~' < 0; i = 0). (A) shows the equilibrium twist
o, as a function bundle radius r, normalized by the value of r — 0 bundles. Behaviors are plotted for fixed x~! = —1 and a range of “cutoff” size
scales rp = 107%,1073,1072,10~! and 1. (B) shows of the energy density for equilibrated twist (i.e. ® = w.) versus bundle radius r for fixed r, = 0.1 and
x~' = —1, plotted for series of increasing surface energy ¢ up to a maximal value of 6., at which point finite bundles are in equilibrium with bundle

untwisted assembly. The accumulating elastic energy of bend and columnar strain is shown as a dashed blue curve, and equilibrium bundle radii r. are
marked by red dots. In (C), plots of equilibrium radii . versus surface energy for increasingly negative values of y~!. Curves terminate at G, With

the maximal self-limiting size shown as red dots.

self limiting bundles follows

N B R i S I
max ~ 1, for |Q‘ > X—3/2;X71 >0

Notably, for chirality-driven, twist-stable bundles, finite-size as-
sembly always extends up to at least the mesoscopic size Ag (i.e.
r« > 1), and as chirality decreases, the maximal stable finite bun-
dle size diverges, rmax ~ |Q|*1/ 21, growing arbitrarily larger
than Ag as Q — 0.

3.1.2 Spontaneous twist

Figure [5| shows plots of the thermodynamic behavior of sponta-
neously twisting, achiral bundles, paralleling the presentation of
Fig. For this case of unstable twist, y ! < 0, it is neces-
sary to include the effect of the higher-order Frank twist term,
as parameterized by a non-zero “cutoff size scale" ry # 0, which
is anticipated to be less unity as argued above. Figure plots
equilibrium twist a function of bundle radius, in this case for
several values of rg < 1. In this achiral case, the maximal twist
achieved in narrow bundle limit is @, (r — 0) = +|x|~'/2/ry. Like
the chirality-driven case, spontaneously twisting bundles also ex-
hibit a size-dependent unwinding due to the accumulated costs
of bending. Applying similar reasoning as above, the unwinding
size can be estimated as ry, ~ ry ﬂ Beyond this size, bending
and columnar strain induce the unwinding of bundles towards
o, — 0 as r — 0. While qualitatively similar to the unwinding
of chirality-drive bundles, spontaneously twisted bundles unwind
much more rapidly with increases size: @, ~ r~! in the bending
dominated regime (ry, < r < 1); and o, ~ r~2 in the columnar
strain dominated case (r > 1). The origin of these much stronger
power laws can be traced to the torque induced by the sponta-
neous twist, which vanishes for as @ — 0 as ~ —|x~!|o, yeilding
a much weaker resistance to the mechanical costs that drive un-
winding. I return to the implications of the more rapid unwinding

1 Note that the assumption that ry < 1 implies that unwinding is always bending-
dominated.

8| Journal Name, [year], [vol.],1

of spontaneously twisting bundles below.

Figure plots the free energy of twist-equilibrated bundles,
f(wy,7) , as function of bundle size for y~! = —1, rg = 0.1 and
a series of surface energies up to maximum surface energy Gmax-
Qualitatively, the features of the size-dependent energy for achi-
ral bundles parallel what was shown for chiral bundles in Fig. [4B:
accumulating elastic costs of frustration balances the surface en-
ergy drive towards bulk assembly, but with finite sizes of minimal
achiral bundles are notably smaller, i.e. r, < 1.

The dependence of equilibrium size on surface energy is plotted
in Figure for ry = 0.1 and for an increasing series of y ' = —1,
corresponding to increasing amounts of spontaneous twist (i.e.
@y (r — 0) o< v/—x~1). The equilibrium bundle radius grows with
as r, ~ ¢'/3 due to a balance between surface energy and bend-
ing of spontaneously twisted filaments. All of these curves ter-
minate at maximal size rmax ~ rg, which derives from the fact
twist unwinds at size scale ry, ~ ry. In the unwound, bending-
dominated regime, the residual energy of spontaneous twist falls
of as ~ y ~'w? ~ —r~2, too rapidly in comparison to surface en-
ergy to maintain a self-limited equilibrium in this large (unwind-
ing) size regime.

