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Both animal and plant tissue exhibit a nonlinear rheological phenomenon known as compression12

stiffening, or an increase in moduli with increasing uniaxial compressive strain. Does such a phe-13

nomenon exist in single cells, which are the building blocks of tissues? One expects an individual cell14

to compression soften since the semiflexible biopolymer-based cytoskeletal network maintains the15

mechanical integrity of the cell and in vitro semiflexible biopolymer networks typically compression16

soften. To the contrary, we find that mouse embryonic fibroblasts (mEFs) compression stiffen under17

uniaxial compression via atomic force microscopy studies. To understand this finding, we uncover18

several potential mechanisms for compression stiffening. First, we study a single semiflexible poly-19

mer loop modeling the actomyosin cortex enclosing a viscous medium modeled as an incompressible20

fluid. Second, we study a two-dimensional semiflexible polymer/fiber network interspersed with21

area-conserving loops, which are a proxy for vesicles and fluid-based organelles. Third, we study22

two-dimensional fiber networks with angular-constraining crosslinks, i.e. semiflexible loops on the23

mesh scale. In the latter two cases, the loops act as geometric constraints on the fiber network to24

help stiffen it via increased angular interactions. We find that the single semiflexible polymer loop25

model agrees well with the experimental cell compression stiffening finding until approximately 35%26

compressive strain after which bulk fiber network effects may contribute. We also find for the fiber27

network with area-conserving loops model that the stress-strain curves are sensitive to the packing28

fraction and size distribution of the area-conserving loops, thereby creating a mechanical finger-29

print across different cell types. Finally, we make comparisons between this model and experiments30

on fibrin networks interlaced with beads as well as discuss implications for single cell compression31

stiffening at the tissue scale.32

I. INTRODUCTION33

Compression stiffening, a nonlinear rheological prop-34

erty in which a material’s moduli increase with increas-35

ing uniaxial compressive strain, has recently been discov-36

ered in several types of animal and plant tissues [1–3].37

Some of these tissues contain a filamentous extracellu-38

lar matrix, while others do not. Given these studies, a39

natural question emerges: Since individual cells are the40

building block of tissues, do individual cells compression41

stiffen? Should the answer to this question be affirmative,42

one cannot necessarily conclude that tissues compression43

stiffen given the possibility of emergent, collective me-44

chanical phenomena, however, answering the question is45

surely a reasonable starting point. Interestingly, we will46

explore the possibility of emergent mechanical phenom-47

ena within an individual cell.48

From a mechanical perspective, the cytoskeleton gives49

the cell its structural integrity. The cytoskeleton consists50

of actin filaments, intermediate filaments, and micro-51

tubules [4], all of which are semiflexible biopolymers [5].52

Semiflexible polymers have a characteristic persistence53

length lp such that for lengthscales much lower than lp,54

they act as rigid rods, while for length scales much larger55

than lp, they act as flexible (Gaussian) polymers. A typ-56

ical persistence length for intermediate filaments is ap-57

proximately 1 micron [6], while for actin it is approxi-58

mately 17 microns [7, 8]. These semiflexible polymers59

crosslink to form a composite semiflexible polymer net-60

work. Actin dominates near the periphery of the cell61

[4]. In contrast, vimentin, an intermediate filament, is62

localized more around the nucleus and other organelles63

to presumably anchor them in place [9, 10]. Vimentin64

also enhances the elasticity of a cell with the enhance-65

ment increasing with increasing substrate stiffness [11]66

as well as suppresses nuclear damage in cells undergoing67

large deformations [12].68

If the mechanics of the cell is dominated by the cy-69

toskeleton, then one can directly probe the mechanics70

of in vitro semiflexible biopolymer networks to under-71

stand the mechanics of a cell. Such networks strain-72

stiffen under shear [13, 14]. On the other hand, semi-73

flexible biopolymer networks typically soften under com-74

pression [15]. Both mechanical responses are related to75

the mechanics of a single semiflexible polymer. An in-76

dividual semiflexible polymer extension stiffens, i.e. its77

elastic modulus increases with extension strain, and com-78

pression softens, i.e. its elastic modulus decreases with79

compressive strain [16, 17]. Stiff and semiflexible poly-80

mers compression soften as a consequence of the Euler-81
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buckling instability with the transition being more grad-82

ual in the latter case due to the presence of fluctua-83

tions [18, 19]. Shear strain stiffening of semiflexible poly-84

mer networks is due to stretching out the polymers, com-85

bined with semiflexible polymers buckling orthogonal to86

the ones that stretch the most [13]. In such systems,87

the filament density must be small enough to allow for88

the lengthening of the polymers. Compression softening89

at the network scale is attributed to filaments buckling,90

which then no longer contribute to the stiffness of the91

network as it is compressed [15].92

If the cytoskeleton compression softens, such as in93

vitro semiflexible polymer networks do [15], then how94

do cells protect themselves against compressive strains?95

Of course, cells are not just bags containing semiflexible96

biopolymer networks that can rearrange, they are also97

filled with vesicles and organelles. Does the presence of98

vesicles and organelles then help protect the cell against99

compressive strains? More specifically, if vesicles and or-100

ganelles are modeled as regions of incompressible fluid,101

does the presence of such structures promote compres-102

sion softening? Or, do they contribute to compression103

stiffening? And what about organelles that are elastic104

in nature? A majority of our modeling will focus on105

fluid-like organelles. In addition, one can ask how does106

the typical mechanics of semiflexible biopolymer net-107

works change in the presence of angle-constraining cross-108

linkers? To date, most modeling has focused on freely-109

rotating crosslinkers [17] with the exception of Refs. [20–110

22]. With angle-constraining crosslinkers, one introduces111

semiflexible polymer loops at the network mesh scale.112

Unlike a semiflexible filament, a semiflexible loop does113

not buckle in plane and so one may expect the mechan-114

ics to differ.115

We will answer some of these questions by first con-116

ducting an experiment to determine whether or not cells117

compression stiffen or compression soften. We will find118

that cells do compression stiffen, intriguingly. We will,119

therefore, investigate the role of vesicles and organelles120

embedded in a semiflexible polymer network (hereafter121

termed a fiber/fibrous network) and semiflexible poly-122

mer loops at the network mesh scale and at the cortex123

scale—to look for various mechanisms of compressional124

stiffening. We will also study experimentally an in vitro125

fiber network embedded with beads so that we, in part,126

can more directly test ideas developed in our modeling.127

The paper is organized as follows. We first present our128

experimental results, then we present our modeling and129

discuss how the modeling results can used to interpret130

the experimental results. We conclude with a summary131

and discussion of implications of compression stiffening132

at the cell scale and how it may inform how compression133

stiffening occurs at the tissue scale [1, 2].134

II. EXPERIMENTS135

To study the nature of compression stiffening in cells,136

we conduct two different experiments. The first is whole137

cell compression of mouse embryonic fibroblasts (mEFs)138

and the second is compression of a fibrin network embed-139

ded with beads. Since the cell contains both a boundary140

actomyosin cortex and a bulk fiber network, with the141

second experiment we are able to identify compression142

stiffening coming solely from a bulk fibrous network.143

Whole cell compression: Experiments with whole cell144

compression of mouse embryonic fibroblasts (mEFs) were145

performed using a JPK Nanowizard 4 atomic force mi-146

croscope equipped with cantilevers of a nominal stiffness147

of 2.4 N/m with a 25 µm diameter sphere attached (No-148

vascan), according to a previously published protocol [23]149

with minor modifications. Briefly, cells were trypsinized150

in order to round up and detach from the surface of the151

TC flask. Next, cells were centrifuged and resuspended152

in growing medium. Immediately round cells were placed153

on a Petri dish which was mounted on the AFM stage154

and indented uniaxially with a constant force of 450 nN155

at a speed of 5 µm/s as follows: (i) the AFM cantilever156

was placed over the rounded cell as controlled visually157

through the optical microscope, (ii) the point of contact158

between the cantilever and cell surface was recorded and159

assumed to be the cell height, (iii) each cell was indented160

until 450 nN force was reached and data were saved au-161

tomatically as force (nN) vs. distance curves (µm). Such162

curves were then converted into stress (kPa) vs cell height163

(%) with the assumption that normal stress can be cal-164

culated as the ratio of the applied force (F) to the area of165

deformation. The area of deformation A was calculated166

as a spherical cap of the sphere, or A = 2πrh where r is167

the radius of the sphere and h is the depth at which cell168

was indented. The cell height percentage was calculated169

as the percentage of the total cell height that underwent170

indentation at a given force. Assuming that the strain171

is 0% at 100% cell height, then the cell height can be172

converted to a strain percentage by subtracting the cell173

height percentage from 100%. Finally, the stress is then174

given by the ratio of the force to the area of deformation.175

The data was obtained from 10 cells and averaged over176

with the error bar denoting the standard deviation.177

As evidenced by the stress-strain curve, these cells ex-178

hibit compression stiffening (see Fig. 1). Compression179

stiffening can be defined as a non-linear phenomenon in180

which the elastic modulus of the system increases with181

increasing compression, which is to be contrasted with182

uniaxially straining a Hookean spring where the spring183

constant remains independent of the strain. We define184

the strain at which the compression stiffening sets in as185

γc. See Table I for the definition of this parameter and186

others used in the manuscript. The compression stiffen-187

ing results of the mEF cell are a surprising mechanical re-188

sponse of the cell. The cytoskeleton, being a semiflexible189

polymer network is expected to compression soften due190

to the buckling of individual polymers. This disagree-191
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ment between experiment and cell modeling necessitates192

a need to find new mechanisms for the observed behavior.193

FIG. 1. Compressive stress versus compressive strain for wild-
type mouse embryo fibroblast cells. The symbols represent the
data and the line represents a linear fit to the data for up to
20% strain. We observe the onset of compression stiffening
around γc ≈ 20%. The inset is a schematic of the experiment
where the AFM tip is attached to a glass bead (blue) which
in turn applies a global strain on the mEF cell (salmon). The
data is averaged over ten mEF cells with the error bars de-
noting the standard deviation.