To summarize, in sharp distinction which chirality-driven,
twist-stable bundles, the range of self-limited sizes of sponta-
neously twisted achiral bundles is limited to a much smaller size
range,

rmax = ro, for all 7! < 0,0 =0. (21)

As ry is expected to be comparable to the microscopic dimen-
sions of the filament or column diameter, this prediction shows
that while spontaneously, twisting bundles can (at sufficiently low
surface energy) realize self-limiting assembly, their sizes are re-
stricted to a microscopic range of a few filaments in width.

3.1.3 Phase diagram and maximal self-limiting size

The previous sections have presented, in detail, the specific
cases of chirality-driven, twist-stable bundles (Q # 0;x~! > 0)
and spontaneously-twisted, achiral bundles (Q = 0;x~! < 0). In
this section, I describe the generic thermodynamic behavior for
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Fig. 6 In (A), plot of maximal self-limiting bundle radius (rmax) plotted for arbitrary chirality (Q) and inverse twist-susceptibility (x '), showing it to be
a function of a combination of the two parameters, Q®x3. The twist-stable case (x~! > 0) and the twist-unstable case (xy~' < 0) are plotted in blue and
orange curves, respectively. The distinct dependencies on chirality of the maximal size self-limited bundles (for fixed y ') are illustrated schematically
in (B), with twist stable bundles growing arbitrarily large in the small chirality limit, while twist-unstable bundles remain smaller than the length scale
Ap (i.e. rmax < 1) over the entire chirality range. At the achiral point Q = 0, highlighted for twist-unstable bundles, the equilibrium handedness of finite
bundles is randomly selected (i.e. by spontaneous achiral symmetry breaking).

generic ranges of chirality and twist susceptibility, in terms of the
maximal size and surface energy for self-limited columnar bun-
dles. As derived in the Appendix, these conditions can be cap-
tured in the following parametric relationship between the rpax,
Omax, Q@ and y ! (for columnar order):

5 2rmax (2r?nax + rrznax)

= (22)
27
('ﬁlax - r%lax - 3"(2))

and 5
2(3rﬁnax+rﬁ1ax —r(%)
(r?nax 7rr2nax 73}‘6)3

Figure [6JA shows the variation of the maximal self-limiting bun-
dle radius as function of Q?x3 for both the twist-stable and twist-
unstable branch, with the predictions illustrated graphically in
Figure @3 Notably, rmax is a decreasing function of chirality (for
fixed y ! > 0) for twist-stable bundles: The self-limiting size di-
verges as rmax ~ |@| /2 in the limit of vanishing chirality, while it
asymptotically approaches rmax — 1 in the limit of large chirality
(assuming that rg < 1). Heuristically, this can be understood from
the fact that increasing chirality decreases the unwinding size, due
to the increase of elastic cost with larger twist. In contrast, the
maximal radius of twist-unstable bundles increases, but only very

weakly, with chirality (for fixed y~! < 0): In the achiral limit

r2ax — (/141272 = 1)/6 =~ r3, while for large chirality rmax — 1

from below. The relative insensitivity of ryax to chirality for twist-
unstable bundles can be understood from the achiral case illus-
trated in Fig. where the degree of twist, and the unwinding
size, is set by ry and not Q. Hence, the self-limiting thickness
of twist-stable bundles varies over a large mesoscopic range with
chirality, while by comparison, the self-limiting thickness of twist-
unstable bundles is both much smaller and varies relatively little
with even large changes in chirality.

0’y = (23)

Figure |7]shows the phase diagrams of self-limiting bundle as-

4 twist unstable
x1<o0

3

2
Omaz X twist stable

X 1>0
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Fig. 7 Phase diagram of self-limiting assembly in twist-stable and twist-
unstable columnar bundles. For a given value of Q?|x|?, finite-radius bun-
dles are stable for 6 < oy« (indicated as the shaded blue and orange
regions) and for o > omax (White region) the equilibrium phase is bulk,
untwisted assembly.

sembly for both twist-stable and twist-unstable bundles: opn,x as a
function of Q?|x|*. For 6 < Omax the equilibrium phase is charac-
terized by finite-radius and finite-twist bundles, whereas ¢ > Omax
the equilibrium phase is bulk, untwisted assembly (r, — oo, @, —
0). Increasing chirality at fixed y ! increases the stability range
of finite bundles for both twist-stable and twist-unstable bundles,
consistent with the Gpax ~ 0% scaling for large Q in egs. (22)
and (23). This derives simply from the fact that higher chiral-
ity generically increases the free energy difference between lo-
cally twisted and untwisted assembly. However, there is a no-
table difference in the vanishing chirality limit, deriving from the
obvious distinction that twist-stable bundles require chirality to
twist: Omax = 0 as in the achiral limit of twist-stable bundles;
while o, remains finites as Q — 0 for twist-unstable bundles.
More generally, beyond the achiral limit, oy is always greater
for twist-unstable bundles than for twist-stable bundles. Thus,
while they exhibit a far smaller range of possible self-limiting