Fibrin network compression: The experimental proto-194

col follows Ref. [24] in which further experimental details195

are provided.196

To study fibrin networks with embedded inert beads,197

fibrinogen isolated from human plasma (CalBioChem,198

EMD Millipore, Billerica, MA, USA) was dissolved in199

buffer. To prepare fibrin networks, fibrinogen, throm-200

bin, 1X T7 buffer, and CaCl2 solution were combined to201

yield 10 mg/mL fibrinogen, 30 mM Ca2+, and 2 U/mL202

thrombin and allowed to polymerize between the rheome-203

ter plates for 1.5-2 hours at 37◦C and then surrounded204

with T7 buffer. Beads made from cross-linked dextran205

(Sephadex G-25 medium, GE Health Sciences, Marlbor-206

ough, MA) were swollen with H2O to accomplish a 92%207

swelling. The volume needed for 92% swelling was ex-208

trapolated from the amount of water needed for 100%209

swelling. The 100% swelling was determined by allowing210

pre-weighed beads to swell for 12 hours in excess amounts211

of ddH2O. The suspension was centrifuged at 2200 x g212

for 30 minutes, and the weight of volume of beads and213

excess water were determined.214

Fibrin networks with adherent beads: Fibrinogen 1215

and thrombin 2 purified from salmon plasma (Sea Run216

Holdings, Freeport, ME, USA) were dissolved in 50mM217

Tris, 150 mM NaCl, pH 7.4 (T7 buffer). Anion exchange218

chromatography beads (SP Sephadex C-25, GE Health219

Sciences, Marlborough, MA) to which fibrin binds were220

swollen to their equilibrium size in the same buffer.221

For rheometry, fibrinogen, T7 buffer, CaCl2 solution,222

thrombin and water were mixed together first and then223

added to a bead solution to yield a fibrin network of224

the required concentration in a 1X T7 buffer with 0.5U225

thrombin/mL sample and the required volume of beads.226

Samples were polymerized between the rheometer plates227

for 90 minutes at 25◦C and surrounded by T7 buffer.228

The experimental findings are as follows. Without229

beads, a 0.1% fibrin network does not compression stiffen.230

However, even with just 14% packing percentage of ad-231

herent beads, the fibrin network compression stiffens232

around 30% compressive strain. See Fig. 2. This small233

packing fraction is far below both the packing percent-234

age of random loose packing (55%) [25] and random close235

packing (64%) [26] of beads in three-dimensions. Thus236

the effect is not due to the jamming of the beads but237

rather an effect of the composite system. With inert238

beads and a 1% fibrin network, there is no compression239

stiffening until the packing percentage of beads is 60%240

(See Ref. [24]).241
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FIG. 2. Compressive stress versus compressive strain for a
fibrin fiber network with and without adherent dextran beads.
The symbols represent the data and the lines represent a lin-
ear fit to the data for up to 20% strain. In the absence of
beads, we do not observe compression stiffening. In the pres-
ence of 14% packing percentage of adherent beads, we do ob-
serve compressional stiffening around γc ≈ 30%. Error bars
denote standard deviation.

III. CELL AS A VISCOUS INTERIOR242

SURROUNDED BY A CORTEX243

The simplest mechanical model for a cell is perhaps an
actin cortex surrounding the periphery of the cell with
an incompressible fluid inside. In other words, there is
no rigid fiber network spanning across the cell and so we
neglect its mechanical contribution. Without such a fiber
network, organelles and vesicles remain disconnected at
the cell scale and so act as viscous agents. For simplic-
ity, we assume a two-dimensional geometry and will later
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FIG. 3. A cell as a viscous interior surrounded by an actomyosin cortex. (a) The schematic of the system with central force
spring (black) between neighboring vertices (blue) and angular spring (red) across a vertex. The spring constants are Kcf and
Ksf respectively. The area of the polygon is preserved as the system is uniaxially compressed. (b) With just the central force
springs, energy is seen to be quartic at small strain. Analytical calculations confirm the same (see Appendix (A)). (c) Adding
angular springs to the system brings linear behaviour at small strain since bending energy is quadratic at small strain (see
Appendix A). This delays the onset of non-linearity effected by the central force springs. The onset of non-linearity is tuned
by changing κ̃. (d) Heat map for the ratio of stretching and bending energy, Ecf/Esf as a function of κ̃ and strain. The solid
black line is an analytical estimate separating the bending and stretching regimes. The shape of the polygon at 30% strain
for κ̃ = 0.006 (dark-violet) is ellipse-like and for κ̃ = 0.960 (blue) is pill shaped. All numerical results were obtained using a
32-gon.

Definition Value
γc Strain at onset of compression stiffening
σ Compressive stress
Kcf Central force spring constant
Ksf Semiflexible angular spring constant
lo Distance between neighboring vertices

at zero strain

κ̃ Dimensionless constant -
Kcf l

2
0

Ksf
0.006 - 0.96

Kxlink Crosslinker angular spring constant
p Bond occupation probability 0.5 - 1
φ Packing fraction of area conserving loops 0.04 - 0.25
λ Lagrange multiplier
KA Area-conserving loop “spring” constant
A0 Preferred area

TABLE I. Definitions of symbols.

address under what conditions is such a geometry appli-
cable for a three-dimensional experiment. We model a
cell as a loop (polygon) with a perimeter composed of
springs that can stretch and bend and the polygon con-
tains an incompressible fluid (see Fig. 3a), i.e. the area
enclosing the polygon is conserved. The Hamiltonian for
a cell as a viscous interior surrounded by a cortex, Hv+c

with v denoting viscous interior and c denoting cortex, is
then

Hv+c =
1

2
Kcf

∑
<ij>

(lij − lo)2 +
1

2
Ksf

∑
<ijk>

(θijk − θo)2

+ λ (A−A0), (1)

where lij is the length of a spring between vertices i and244

j and l0 is the corresponding rest length. Additionally,245

θijk is the angle between the polygon edges flanking the246

jth vertex and θo is its rest angle. Moreover, A is the247

area of the polygon and A0 is its preferred area, which is248

simply its initial area, and λ denotes the Lagrange mul-249

tiplier. Finally, Kcf and Ksf denote the spring stiffness250

and bending stiffness respectively.251

At zero strain, a regular polygon of area A0, is cho-252

sen as the initial configuration such that Hv+c = 0, i.e.253

there is no pre-stress in the system. The vertices form-254

ing the polygon are then confined to be within two rigid255

lines. These lines are the two-dimensional equivalent of256

the compression plates in the experiment. Uniaxial com-257

pressive strain is applied by updating the position of the258

two parallel rigid lines and reducing the distance between259

them. Numerical minimization of the energy as defined260

in Eq. 1 at various strains is performed using the SLSQP261

minimization algorithm in Python. This algorithm per-262

mits minimization while obeying strict constraints. The263

compressive stress is defined as264

σ =
1

A

∂H̄v+c

∂γ
(2)

where H̄v+c is the numerically minimized energy at a265

given strain.266

For bending stiffness Ksf = 0, by Maxwell constraint-267

counting of just the central-force springs, one would ex-268

pect the loop not to be rigid at all for small strains [27].269

And yet, the energy of the polygon increases with in-270

creasing strain (see Fig 3b). This is solely due to the271

area conservation imposed on the loop during compres-272

sion. Such a conservation can be thought of as exerting273

an outward “pressure” onto the edges, making it unten-274

able for the system to access its floppy modes. In the275

absence of bending, does such a loop compression stiffen?276

We find a cubic stress-strain profile that can be under-277

stood via a minimal 4-polygon analytical calculation (see278

Fig. 3b and Appendix A) that makes an excellent fit to279
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numerical results for higher polygons, i.e.280