Journal Name, [year], [vol.], 1 |9
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Fig. 8 Size-dependent twist for crystalline bundles of two varieties. In
(A), a chirality-driven, twist stable case with 0 = 100, x(;‘ =1and for a
series of reduced solid moduli, x{' =10"3—-107. In (B), a spontaneously-
twisting, achiral case with 0 =0, XSI = —1, rp = 0.1 and for a series of
longitudinal shear moduli, 7, ' = 107> — 10",

sizes, self-limited bundles formed in twist-unstable assemblies ex-
hibit a greatly enhanced range of thermodynamic stability relative
to twist-stable bundles of equal chirality.

3.2 Crystalline bundles

In this section, I briefly overview the thermodynamics of 3D crys-
talline bundles. These are distinguished from the 2D columnar
case through the presence of a non-zero elastic cost for azimuthal
shears (i.e. inter-column sliding) in twisted bundles, as charac-
terized by y >0 in eq. (13). In terms of the dimensionless in-
verse twist susceptibility, x ' = xg 42 Xy ! this corresponds to
X !'-£0, and an increasing twist stiffness with lateral size. From
the definition in eq. , it can be shown that x5 ! which we de-
note as the reduced solid modulus, is strictly less than y /2, that
is, the ratio in inter-column shear to intra-column stretch mod-
uli. Assuming that resistance to intra-column stretching is much
stronger than resistance to inter-column sliding (which disrupts
registry of the “layered”, longitudinal order in the crystalline bun-
dle), it is natural to expect that in general, y, ! « 1. The small-
ness of x, ! is relevant because it sets a size scale rg, = v/%2/] xol
at which the shear cost of twist dominates over the Frank elastic
contributions to twist stiffness. Accordingly, the following discus-
sion focusses on the cases where rg, > 1 > ry.

10| Journal Name, [year], [vol.], 1

3.2.1 Size-dependent twist

Figure (8| shows plots of the equilibrium twist as function of size
for two classes of crystalline bundles. In Fig. [8]A, the depen-
dence of w, on r is plotted for chirality-driven, twist-stable bun-
dles with fixed chirality (Q = 100) and for a range of reduced
solid moduil: x,' = 1073~ 10?. Comparing this behavior to
the case of columnar bundles shown in Fig. A, non-zero shear
modulus (i.e. yx, 1 £ 0) leads to a more rapid untwisting of
bundles with increased size. Again, assuming ry, > 1, the ef-
fect of longitudinal shear becomes dominant only well into the
regime where columnar-strain drives untwisting. Hence, crys-
talline bundles are characterized by a crossover from the colum-
nar , ~ r~*3 regime, to the even more rapid o, ~ r—2 fall off
deriving from the balance of chirality-driven and shear-elastic
torques (Q ~ oy, ' 7).

For spontaneously-twisting, achiral bundles, shown in Figure
Fig. [8B, the effect of shear-elasticity of the crystalline phase is
even more profound. This plot shows twist equilibria for a fixed
value of x, ' = 1 and an increasing range of longitudinal shear
rigidity, illustrating an abrupt (critical) transition from power law
untwisting to the untwisted state at a critical bundle radius equal
This follows from the fact that shear elasticity makes
all crystalline bundles twist-stable at sufficiently large radii (i.e.
2~ >0 for r > rg,), and in the absence of intrinsic chirality, there
is no mechanism to stabilize bundle twist when y~! > 0.

to rgh.

3.2.2 Maximal self-limiting size

Figure |8] shows that the additional elastic cost of longitudinal
shear of crystalline bundles leads to a reduced equilibrium twist
in comparison to columnar bundles, and in particular, much more
rapid rates of untwisting with increased size. Figure [9] shows the
effect of the reduced twist of crystalline bundles on the range of
their self-limiting size, as in Figure @A, showing rmax as a function
of the combined parameters szg, but for series of increasing
solid moduli: x, ' = 1072 —10".