σ ∝ γ3. (3)

In other words, the compressive strain at which the loop281

compression stiffens, γc, is zero in that the stress-strain282

curve is nonlinear for all strains. This cubic stress-strain283

curve is qualitatively different from the curves observed284

in Fig. 1. This model, however, may be in agree-285

ment with the single cell compression experiments on286

T-lymphoma cells presented in Ref. [28]. In these ex-287

periments the cell is compressed between surfaces which288

are large compared to the dimension of the cell, thus the289

compression applies a global force on the cell. However,290

unlike compressive stress reported here, Ref. [28] reports291

compressive force and fit their data using the above scal-292

ing. The authors show this fit to be good up to ∼ 30%293

strain.294

While the Ksf = 0 limit demonstrates compression295

stiffening, there is no linear stress-strain regime as ob-296

served for the MEF case. For Ksf > 0, the perimeter297

of the polygon is now a stretchable semiflexible polymer.298

We do not consider buckling in our model since semi-299

flexible polymer loops with area conservation acting as a300

“pressure”, pushes the perimeter outwards, eliminating301

the possibility of buckling in this two-dimensional sys-302

tem. The competition between bending energy and area303

conservation has earlier been investigated in the context304

of finding the equilibrium shape of the loop [29]. Here,305

since an additional parameter Ksf is introduced in the306

Hamiltonian, a tunable, dimensionless parameter κ̃ can307

now be defined. Specifically,308

κ̃ =
Kcf l

2
0

Ksf
. (4)

Numerical minimization of Hv+c shows compression309

stiffening with the added feature of having linear re-310

sponse at small strain (see Fig. 3c). The linear stress311

response at small strain is an outcome of adding angular312

springs to the polygon. An analytical calculation at small313

strains for this linear behavior for a 4-gon is presented in314

Appendix A. At larger strains, with growing compres-315

sive strain, the compressive stress increases more rapidly316

than a linear response. We see similar behaviour when a317

“soft” area constraint is used in contrast to the “hard”318

area constraint employed here. See Sec. A.319

The energetics and the shape of the loop is determined320

by the dimensionless parameter κ̃ and the compressive321

strain γ. The heat map in Fig. 3d studies the ratio of322

stretching to bending energy, Ecf/Esf as a function of323

both parameters. The black crossover line is obtained324

by equating the stretching and bending energies up to325

fourth order in the strain (see Eq. (A3, A4)). For κ̃ < 1,326

the system assumes an ellipse-like shape where angles are327

more conserved than distances between the vertices. Ap-328

pendix A details a small strain calculation in the ellipse-329

like limit. For higher κ̃, i.e. κ̃ ≈ 1 and κ̃ >> 1, the330

system assumes a minimal pill shape in which distances331

between the vertices are more conserved. Pill-shaped sur-332

face have earlier been studied in the context of sea urchin333

eggs [30].334

At low and medium strains in the heat map, κ̃ deter-335

mines the domination of stretching or bending energy.336

For κ̃ < 1, the ellipse-like loop response is stretching337

dominated. For higher κ̃, the strain at which the pill-338

shaped loop transitions from bending to stretching is in-339

versely proportional to κ̃. A larger κ̃ makes the loop less340

costly to bend and so bending energy contributes little to341

the total elastic energy. At a strain of around 40%, the342

system’s response to increasing κ̃ is stretching→ bending343

→ stretching dominated. This is distinctly different from344

shearing a fiber network where the system’s response to345

increasing κ̃ is stretching → bending dominated [31]. Of346

course, the loop has a very simple network topology.347

At high strains, the system is stretching dominated348

for all κ̃. For κ̃ < 1, this is in line with the expecta-349

tion for the ellipse-like loop. For higher κ̃’s, the angular350

springs of the pill-shaped loop that are in contact with351

the compression walls no longer contribute to the change352

in bending energy. The change in bending energy of the353

system then is proportional only to the number of ver-354

tices on the sides of the loop. As the number of vertices355

on the sides of the loop decreases with strain, the elastic-356

ity of the system becomes increasingly governed by the357

stretching energy. Incidentally, the shearing of floppy358

fiber networks at large strains to induce rigidity appears359

to be stretching-dominated as well.360

IV. CELL AS A COLLECTION OF361

ORGANELLES WITHIN A FIBER NETWORK362

We now ask how does the presence of a spanning, rigid363

fiber network affect the compression mechanics of a cell?364

While one cytoskeletal fiber type may not necessarily365

span the cell in a cross-linked network, a composite one366

is more likely to, particularly given the various means of367

couplings between the different filament types [32]. Since368

an individual in vitro fiber network typically compression369

softens, one anticipates that a composite fiber network370

compression softens as well, though we leave that as an371

open question. For now, we look to other components372

of the cell to determine how they affect the mechanics.373

Cells contain organelles that can be more fluid-based or374

more elastic in nature, and they contain vesicles. We375

will focus on the effect of fluid-based organelles and vesi-376

cles in this section and address elastic-based organelles in377

Sec. V. For simplicity, our modeling will be done in two-378

dimensions. Prior modeling has demonstrated that two-379

dimensional fiber network modeling qualitatively cap-380

tures three-dimensional fiber network experiments [33].381

We will address the effect of dimensionality in Sec. V.382

Therefore, we present a model with a network of
fibers that are stretchable and bendable and with freely-
rotating crosslinks. The fiber network also contains fluid-
based organelles and vesicles as area-conserving loops
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randomly interspersed throughout. The compositeness
of the cell focuses on the fibers and area-conserving loop
mixture. We work with a triangular lattice whose bonds
can be diluted randomly and independently to become
a disordered triangular lattice. The fibers reside on the
bonds of this lattice and the area-conserving loops are
represented as triangles. See Fig. 4a. The Hamiltonian
for the cell as a collection of organelles within a fiber net-
work, Ho+fn with o denoting organelles and fn denoting
fiber network, is then

Ho+fn =
1

2
Kcf

∑
<ij>

pij (lij − l0)2 (5)

+
1

2
Ksf

∑
ijk=π

pijpjk (θijk − π)2

+ KA

∑
i′=1

qi′(Ai′ −A0)2.

The two-body interactions of the central force springs383

with rest length l0 is accounted by summing over neigh-384

boring indices i, j. The pi,js are random variables gov-385

erning bond occupation and introduce disorder in the386

system. Specifically, pi,j is one with probability p (or387

zero with probability 1 − p) signifying an occupied (or388

unoccupied) bond between vertices i and j. The three-389

body interactions of the angular springs are accounted390

for by summing over three neighboring and collinear in-391

dices ijk. The rest angle of the angular spring is π, i.e.392

a straight fiber is the lowest bending energy configura-393

tion. The product of the random variables ensures that394

the bending term is non-zero only if both the central-395

force springs flanking the vertex are present. We work396

in the limit near Kcf l
2
0/Ksf = 1 since bulk interme-397

diate filaments, such as vimentin, are more stretchable398

than actin, for example [34]. Area-conserving loops are399

introduced as “area springs” instead of using lagrange400

multipliers (as in Sec. (III)), the choice being made for401

computational simplicity. The area spring penalizes de-402

viations from the preferred area A0. To ensure that the403

area springs contribute only minimally to the total elastic404

energy, the area spring stiffness is set to be three orders405

of magnitude larger than the central force spring stiff-406

ness, i.e. KAl
2
0/Kcf = 103. We can then explore the407

effect of area-conserving loops on the mechanics of the408

fiber network. For each i′th triangle in the network, qi′409

is one with probability φ or zero otherwise. Here, φ is the410

packing fraction of the area conserving loops in the net-411

work. Finally, we implement open boundary conditions412

with the vertices constrained between two rigid lines. As413

before (see Sec. III), the network is not prestressed ini-414

tially and Ho+fn is minimized for different compressive415

strains to obtain the stress-strain dependence.416

With KA = 0, we begin with no organelles and look417

for compressional softening. We must emphasize that we418

have not implemented buckling at the single fiber level.419

Instead, we seek a more collective compression softening420

mechanism. To do so, we begin with an ordered lattice421

(p = 1) where we see the network exhibit an affine re-422

sponse under compression and extension. In the affine423

regime, straight fibers in the network remain straight424

fibers and thus angular springs do not contribute to the425

elastic energy. We numerically find that the compression426

response of the network is in sharp contrast to extension,427

the latter of which remains linear throughout. See Fig.428

3b for the stress-strain curves. More specifically, the fiber429

network compression softens.430

A physical explanation for the softening is that when431

the network is compressed, the springs increasingly align432

along the transverse axis of compression. It is then433

easier to compress the system at larger strains for this434

given choice of orientation of the triangular lattice. See435

Appendix B for the details of an analytical calculation436

quantifying the compression softening. Is this soften-437

ing generic? For a triangular lattice rotated by 90 de-438

grees, there would be no compressive softening since in439

the direction of compressive strain there would always440

be springs co-linear with the compression axis. In con-441

trast, for any rotation less than 90 degrees, there will be442

compression softening since there are no springs co-linear443

with the compression axis. Therefore, the 90 degree ro-444

tation is a singular case and not generic (see Fig. 13).445

This compression softening phenomenon is indepen-446

dent of the buckling of semiflexible polymers, which un-447

til now has been considered to be a dominant reason for448

compression softening of such networks. The signature449

of compression softening is also observed for disordered450

lattices with p < 1 (see Fig. 14 in Appendix B). We also451

note that this softening is distinct from the mechanism of452

mechanical collapse studied in central-force networks un-453

der biaxial compression in which a martensite-like transi-454

tion occurs during the collapse [35, 36]. This martensite-455

like transition occurs in the absence of semiflexibility and456

in general when Ksf << Kcf l
2
0. Compression softening457

has earlier been observed in a tensegrity model of a cell458

[37].459

What can we expect when we include organelles as460

area-conserving loops into the fiber network? While461

working with our initial cell as a viscous medium sur-462

rounded by an actomyosin cortex, we saw that despite a463

loop of central-force springs being floppy according to464

Maxwell constraint counting, the area-conserving loop465

creates nonlinear rigidity as evidenced by the compres-466

sional stiffening with γc = 0. The addition of bending467

leads to a linear regime at small strains. Will adding468

area-conserving loops to the fiber network do the same469

even if they are only few in numbers? There are two470

competing factors at work here - the network’s compres-471

sion softening and the area-conserving loop’s compres-472

sion stiffening. We now investigate this competition by473

varying φ, the packing fraction of area-conserving loops.474

With KA >> 0, area-conserving loops break the affine475

response of the network. A force balance argument (see476

Appendix (B)) shows that an area-conserving loop ne-477

cessitates the angular springs around it to bend to en-478

sure local mechanical equilibrium. Angular springs ear-479
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FIG. 4. Cell as a collection of organelles within a fiber network. (a) Immuno-fluorescence/phase contrast images of vimentin
(green) and F-actin (red) in mouse embryonic fibroblasts adhered to glass slides demonstrating both a bulk fiber network and a
boundary cortex. The dark spots are vesicles. The scale bar is 20 µm. We model the bulk fiber network as a randomly diluted
triangular lattice. Each bond in the lattice denotes a central force spring. A pair of collinear bonds denotes an angular spring
across its central vertex. Disorder is introduced by random dilution of bonds. Organelles are introduced via area-conserving
loops, which are triangular in shape given the underlying structure of the lattice. (b) The fiber network compression softens
in the absence of area-conserving loops. Data points are from simulations of a fully occupied lattice. Solid black lines are the
analytical fits obtained by minimization of affine network energy (see Appendix B) and are scaled here to fit with the numerical
data. The nonlinear response of the central force springs in the network causes compression softening, which is different and
independent of the buckling mechanism. (d) For a given strain, the response of the network is influenced by the presence of
area conserving loops. With no loops, an affine response is observed. Area-conserving loops influence the position and warping
of the compressed layer. These non-affine deformations introduced by area conserving loops cause compression stiffening. (c,
e) The size distribution of the area-conserving loops affects the elastic response of the system. For a given packing fraction
φ, both networks have the same number of area-conserving loops, however (e) has the area-conserving loops linked together
in pairs for three packing fractions. For comparison, three curves from (c) are also shown in (e). All numerical results were
obtained using an occupation probability of p = 0.9, Kcf l

2
0/Ksf = 1 and curves were averaged over 100 runs on a 12x12 lattice.

lier did not contribute to the elastic energy in the affine480

response of the fiber network with no area-conserving481

loops. Given the non-affine deformations introduced by482

the area-conserving loops, angular springs begin to con-483

tribute to the total elastic energy of the system. To see484

bending modes in the network as the fibers bend to de-485

form around the “obstacle”, if you will, see Fig. (4d).486

These bending modes, therefore, lead to a compression487

stiffening response (see Fig. 4c) as the “obstacles” pre-488

vent the collapse of three springs along the three lattice489

lines of the triangular lattice onto one line. The affine490

stretching-led compression softening competes with the491

non-affine bending-led compression stiffening. This ar-492

gument is independent of system size and so we have493

checked that this mechanics persists in both smaller and494

larger systems (see Fig. 16 in Appendix (B)).495

If the cost of bending is too large, the area-conserving496

loops will simply deform even for small strains and the497

fiber network will remain affine even at large strains so498

that the bending contribution must not be much greater499

than the stretching contribution in order to observe this500

compression stiffening. On the other hand, if the cost of501

bending is too small, then the fibers will easily deform502

around the organelles. This energetic contribution may503

or may not be enough to combat the compression soften-504

ing due to the stretching. So the compression stiffening505

robustly occurs in the regime when bending energy is506

comparable to the stretching energy.507

Interestingly, even a few area-conserving loops (φ =508

0.04) are sufficient for the angular springs to subdue the509
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compression softening of the fiber network (see Fig. 4c).510

With more area-conserving loops, the fibers are forced511

to bend more and therefore contribute to compression512

stiffening of the fiber network at smaller strains. It is513

additionally observed that the stress response is not just514

determined by the number of area-conserving loops in515

the network but also by their size distribution. Keep-516

ing the packing fraction φ constant and now pairing up517

the area-conserving loops, the stresses are not as large518

in comparison to a network whose area-conserving loops519

are randomly distributed (see Fig. 4e). Since the stresses520

are not as large, the onset of the compressional stiffen-521

ing is delayed to a larger γc. This pairing up localizes522

the area-conserving loops as compared to the un-paired523

case such that there are effectively fewer obstacles to dis-524

tort around. Therefore, the stress-strain curves are not525

only sensitive to the packing fraction of the fluid-based526

organelles and vesicles but also to their size distribution.527

In other words, the stress-strain curves are a mechani-528

cal fingerprint of the innards of a cell and one can study529

how the size distribution of such structures affects the530

mechanics.531

Our small strain, affine, stretching deformations ver-532

sus large strain, non-affine, bending deformations should533

be contrasted with earlier modeling of fiber networks.534

These earlier small strain studies demonstrate a change535

from affine, stretching dominated response to non-affine,536

bending dominated response as the fiber network is di-537

luted [20, 38, 39]. A similar change occurs by decreasing538

shear strain in substatic fiber networks, yet the strains539

at which the change occurs are large [40]. In this work,540

we observe that a stretching-to-bending change can be541

tuned by increasing the number of area-conserving loops.542

However, since we have reported results in superstatic543

networks, even in non-affine response, the energy is not544

dominated by bending, but bending only becomes com-545

parable to stretching.546

Angle-constraining crosslinks: Before addressing the547

experimental data, let us briefly consider another poten-548

tial mechanism for compression stiffening, namely angle-549

constraining crosslinkers. Having such crosslinkers will,550

again, prevent the collapse of three springs into one551

spring perpendicular to the compression axis because the552

collapse is energetically unfavorable even in the absence553

of organelles. The Hamiltonian of such a fiber network554

with angle-constraining crosslinks is given by555

Hfn+axlinks = Ho+fn+
Kxlink

2

∑
ijk=π

3

pijpjk (θijk−π/3)2,

(6)
with KA = 0. Here, Kxlink is the bending stiffness of the556

crosslinker spring and π/3 is the rest angle of the spring557

since we work on a triangular lattice. The response of558

such networks to shear strain has been studied [20–22]559

but not in response to compression. This Hamiltonian560

corresponds to having non-area conserving semiflexible561

polymer loops at the mesh scale of the fiber network.562

In response to compressive strain, even without any563
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constraining cross-links. Area-conserving loops are absent in
these networks. Top: Compression stiffening as a function of
Kxlink/(Kcf l

2
0) is shown for systems with occupation proba-

bility p = 0.58. When the ratio is small, Hfn+axlinks reduces
to Ho+fn (with KA = 0) and compression softening is ob-
served as expected. The onset of nonlinearity is not tunable
by this ratio. Bottom: With Kxlink/(Kcf l

2
0) = 0.1, com-

pression stiffening for different occupation probabilities p is
shown. For both figures, the curves are averaged over 1000
runs on an 8x8 lattice with Kcf l

2
0/Ksf = 1.

area-conserving loops, this network compression stiff-564

ens as can be inferred from Fig. 5. At small strain,565

the angles between fibers change within each triangu-566

lar loop with both stretching and angle-constraining567

crosslinks dominating the response. At larger strains,568

the affine stretching eventually compression softens while569

the angle-constraining crosslinks become increasingly dis-570

torted to compression stiffen. When Kxlink/Kcf l
2
0 <<571

1, the stretching-dominated compression softens wins.572

However, as the ratio increases, eventually the bending-573

dominated compression stiffening wins. Note that bend-574

ing along fibers does not play much of a role here. See575
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Fig. 15.576