Generally speaking, the effect of non-zero yx, is to reduce
the maximum size of stable self-limiting bundles, but its effect
is most significant for the weak-chirality regime of twist-stable
bundles (i.e. x, 'S0 and 0 — 0). While the maximum size of
columnar bundles is predicted to grow arbitrarily large as Q — 0,
the maximum size of crystalline bundles never exceeds a length
scale proportional to rg,. This is because the residual free energy
from twist in the shear-dominated regime, Qw, ~ —r2, cannot
restrain the surface-energy drive (going as r—!) towards bulk as-
sembly. Hence, for x,, I'> 0, stable finite bundles are restricted to
the regime rmax < r¢n, which sets an upper limit to self-limitation
under any chirality. Notably, the effect on the maximum size twist
unstable bundles (i.e. x, 1 < 0) deriving to crystalline shear elas-
ticity is far more modest. This is simply because, for the rea-
sons described for the columnar case, such bundles lose thermo-
dynamic stability well before reaching the size where crystalline
shear elasticity becomes significant (i.e. rmax < 1 < rgp).

4 Discussion and Conclusion

The previous sections describe a general theory for self-limitation
induced by twist in self-assembled bundles and fibers adopting
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Fig. 9 Plot of maximal self-limiting bundle radius for crystalline bundles
as a function of the combined chirality and twist-susceptibility, 0?|xo|?,
and for a series of reduced solid moduli, x,'. The solid and dashed
lines show the respective size of twist-stable (x, 1> 0) and twist-unstable
(%' < 0) bundles.

various degrees of internal order, from liquid crystalline (ne-
matic) to crystalline (3D solid). In addition to the comprehensive
range of predictions for bundle thermodynamics (e.g. spectrum
of power dependencies of twist on bundle size, and equilibrium
size on surface energy), the analysis yields several broad conclu-
sions.

1. Intrinsic chirality, and corresponding preference for handed
twist, is not essential for thermodynamically stable, finite
bundles. Spontaneous twist, which can arise in strictly achi-
ral systems, introduces sufficient elastic penalties for lateral
growth of bundles to limit their equilibrium diameter at low
surface energy.

2. Though they exhibit self-limitation (with and without chiral-
ity), the size-range of twist-unstable bundles is qualitatively
distinct from twist-stable bundles. Equilibrium twist-unstable
bundles are limited to microscopic dimensions, comparable
to few diameters in width, while twist stable bundles can ex-
tend well into to mesoscopic dimensions that far exceed the
filament diameter. In particular, the maximal size of twist-
stable bundles becomes arbitrarily large (i.e. diverges) in
the limit of vanishing chirality.

3. Although twist-unstable bundles are generically limited to
smaller sizes, they exhibit enhanced thermodynamic stabil-
ity (i.e. retain finite diameter up to larger values of surface
energy) relative to their twist stable counterparts.

The essential mechanism that underlies the distinctions be-
tween twist-stable and twist-unstable bundles is the rate of bun-
dle unwinding with increased diameter. While the generalized
elastic costs of bending and columnar and crystal strain resist
twist equally in these distinct bundles, their driving forces for
twist (torques) are not equal. As shown schematically in Fig.
even as twist vanishes, chiral, twist-stable bundles are sub-
ject to a constant torque, while in the same limit, torques van-
ish in twist-unstable, achiral bundles. The weakening of torques

Soft Matter

as bundles unwind towards @ — 0, accounts for the much more
rapid size-dependent untwisting exhibited by twist-unstable bun-
dles (see e.g. Figs.[4A and [FA). The more rapid untwisting of
twist-unstable bundles, as characterized by a stronger power law
decrease of twist with size, implies that the residual free energy
gain of twisting is unable to restrain the drive to decrease surface
energy by increasing to larger size. Hence, twist-unstable bundles
are driven to “escape frustration”2? to the bulk state by untwist-
ing at a smaller radius than twist-stable bundles which continue
to resist untwisting by surface energy even at mesoscopic sizes.