We also explore the fiber network mechanics for differ-577

ent occupation probabilities with Kxlink/(Kcf l
2
0) closer578

to unity. Note that we can explore a larger range of occu-579

pation probabilities than with freely-rotating crosslinks580

because the p above which the network is rigid is the con-581

nectivity percolation threshold for the triangular lattice,582

i.e. pc = 2 sin( π18 ) = 0.347 [20]. For a range of p < 0.7,583

the network response is similar. However, for p > 0.7, we584

observe a plateau in the stress-strain response occuring585

at intermediate strains. This plateau corresponds to a586

global distortion of the lattice to weaken it. This phe-587

nomenon may be related to a first-order transition in the588

collapse of the network that was studied in Refs. [35, 36],589

though with bending replacing stretching. When p = 1,590

there is a dramatic increase followed by a sudden decrease591

in the stress-strain relation at these intermediate strains.592

V. COMPARISON WITH EXPERIMENTS593

Our experiments demonstrate that mEF cells exhibit594

compression stiffening with γc ≈ 20%. From the model-595

ing side, we have identified three possible routes to com-596

pression stiffening in cells, namely, (i) a boundary acto-597

myosin cortex enclosing a viscous medium in the absence598

of a bulk spanning fiber network, (ii) a bulk spanning599

fiber network with freely-rotating crosslinks and inter-600

spersed with fluid-based organelles and vesicles, and (iii)601

a bulk spanning fiber network with angle-constraining602

crosslinks. All three mechanisms produce a linear stress-603

strain relation at small strains before compression stiffen-604

ing at strains larger than γc. For the bulk fiber network605

results, the compression stiffening finding is robust when606

bending is comparable to stretching.607

Which model is most relevant for the experiment at608

hand? If there is no bulk, rigid cytoskeletal network in609

mEFs, then one expects that the boundary cortex enclos-610

ing a viscous medium to be the most relevant model, at611

least up to strains where the nucleus is not in direct con-612

tact with the compression apparatus since the nucleus is613

typically the stiffest organelle in the cell [41]. This model614

is also consistent with studies of local and global cell stiff-615

ness using multiple methods that consistently show ap-616

parent Young’s moduli of a few Pa in the cell interior but617

moduli in the range of kPa at the cell cortex[42]. If there618

is a bulk, rigid cytoskeletal network, then one expects619

organelles and vesicles embedded within a freely-rotating620

crosslinked fiber network to be the most relevant. Angle-621

constraining crosslinks can help amplify the effect. Since622

we do not know directly whether or not there is a bulk,623

rigid cytoskeletal network, let us assume there is not and624

explore what our two-dimensional boundary cortex en-625

closing a viscous medium model can tell us about our626

three-dimensional experiment.627

Given the simpler two-dimensional modeling versus the628

three-dimensional experiment, one does not necessarily629

anticipate quantitative agreement between the two. We630

now make a case for the potential for quantitative com-631

parison. Let us assume that the presence of the com-632

pression apparatus breaks the spherical-like symmetry of633

the cell and so it can be treated as a collection of two-634

dimensional cross-sections with minimal fluid flow be-635

tween the cross-sections as the cell is compressed. Then636

the actomyosin cortex is captured by a loop and the vol-637

ume conservation due to the viscous medium translates638

to area conservation within each cross-section. In addi-639

tion, energy has the same units in any dimension, while640

stress does not. More precisely, the difference between a641

two-dimensional stress and a three-dimensional stress is642

simply a length factor. Alternatively, we can rescale the643

experimental results by a particular value to nondimen-644

sionalize the experimental results.645

Should the presence of the compression apparatus not646

break the spherical-like symmetry of the cell, if we con-647

sider the actomyosin cortex as a discrete set of loops that648

are connected together at various points to form a shell,649

then the compressional stiffening would then be dom-650

inated by the loop that is most likely to compression651

stiffen first. This argument, again, points to our loop652

model as a potentially accurate description of the me-653

chanics, as long as the coupling between loops is weak.654

Should the coupling between loops be strong, then a full655

three-dimensional model consisting of multiple loops is656

needed. Within a multiple loops framework, fluid flow657

amongst the different loops (yet with overall volume con-658

served) results in a change in the area of the loops. Since659

we do not yet know if cross-sections of the cell change in660

area as compression occurs, we cannot yet rule out the661

role of fluid flow within the cell. Since we cannot rule out662

fluid flow, we can easily extend the two-dimensional loop663

model with conserved area to a loop model in which area664

is not-conserved by introducing a soft area constraint to665

account for the possibility of a cross-section of the cell666

changing area as it is compressed. See the Appendix A 3667

for details.668

If we model the actomyosin cortex as a discrete set669

of multiple loops (spherical symmetry-breaking or not),670

there is the potential for quantitative comparison be-671

tween our modeling and our experiments. We, therefore,672

present quantitative comparison between the experiment673

(from Fig. 1) and the modeling (from Fig. 3c) in Fig-674

ure 6 in which the area is conserved. After subtract-675

ing the pre-stress from experimental data and using the676

same value to nondimensionalize the stress, we plot both677

curves on the same plot to obtain very reasonable agree-678

ment between the experiment and the model with only679

one free parameter, κ̃, that is somewhat constrained by680

earlier experiments. With κ̃ = 0.768, it is a regime in681

which both stretching and bending energy contribute to682

the total elastic energy of the cortex. Additionally, the683

ratio of bending energy to total elastic energy decreases684

monotonically with strain and the geometry of the cell is685

pill-shaped. The loop model with a soft area constraint686

also fits well with the experimental curves (see Appendix687

A 3), which means we cannot rule out either approach688
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(area conserved or area not conserved) with the stress-689

strain curve alone.690
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FIG. 6. Comparison of the experimental Figure 1 with a mod-
eling curve from Figure 3c. We subtract the pre-stress from
the experimental curve and normalize the stress by the same
value. Note that there is only one free parameter in the mod-
eling curve, κ̃/l20.

So while our boundary cortex enclosing a viscous691

medium appears to be a reasonable model, at least up692

until approximately 35% compressive strain, the model693

begins to deviate from the experiment slightly beyond694

35% compressive strain. What other effects are at play?695

Fibroblasts contain actin, vimentin, microtubules as well696

as other cytoskeletal fibers and they contain organelles697

such as the nucleus. With large enough compression,698

the plates will encounter resistance from the stiff cell nu-699

cleus. For instance, for a nucleus that is one-quarter the700

volume of the cell, the strain at which the nucleus be-701

gins to dominate would be around 75%. In addition,702

the more compressed a cell is, the more likely the fiber703

network will percolate across the cell at least in the di-704

rection perpendicular to the compression. Therefore, one705

cannot necessarily rule out the bulk fiber network inter-706

spersed with organelles model for larger strains. More-707

over, given that we observe compression stiffening with708

angle-constraining crosslinkers even in the absence of or-709

ganelles, the presence of angle-constraining crosslinkers,710

such as filamin A [43], only enhances such an effect.711

At this point, we also cannot necessarily rule out any712

of the compression stiffening mechanisms we have just713

presented. Perhaps all are at play at some level when714

compressing various cell types. However, we can more715

directly compare our fluid-based organelles within a fiber716

network model if we compare to a reconstituted network717

of dextran beads embedded within an in vitro fibrous718

fibrin network with one modification to the model [24].719

Since the dextran beads essentially act as rigid objects720

even at 40% strain, we modify the model accordingly by721

assigning the spring constant for the central-force springs722

surrounding any area-conserving loops to be 100 times723

larger than Kcf to more closely approximate the rigidity724

of the beads. We have also added some small random725

variation in Kcf for the central-force springs not sur-726

rounding a loop to more closely mimic the more generic727

network structure of the experiment that is presumably728

not based on an underlying lattice.729

Is our fiber network with area-conserving loops model730

useful for interpreting these experimental results? Re-731

call that the compression stiffening mechanism is robust732

when the stretching of fibers is comparable to the bend-733

ing of the fibers. Typically, individual fibers such as734

actin and collagen are not in this regime, though bun-735

dles of such fibers that can slide past each other may736

be closer to this regime. However, fibrin is a fiber with737

extraordinary extensibility and elasticity [44, 45] mak-738

ing it a more likely candidate to be in such a regime.739

Figure 7 is a dimensionless presentation of the data in740

Fig. 2 and demonstrates the comparison between the741

modeling and the experiment. Both experimental curves742

have been rescaled by 2.93 Pascals so that there would743

be one common data point between the modeling curves744

and the experimental curves at a strain of 10%. As with745

the cell, if uniaxial compression of the initially isotropic746

system allows one to consider the composite system in747

terms of two-dimensional cross-sections, then our model-748

ing is quantitatively applicable. Let us assume so given749

our cell results and discuss the comparison.750

Both the experiment and the model do not exhibit751

compression stiffening in the absence of beads/area-752

conserving loops. In the experiment with beads, com-753

pression stiffening occurs around 30% strain and then by754

40% strain, the stress has increased about four-fold. In755

the model with 14% packing percentage of more rigid756

area-conserving loops, the onset of compression stiffen-757

ing occurs around 42% strain with a four-fold increase in758

stress by around 50% strain. This range can be modified759

by changing the spring constant stiffness of the central-760

force springs surrounding the area-conserving loop.761

So the most significant difference is the γc in the ex-762

periment and the model. This difference may be due763

to a difference in length scales. In the experiment, the764

bead diameter is much larger than the mesh size, while765

in the model, the two length scales are the same. We ex-766

pect more localized bending with smaller loops and less767

localized bending around bigger loops with both effects768

leading to compression stiffening, though how γc is af-769

fected is not immediately clear. This expectation can be770

numerically tested by exploring larger loops embedded771

in larger lattices. There is an additional computational772

issue. With more rigid loops, they are more likely to773

overlap given their lack of deformability as the compres-774

sion occurs, even in a nearly fully occupied triangular775

lattice. This overlap induces an unphysical softening in776

the model. One can ameliorate this issue with vertex and777

edge annihilation and edge reassignment and would pre-778

sumably shift the model’s γc to be more in line with the779

experiments.780
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What else can we say about the experimental results781

given the lessons we have learned from the modeling?782

Since the loops do not move relative to the fiber net-783

work, our modeling is applicable to adherent beads. If784

we were to consider nonadherent beads, however, then785

the fibers can move relative to the beads and collect in786

the interstitial places between the beads such that the787

beads become effectively larger and so percolate trans-788

versely to the compression at a smaller packing frac-789

tion than random-close packing [26] and perhaps even790

random-loose packing [25] given the uniaxial compres-791

sion. In other words, if there is enough space for the792

fibers to move so that they do not have to bend around793

the beads, then there will be no compression stiffening. It794

is interesting to note that with inert beads, the compres-795

sion stiffening does not occur until a packing percent-796

age of around 60% [24], which is rather different from797

the nonadherent case discussed above. Interestingly, a798

different mechanism for compression stiffening that does799

not require bending but does involve a percolation of the800

area-conserving loops is possible (see Appendix B). The801

loops need not be rigid to drive the stiffening.802

To further test the notion of the bending of fibers as803

the driving compression stiffening mechanism, we replace804

fibrin with 2.4% PAA gel, where bending is negligible.805

Here we do not observe compression stiffening even with806

60% dextran beads. See Fig. (17). In fact, there may be807

a slight compression softening starting to occur around808

20% compressive strain. This supports our finding that809

in the absence of bending, compression softening occurs810

due to the alignment of springs. For large enough strains811

however, we expect that the beads, held in place by the812

fiber network, eventually percolate transversely to the813

compression axis to lead to compression stiffening even814

in the absence of bending, as mentioned above.815

VI. DISCUSSION816

For decades cells have been stretched, sheared, and817

compressed to understand their mechanics. We present818

a direct measurement of the compressive stress of a819

mouse embryonic fibroblastas as a function of compres-820

sive uniaxial strain imposed at the cell lengthscale and821

observe the nonlinear phenomenon of compression stiff-822

ening. The compression stiffening occurs around a com-823

pressive strain of 20%. The implications of this finding824

are relevant at the cell scale and, potentially, at the tis-825

sue scale. At the cell scale, we already know that cells826

stiffen when stretched and exhibit other nontrivial rheol-827

ogy [46]. Our compression stiffening result demonstrates828

that cells can behave nonlinearly under compression as829

well even on fast time scales where cytoskeletal reorga-830

nization is not feasible. Such behavior may indeed be831

important for cells in environments with intermediate to832

large homeostatic pressures.833

To interpret our compression stiffening finding at the834

cell scale, we study several different models. First, we835
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consider the cell as a viscous medium modeled as an836

incompressible fluid surrounded by an actomyosin cor-837

tex modeled as a semiflexible loop and find compression838

stiffening. This model does not account for any fibers839

in the bulk of the cell, however, and a system-spanning840

bulk, rigid cytoskeletal fiber network would indeed con-841

tribute to a cell’s mechanics. Since in vitro cytoskele-842

tal filament networks compression soften, we have con-843

structed a fiber network with fluid-based organelles and844

vesicles modeled as area-conserving loops randomly inter-845

spersed throughout the fiber network. In the absence of846

any area-conserving loops, we find that the fiber network847

indeed compression softens due to the alignment of fibers848

along the axis perpendicular to the uniaxial compressive849

strain. This new mechanism for compression softening is850

more collective than individual fiber buckling and demon-851

strates that softening can occur even in the absence852

of buckling. In the presence of area-conserving loops,853

we find that the network compression stiffens even for854

small packing fractions. Not only do the area-conserving855

loops prevent the alignment of the fibers, they also pro-856

mote the bending of the fibers to contort around them.857

A third mechanism for compression stiffening is due to858

angle-constraining crosslinks in the fiber network. As the859

fiber network becomes increasingly compressed, the an-860

gles between fibers must distort resulting in an increasing861

stress in the network. For this third mechanism, no area-862

conservation is required.863

Of the three models, the one that best fits the data864

at least for up to 35% compressive strain is the cell as a865

viscous medium enclosed by an actomyosin cortex. This866
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model contains only one free parameter and suggests that867