At present there is fairly little data from experimental stud-
ies on the inter-relation of structure and thermodynamics of
twisted fibers, as many of physical parameters characterizing
inter-filament assemblies remain difficult to measure, predict, or
systematically vary, or otherwise, detailed structural measure-
ments of intra-bundle order and morphology are limited by reso-
lution limits of standard characterization techniques. In an early
study, Weisel and coworkers performed SEM measurements of the
twist of purified and reconstituted fibrin bundles??, While the
bundles showed a range of finite diameters, from ~ 30 — 50nm,
they maintained a constant helical pitch of roughly 200nm. This
result is consistent with the equilibrium models above, assum-
ing that bundle are assembling in the low surface energy regime
and remain below their untwisting size. Without data showing
the rate of twist decrease with increased radius (presumably, as
protofilament solubility is further decreased) it is not possible to
definitely assess which of the mechanical costs of twists is respon-
sible for limiting their lateral size.

A more recent set of experiments has considered the possibil-
ity of self-twisting morphologies as a mechanism to regulate the
thickness of fibers of marginally insoluble aggregates of methyl-
cellulose (MC). And while the detailed picture of the intra-fiber
morphology of these aggregates remains a matter of some de-
bate324 there is some evidence supporting the twisted fiber
model of the assembly=2. Furthermore, the thermodynamics of
twisted fiber assembly would seem to explain some salient exper-
imental results. Most notably, the thickness of self-assembled MC
fibers is found to be independent of both molecular weight of MC
chains and concentration, remaining within 17-19 nm over a wide
range of conditions (corresponding to roughly ~ 200 chains in the
cross section) 4, This rather tight diameter regulation might sup-
port the interpretation that MC fibers are achiral, or at best, retain
a weak chirality that may not propagate to twisted assembly. Go-
ing beyond pure MC molecules, Morozova and coworkers 122152
modified the bending stiffness of the chains via grafting MC with
a controlled density of oligomeric PEG side chains. Upon assem-
bly, it was found the fiber diameter increased with MC chain per-
sistence length>. Neglecting possible changes in other parame-
ters (such as inter-chain cohesion), this increase was shown to be
consistent with the predicted dependence of the maximal bundle
size of an earlier theory!? for chirality driven twist in columnar
bundles. Assuming that the most significant change to MC chains
upon grafting is increased bending stiffness, then one can go fur-
ther to note that the only regime where bundle size increases
with K3, is indeed the limit of high-chirality, twist-stable bundles
where equilibrium size grows as R, ~ K3 (and Rpax =~ Ap = K;/ 2).
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In other regimes of self-limiting assembly, either weak-chiralty,
twist-stable, or achiral, twist-unstable, R, can be shown to de-
crease with K3. Hence, the experiments on PEG-modified MC
fibers would then contradict the interpretation of MC assembly, as
achiral or weakly-chiral, and suggest that the handed preference
for twist in these aggregates is strong. Additional experiments
that, for example, could resolve the correlation of fiber twist with
radius would be needed to clarify the role of chirality on MC fiber
assembly.

In addition to the role of elastic parameters that characterize
resistance to bundle twist, this study highlights that at least two
quantities are needed to describe the effective drive for inter-
filament twist. The first of which, the reduced chirality Q, is
a dimensionless measure of the preferred inter-backbone twist.
Predicting the cholesteric pitch from the molecular structure and
interactions of chiral molecules in dilute, liquid crystalline phases
is notoriously challenging problem owing to the prominence of
both positional and orientational fluctuations®22¢. In densely
packed and oriented (at least nematic) bundles, many of these
fluctuations are frozen out, and provided a sufficiently accurate
model of chiral structure and interactions, predictions are avail-
able for the torques induced by chiral interactions between, heli-
cal biomolecules, such as DNAL®. Far less studied, at least from
the perspective of inter-filamentary forces, is the twist stiffness,
%~ L. Steric considerations, for packing of inter-digitated disks, as
in the columnar fibers of 2%, have been put forward to at least
justify the sign of ! and the appearance of spontaneous twist
in achiral systems#Z. On the other hand, modeling of pair-wise
interactions between tubular filaments suggest that the both the
sign and magnitude depend sensitive on the physical mechanism
of inter-filament forces=. For example, cohesive van der Waals
interactions between tubular filaments generically lead to twist-
unstable interactions, with a magnitude that varies with the ratio
of interaction range to diameter. In contrast, charged stabilized
and osmotically-condensed tubular filaments are predicted to be
twist-stable. Taken together, these studies imply that twist stiff-
ness exhibits a complex dependence on geometrical parameters
of inter-filament/columnar packing as well as competing mecha-
nisms of inter-molecular forces at play in supramolecular systems.
Reducing the many “filament scale” parameters that control twist
to two dimensionless combinations may be useful in guiding sys-
tematic simulation studies of self-limitation that extend beyond
intrinsically chiral bundle model of Yang, Meyer and Hagan?Z to
coarse-grained models of spontaneously twisting bundles

Finally, I conclude by briefly noting two key physical effects
that have not been considered in the generalized elastic theory
presented here: topological defects in the interior packing, and
anisotropic surface shapes of bundles. The former, dislocations
and disclinations in the cross sectional lattice®M4220 or tilt-grain
boundaries in the “smectic-like” order of crystalline bundles=>Z,
have been predicted to arise as means to mitigate the costs of
geometric frustration associated with introducing twist to the re-
spective 2D columnar and 3D solid order of bundles. The latter
effect of anisotropic cross-section shape may result in widely ob-
served twisted, tape morphologies of bundles, and it has also been
predicted to occur as elastically-driven response of surface shape

12| Journal Name, [year], [vol.], 1

to twist frustration=83?, While these effects left out the present
study, it is reasonable to expect that they would influence the
quantitative, but not quantitative, conclusions presented above.
This is because these “morphological mechanisms” are capable
of relaxing some, but not all of the frustration cost imposed by
twist®2, For example, incorporation of sufficiently many discli-
nations in twisted bundles can screen the power law growth of
columnar strain with radius*43 but it does not eliminate the
orientational (bending-induced) costs which also limit the lateral
bundle radius. Thus, the effect of forming twist-relaxing defects
in bundle, for example, could potentially be captured by consid-
ering a defect-normalized values of the 2D elastic moduli, bundle
assemblies that “escape frustation” of the 2D columnar lattice,
would simply be described by the nematic limit of Ag — co.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

I would like to thank F. Bates, K. Dorfman, T. Lodge and D.
Cleaver for stimulating discussions. I am grateful to D. Hall for
detailed comments on this manuscript. This work was supported
by the National Science Foundation under Grant DMR 1608862.
I would also like to acknowledge the hospitality of Aspen Center
for Physics (NSF PHY 1607611) where much of this manuscript
was completed.

A Shear to stretching transition in crys-
talline bundles

The force balance equation for the longitudinal displacement u;
for crystalline bundles, eq. (I3, has the form

(/IHQZZ —+ Z'U“HVZL)MZ =0 (24)
and satisfies the boundary conditions,
GZZ|z:iL/2 =0; Jritz|r—g =0, (25)

where we have used V-t; =0 and #-t; =0. The solutions are
harmonic functions and have the form,

uz =Y u(k)sinh (/2p11 /A kz)Jo(kr), (26)
k

where vanishing radial stress at the sides of the bundle leads to
the condition,
knR = Xn, 27

where x,, are the zeros dyJy(x)|x=x, = —J1(x,) = 0. The coefficients
u(k,) derive from the cancelation of tension at the ends of the
bundle z = £L/2,

(QR)?

V/2UL /A cosh (/34 B

2J5 (knR) — kyRJ3 (knR)

u(ky) = — (knR)2JZ (knR)

(28)
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From this, we have the longitudinal stress,

1, 1 72

ou @3-+ )

B cosh (\/2u1 /A1 knz)  2J5(knR) — kR J3 (knR)
xSocosh (v/2uy /A kaL/2)  (kaR)2JG (knR)

Jo(kyr)|.
(29)

Note that due to the term arising from the k, — 0 contribution
to du,, the net stretching in the bundle vanishes at every z, i.e.
2n jge drr o;; = 0. Decomposing the shear stress in azimuthal and
radial components we have,

0y = $i0ic = O, (30)

and

Oy; = }A’,'Gl'L =4 /Z‘MHAH(QR)Z

sinh (\/2u1 /A1 knz) 205 (knR) — knRJ3 (knR)
k Zocosh (/20 /A kaL/2)  (knR)2JG(kuR)

J1 (kyr).
3D

Example profiles are shown in Fig. 3} where the the stretching
vanishes within a zone of order /A, /2u | R from the ends of the
bundle, and at its center, we find o, = 4 (Q?/2)(r* —1/2) consis-
tent with z-independent stretching of outer filaments (which, in
turn, loads the core filaments under compression). At the ends
of the bundle, the relaxation of the tension, generates a zone of
radial shear within the boundary zone, that decays to zero in the
core of the bundle.