the cortex of the three-dimensional cell subject to uniax-868

ial compression can be viewed of as a set of loops forming869

a shell. While interactions between the loops presum-870

ably exist, such interactions do not perhaps dominate871

the mechanics given our theoretical-experimental com-872

parison using a single loop. In addition, the bulk fiber873

network may be at play at larger strains and so we cannot874

rule out the fiber network modeling results. On the other875

hand, our freely-rotating crosslinked fiber network inter-876

spersed with area-conserving loops model can be more877

directly tested against in vitro fibrin networks embedded878

with dextran beads. Even with only 14% packing per-879

centage of beads, the fibrin network compression stiffens.880

Since the dextran beads are essentially rigid in the exper-881

iment, we rigidify the area-conserving loops by dramat-882

ically increasing the stiffness of the central-force springs883

surrounding the loops. While we find somewhat good884

agreement in the magnitude of the stress increase for a885

given strain range in the compression stiffening regime,886

the γc is approximately 30% for the experiment and just887

above 40% in the modeling. We have made several spec-888

ulations as to the difference in values between the exper-889

iment and the model bearing in mind that there already890

exists phenomenological modeling that does agree well891

the experimental data [24]. Our purpose here is to work892

with a more microscopic model with which we extract a893

new mechanism for the compression stiffening in terms of894

fiber bending. Interestingly, our results suggest that com-895

pression stiffening is robust for fiber networks in which896

the stretching energy of the filaments is comparable to897

the bending energy of filaments. This property is not ap-898

plicable to actin crosslinked with, for example, fascin [5]899

or to PAA gels as evidenced by the lack of compression900

stiffening in such gels even with a high fraction of beads.901

This regime may be more accessible, however, with in-902

termediate filaments such as vimentin and keratin [47].903

Our modeling also sheds light on the significant vari-904

ation of cell stiffness measurements among different ex-905

perimental experimental techniques and the choice of cell906

line [42, 48]. If there is no spanning cytoskeletal net-907

work, then the moduli can be much lower than if there908

is a spanning cytoskeletal network present given the dif-909

ference in changes in stress scale between the cortex sur-910

rounding a viscous medium model versus the fiber net-911

work with organelles model. Should the experimental912

method be more likely to probe the boundary of a cell as913

compared to its bulk, then different measurements may914

indeed be observed. Moreover, we find that the stress-915

strain curves are not only sensitive to boundary versus916

bulk measurements but, for the freely-rotating fiber net-917

work model, to the packing fraction and size distribution918

of area-conserving loops. Such stress-strain curves could,919

therefore, provide a mechanical fingerprint to the size dis-920

tribution of organelles in a cell. Different cell-types have921

different size distributions and so one could distinguish922

between, say, an epithelial cell and a fibroblast given the923

stress-strain curve, in principle. As noted earlier, the924

compression of T-cells yields a cubic force-strain relation-925

ship up to strains about 30% [28]. As long as the force is926

proportional to the stress, our boundary cortex model in927

the limit of no-bending is relevant. T-cells have unusually928

large nuclei. Can we say something fundamental about929

the size of organelles such as the nucleus with respect930

to the size of the cell given our insights that go beyond931

the insights provided by Feric and Brangwynne for very932

large nuclei [49]? For cells to exhibit larger compressive933

stresses, the presence of a bulk spanning fiber network is934

helpful. Perhaps for more migratory cells, the presence935

of a bulk spanning fiber network may hinder mobility936

in, say, confined environments. Recent experiments find937

that vimentin-null mEFs migrate faster in microchannels938

then their wild-type counterparts [50].939

Now that we know individual cells compression stiffen,940

how do such nonlinear entities act when together in a941

compressed tissue? As stated in the introduction, one942

cannot directly imply that compression stiffening of tis-943

sues is caused by the compression stiffening of cells.944

Since, when we move across length scales, emergent phe-945

nomenon at a larger scale can exhibit behaviour other-946

wise unexpected from its constituents at a smaller scale.947

Yet, given that liver tissues almost completely lose their948

compression stiffening behaviour with decellularization949

[2], it is plausible that one of the reasons of compression950

stiffening of tissues is indeed the compression stiffening951

of the individual building blocks. While phenomenologi-952

cal models [2] and classical elasticity models [3] approach953

compression stiffening directly from the tissue scale, our954

results here suggest that one can probe the tissue at955

smaller and smaller lengthscales to presumably find ro-956

bustness of compression stiffening. At such scales, con-957

tinuum mechanics may not be relevant, particularly for958

either extracellular matrix fibers and/or for cytoskeletal959

fibers. Tissue lacking in extracellular matrix is only as960

strong as its intercellular contacts. While biology has961

presumably developed ways for cell-cell adhesion to de-962

pend on the nonlinearity of the cell’s mechanics, an ob-963

vious answer presented here is to make a tissue compos-964

ite where the area-conserving loops (or shells in three-965

dimensions) are now cells and the fibers are made of col-966

lagen. Given the ratio of stretching to bending moduli of967

individual collagen fibers [51], a bundled network and/or968

one with angle-constraining crosslinks, will exhibit com-969

pression stiffening. Cells can also remodel the extracel-970

lular matrix on long enough time scales to make it more971

heterogeneous thereby adding to the complexity of the972

composite material. Indeed, biology has already mas-973

tered the highly nontrivial mechanics of compositeness974

in ways that we are just beginning to understand.975
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Appendix A: Cell as a viscous medium surrounded1104

by a cortex1105

1. Compressing a 4-gon1106

We assume the simplest loop symmetric about the1107

x−axis and y−axis, a 4-gon that will be vertically and1108

uniaxially compressed. We choose the arms of the loop to1109

be oblique to the vertical compression rather than to have1110

the arms perfectly parallel to the direction of compres-1111

sion. The latter configuration has the peculiarity that the1112

x degrees of freedom do not couple with the y degrees of1113

freedom when compressed which makes it a non-generic1114

shape. The loop (see Fig. 8) is assumed to be a square1115

at zero strain and a rhombus (all sides equal) at finite1116

strain.1117

The central force energy, Ho+c,cf is,

Ho+c,cf = 4
Kcf

2

(
l − 1√

2

)2

= 2Kcf

{√(x
2

)2
+
(y

2

)2
− 1√

2

}2

, (A1)

where the rest length of the springs is chosen to be 1/
√

2.
Since the 4-gon is compressed along the y−axis, we de-
fine y = 1 − ε with compressive strain γ = ε/y0. The
area of the square is 1/2. Since area is conserved during
compression,

4
1

2

(x
2

)(y
2

)
= 1/2,

we have,1118

x =
1

y
. (A2)

Substituting Eq. (A2) in Eq. (A1),

FIG. 8. A rhombus 4-gon compressed along the vertical y−
axis.

Ho+c,cf = 2Kcf


√(

1

2y

)2

+
(y

2

)2
− 1√

2


2

= Kcf

{√
1

(1− ε)2
+ (1− ε)2 −

√
2

}
,

where ε is substituted for y. The low strain expansion of1119

this energy is,1120

Ho+c,cf = 2Kcf (ε4 + 2ε5 + ...), (A3)

with ε ∝ γ and implying compression stiffening.1121

With Ksf > 0, a similar calculation can be done with1122

the angular springs to get an expression for the angular1123

spring energy Ho+c,sf ,1124

Ho+c,sf = 8 Ksf

(
ε2 + ε3 − 10

3
ε4 + ...

)
(A4)

This latter result gives a quadratic strain term in contrast1125

to the quartic strain term for central-force springs only.1126

2. An ellipse in the continuum limit1127

When the number of vertices in the loop is large and1128

κ̃ < 1, then numerical minimization yields elliptical1129

shapes with compressive strain. The continuum limit1130

loop is then assumed to be a circle at zero strain and an1131

ellipse at finite strain. For analytical simplicity, a global1132

stretching energy term is used in contrast to a series of1133

individual central force springs in Eq. (A1). It is seen1134

however that the form of the series expansion of stretch-1135

ing energy is unaffected by this choice (compare Eq. (A3)1136

and (A10)). We have,1137

Ho+c,cf =
1

2
Kcf (l − l0)2. (A5)

An ellipse is defined by two parameters - the semi-major1138

and semi-minor axis which are denoted by a and b. The1139

two constraints - the distance between the top and bot-1140

tom compression walls and the constant area constraint1141

fixes the two parameters of the ellipse,1142

b = 1− ε
πab = πr20,

(A6)

where ro = 1 is the initial state of the loop at zero strain.1143

These constraints reduce the parameters to functions of1144

strain ε as,1145

a(ε) =
1

1− ε
b(ε) = 1− ε.

(A7)

The circumference l of an ellipse does not have an ex-1146

act expression and is expressed as the complete elliptic1147

integral of the second kind,1148

4a

∫ π/2

0

√
1− e2 sin2θ dθ, (A8)
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where e =
√

1− b2/a2 is the eccentricity of the ellipse.1149

Ramanujan’s approximation to l is,1150

l ≈ π(a+ b)

(
1 +

3λ

10 +
√

4− 3λ

)
, (A9)

where λ = (a − b)/(a + b). This approximation is good1151

upto O(λ10) [52].1152

Since a, b, λ are all expressed as functions of strain ε, l,1153

the stretching energy in Eq. (A5) consequently becomes1154

a function of ε. The exact expression being dense, a series1155

expansion about zero strain is reproduced here instead,1156

Ho+c,cf

9π2
≈ Kcf

(
ε4

4
+
ε5

2
+

23ε6

32
+ ...

)
(A10)

The lowest order term is seen to be quartic just as the1157

stretching energy expression for the discrete loop calcu-1158

lation (Eq.(A3) ).1159

Now, we analyze the bending contribution with,1160

Ho+c,sf =
κ

2

∫ l

0

ds

∣∣∣∣ dt̂ds
∣∣∣∣2 . (A11)

The normal and tangent vector at a point on the ellipse,1161

parameterized by θ is,1162

~n = (a cos(θ), b sin(θ))

~t = (−b sin(θ), a cos(θ)).
(A12)

It can be verified that ~n.~t = 0. The unit tangent vector1163

t̂ is defined as,1164

t̂ =
~t

r(θ)
, (A13)

where r(θ) is,1165

r(θ) = (a2cos2(θ) + b2sin2(θ))
1
2 . (A14)

The contour derivative of the unit tangent vector can be1166

expressed in terms of the parameter θ as,1167

dt̂

ds
=

1

r(θ)

dt̂

dθ
. (A15)

Eq. (A11) can now be presented as,1168

Ho+c,sf =
κ

2

∫ 2π

0

dθ

r(θ)

∣∣∣∣ ddθ (−b sin(θ), a cos(θ))

r

∣∣∣∣2 .
(A16)

Having a, b as functions of ε, (see Eq. (A7)), a series1169

expansion of the energy about strain ε can be performed.1170

Subsequent integration over θ gives,1171

Ho+c,sf

π
≈ κ

(
1 +

15

4
ε2 +

15

4
ε3 +

405

64
ε+ ...

)
(A17)

The form of energy for is again similar to the discrete loop1172

calculation (Eq. (A4). Even though a circle minimizes1173

the bending energy [53] in Eq. (A11), it doesn’t have zero1174

energy. Thus, we have a constant term here, independent1175

of strain in the energy expansion.1176

3. Soft area constraint1177

We now study the effect of replacing the Lagrange mul-1178

tiplier term in Eq. 1 with a soft area constraint, i.e.1179

κA(A−A0)2. For small enough KA, the area of the semi-1180

flexible polymer loop can change and so we ask whether1181

or not compression stiffening will be observed. For large1182

enough values of KA, we still observe compression stiff-1183

ening despite changes in area. See Fig. 9. As discussed1184

in the text, the change in area represents fluid flow from1185

one region of the cell to another. We obtain good agree-1186

ment with the experimental data with the soft area con-1187

straint, suggesting that neither approach, the Lagrange1188

multiplier nor the soft area constraint can yet be ruled1189

out. Note that κ̃ changes modestly from one approach1190

to the other for the experimental comparison. Finally,1191

the onset of compression stiffening becomes increasingly1192

delayed as KA goes to zero.1193

FIG. 9. A cell as a viscous interior surrounded by an ac-
tomyosin cortex with a soft area constraint. (a) Plot of the
normalized stress versus strain curve from the experiments
and the resulting fit. (b) Plot of the corresponding fractional
change in area as a function of the compressive strain in the
model.1194
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Appendix B: Cell as a collection of organelles within1195

a fiber network1196

1. No organelles: Compression softening1197

FIG. 10. Collapse of springs induces softening.