From these results we can derive the elastic energy contribu-
tions for the twisted, 3D solid bundle. First, the energy for longi-
tudinal stretching,

~L/2 . A
E,; = 71?/1H /71‘/2 dz /dr rugz = %V(QRﬁgw (\ / Z“H/AHL/R)’ (32)

where, gy(a) is a dimensionless function characterizing the
shear-to-stretch crossover,

. _ J2
1 Z [17 3smh(ax;) oxy, ] 23§xn)
s 20x, cosh” (axy /2) 4 X205 (xn)
%Oﬁ for o <1
= . (33
1 for > 1

The shear contributions break into radial and hoop components.
The radial shear contribution,

/ [
Erhr = E(Z[JH)/L ’ dz /dr Vu 92V(QR) gsh( 2/.1H/AHL/R),

34
where, gqh (@) is a non-monotonic function of « characterizing the
build up of radial shear for small L/R, then the drop off to stretch
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dominated mechanics for L/R > 1,

%a3 for x <« 1

e Z [ sinh(0tx,) — axy, 1 I3 (%n) _ ) - ’
n>1

00x, cosh? (auxy, /2) 1 x2J2 (x,) o for &> 1

(35)
where ¢; = 0.0616. Finally, we have the shear of filaments sepa-
rated along the hoop direction, which is independent of R/L (as
every concentric shell of filaments tilts by the same amount, Qr,

relative to the central axis),

Ah 0= E(Z/,LH)/ dz /dr ru,¢ = ,UH V(QR) (36)

which is notably the “Kirchoff beam" result of a twisted 3D solid
rod.

B Equilibrium twist, radius and stability
limit: general solution

Here, I summarize the equations of self-limiting bundle equilib-
rium, beginning with torque balance and equilibrium twist o,
determined from the solution of,

af

9 _pd 12 _
waw B +x o+ Q0w =0, 37

where :r(2)+r2+r4 and y~! =xgl +x{1r2. When y ' >y ! =
—3(Q2B /4)!/3 there is one real solution, corresponding to the
global minimum of the free energy,

\/zsmh {sinh_l (\/ 4(2;912)3>/3}7 for y~! >0
—sign(Q) _%71 cosh [cosh‘l (@/ 2 )/3}

for0>x > !

Wy =

(38)
When susceptibility is sufficiently negative, that is y~! < y./,
there are 3 real solutions, one maximum and 2 minima,
. —4x~! 1 2702 2ntn
S s 3+
s (n) sign(Q) 3p cos {cos < TR )/ ,

for0>x '>x' (39

where n = 0, corresponds to the global minimum (for finite Q),
n = +1 correspond to a local maximum and n = 42 corresponds
to a metastable minimum.

Given these solutions, for equilibrium twist w.(r), the self-
limiting bundle radius r, follows from minimization with respect
to radius,

e e et -2 o

which gives the equation of state relating the equilibrium finite
size r, to the surface tension

o (r:)

2
> ( Fe )T 41D

O (re) =14

(r£+2r )+Xz
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Finally, we can consider the limiting conditions for self-limiting
assembly, namely the maximal finite size rm,x and minimal finite
twist @y, at which the bundles are in equilibrium with a sur-
face energy omax, by the imposing condition such bundles are in
equilibrium with bulk assembly (i.e. f(w — 0,7 — ) — 0), or,

2

_ O
ﬁ(’max)wiin + 27 (Fmax) Opin + Q@prin + —= =0.

(42)

max

Combining this eq. (37) yields a parametric relationship between
minimal finite twist and maximal size,

2(%(;1 7)(271}”[211“)

( max_rl%mx_:sr(z))‘

w;%in(”ma)c) =

(43)
Inserting this into eq. yields a parametric relation for maxi-
mal surface energy,

717

3 —
Omax (Tmax) = 27 max (%0 X lrr2nax)

[ (1427200 = 225 (rax +273)]

X
(rfnax - rrznax - 37‘%)2

(44)

Inserting @y (rmax) into eq. yields a parametric relation for
reduced chirality at the stability limit

—1 —-1.2
XQ 7%2 Tmax
2 2\3
2(rﬁlax_rmax_3”0)

Qz(rmax) =

4 —1.2

_ 2
X [x() 1(3rmax+r1%1ax_r(2))_XZ rmax(rfnax_"?’rlgnax'i_sr(z))] . (45)

Setting x, !' = 0 (for vanishing longitudinal shear modulus) yields
the equations of state for the stability limit of finite columnar bun-

dles, egs. and (23).
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