We first present an approximate calculation for the1198

compression softening mechanism in the absence of or-1199

ganelles (area-conserving loops). The energy of a single1200

central force spring is1201

E =
Kcf

2
(l − l0)2. (B1)

Its differential is1202

∆E = Kcf (l − lo)∆l. (B2)

From geometry (see Fig. 10),

l2 = x2 + y2

⇒ l∆l ≈ y∆y

⇒ l∆l ≈ l sin(θ)∆y.

Assuming ∆x ≈ 0,1203

∆l ≈ sin(θ)∆y. (B3)

Substituting the same in Eq. B2, we obtain

∆E ≈ Kcf (l − lo) sin(θ)∆Y

∆E

∆Y
≈ Kcf (l − lo) sin(θ).

Since ∆y is nothing but the strain imposed, using the1204

definition of stress σ in Eq. (2),1205

σ ∝ sin(θ). (B4)

As θ decreases for affine response under compression,1206

stress too decreases.1207

We now present a more detailed calculation that makes1208

an exact fit with the numerical results. For an affine1209

deformation, angular springs do not contribute to the1210

elastic energy since straight lines remain straight lines1211

and do not bend. The energy of the system is then the1212

energy of the central force springs in the hexagon (see1213

Fig. 10),1214

Eo(x, y) ≡ 4

(
1

2
(2x− 1)2

)
+ 8

(
1

2
(
√
x2 + y2 − 1)2

)
.

(B5)
The equilibrium lengths of the springs are of unit length.1215

The integer coefficients for the terms are the number of1216

springs that are horizontal and diagonal respectively. For1217

a given compressive strain, the vertical degree of freedom1218

- y is fixed. E0 is minimized over the horizontal degree of1219

freedom - x for every y using Mathematica . This results1220

in the the elastic energy E0(y) which is now a function1221

of y. The stress is evaluated by taking a derivative with1222

strain to arrive at the plot in Fig. 4b.1223

2. Area-conserving loops initiate bending1224

Consider the forces acting on vertex C (see Fig. 11a)1225

in the vertical direction. The summation of the forces1226

must add up to zero to ensure mechanical equilibrium of1227

this vertex. Let us assume that the loop conserves its1228

area by conserving the lengths of each of its side. This1229

implies that the central force springs around the area-1230

conserving loop remain inactive and do not impose any1231

force on vertex C. The central force springs directly be-1232

low the vertex, being compressed, push upward on the1233

vertex. The horizontal springs pull the vertex horizon-1234

tally as a consequence of Poisson’s effect. To balance the1235

upward force on the vertex, the horizontal springs need1236

to bend towards each other. The vertical components of1237
~F2 would then balance the vertical components of ~F1.1238

When area-conserving loops are embedded in the net-1239

work, the network deforms in a non-affine manner. This1240

calculation describes the non-affinity when the said inclu-1241

sions percolate in the network. The non-affinity in the1242

horizontal degrees of freedom is considered but not the1243

vertical which is an equally important factor to consider.1244

Considering just the energy of the central force springs1245

in the hexagon (see Fig. 12a),1246

E2(x,w, y) ≡ 2

(
1

2
(2x− 1)2

)
+ 2

(
1

2
(2w − 1)2

)
+ 4

(
1

2
(
√
x2 + y2 − 1)2

)
+ 4

(
1

2
(
√
w2 + y2 − 1)2

)
.

(B6)

The non-affinity in the horizontal degrees of freedom of1247

the system is captured by assigning two independent vari-1248

ables x,w. This energy function has an additional vari-1249

able calling for an additional constraint to fix its value,1250

which is provided by the area-conserving constraint of1251

the loops, or 1
2 2x y = 1

2 × 1× sin(π/3). The area of the1252

loop at every strain is fixed by the area of the loop at1253

zero strain. With this E2 can be reduced to a function1254
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FIG. 11. Area conserving loop in a semiflexible polymer network. (a) Area conserving loop initiates bending (see Appendix
B 2) (b, c) Stress contributed by central force and angular springs respectively, for various packing fractions on a 12x12 lattice
with Kcf l

2
0/Ksf = 1.

FIG. 12. A minimal analytical calculation of an alternate
mechanism for compression stiffening which involves a perco-
lation of area-conserving loops and does not require bending.
(a) Schematic (see Appendix (B 2)).(b) Comparison of ana-
lytical calculations with and without loops (see Appendix A 1,
B 2).

of x, y. The rest of the procedure to obtain stress curves1255

is the same as in the no organelle/loop case. Also note1256

that with this geometry the area-conserving loops per-1257

colate between the upper and lower plates of the system1258

at the outset, which constrains the deformation of the1259

loops. This is yet another compression stiffening mech-1260

anism that occurs even in the absence of bending and1261

could be very relevant for the reconstituted fibrin net-1262

work experiments.1263
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FIG. 13. Compression softening is generic to choice of spring
orientation in network. We study a triangular lattice where
the diagonal central force springs make an angle of π/3 with
the transverse axis of compression. Compression softening
however is generic non-linear behavior of a central force spring
and is seen for all choices of initial orientations of springs with
the exception of π/2 orientation; here the compression being
along the axis of the spring, a linear behaviour is observed. In
calculating the curves, we have followed the procedure laid out
in the first part of Appendix B 1. Stress has been normalized
so that the curves overlap at small strain.
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FIG. 14. Compression softening observed for occupation probabilities p < 1. The curves are averaged over 100 runs on an 8× 8
lattice obeying the Hamiltonian Ho+fn with KAl

2
0/Kcf = 0. (a) Here, Kcf l

2
0/Ksf = 0. (b) Here, Kcf l

2
0/Ksf = 1.
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FIG. 15. Energetic contributions for angle-constraining
crosslink fiber network. The energy is governed by
Hfn+axlinks with p = 0.58, Kcf l

2
0/Ksf = 1, and

Ksf/Kxlink = 10. The curves are averaged over 100 such
initial configurations.
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FIG. 16. Finite-size effects for fiber network with area-
conserving loops. The energy is governed by Ho+fn and the
packing fraction of the area-conserving loops are kept con-
stant at φ = 0.06 across the lattices. Occupation probability
p = 1 and Kcf l

2
0/Ksf = 1. The position of the loops being

random, the curves are averaged over 100 such initial config-
urations.

While the above calculations are representative of the1264

ordered fiber network (p = 1), we also present some addi-1265

tional numerical results for p < 1 without and with semi-1266

flexibility and in the presence of area-conserving loops.1267

See Fig. (14). We have also checked that the compres-1268

sional stiffening persists in both larger and smaller sys-1269

tems and it does with the magnitude of the stress con-1270

verging as the system size increases and γc shifting as1271

well with system size. See Fig. (16).1272

For the angle-constraining crosslinked fiber network,1273

we present a figure (Fig. 15) that shows the different1274

energy contributions for each type of spring. Note that1275

the angular springs along the fibers modeling the semi-1276

flexibility do not account for much of the energy even at1277
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large compressive strains.1278

3. Experiment with polyacrylamide gel1279

To study the effect of bending in the fiber network on1280

compression stiffening, we study beads embedded in a1281

polyacrylamide (PAA) gel, which is a linear elastic ma-1282

terial. The experimental protocol is the following: 8%1283

acrylamide and 0.3% bis-acrylamide cross-linker (Bio-1284

Rad, Hercules, CA) was mixed with 10% ammonium1285

persulfate and TEMED to initiate polymerization, af-1286

ter which it was quickly mixed with pre-swollen G-251287

dextran beads and water to produce a network with1288

2.4% acrylamide, 0.09% bis-acrylamide, 0.2% APS, 0.3%1289

TEMED, and 40%, 50%, or 60% beads. Then, 1 or 2mm1290

thickness samples were incubated in a non-adhesive con-1291

tainer at room temperature for 45 minutes. After full1292

polymerization, samples were cut to size, transferred to1293

the rheometer plates and surrounded by water.1294

We present data for a 2.4% PAA gel with 60% dextran1295

beads and do not find evidence for compression stiffening.1296

See Fig. 17.1297
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FIG. 17. No compression stiffening for PAA gel with beads.
Plot of the compressive stress versus compressive strain for
60% dextran beads embedded in a PAA gel.
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