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Structure and dynamics of a two-dimensional colloid
of liquid droplets

Christoph Klopp,∗a Torsten Trittel,a Alexey Eremin,a Kirsten Harth,a Ralf Stannarius,†a

Cheol S. Park,b Joseph E. Maclennan,b Noel A. Clark,b

Droplet arrays in thin, freely suspended liquid-crystalline smectic A films can form two-
dimensional (2D) colloids. The droplets interact repulsively, arranging locally in a more or less
hexagonal arrangement with only short-range spatial and orientational correlations and local lat-
tice cell parameters that depend on droplet size. In contrast to quasi-2D colloids described ear-
lier, there is no 3D bulk liquid subphase that affects the hydrodynamics. Although the films are
surrounded by air, the droplet dynamics are genuinely 2D, the mobility of each droplet in its six-
neighbor cage being determined by the ratio of cage and droplet sizes, rather than by the droplet
size as in quasi-2D colloids. These experimental observations are described well by Saffman’s
model of a diffusing particle in a finite 2D membrane. The experiments were performed in micro-
gravity, on the International Space Station.

1 Introduction
The spontaneous self-organization of colloids has been widely
studied1,2: attractive or repulsive interactions of colloidal par-
ticles lead to their assembly in clusters or regular lattices
which often have unique optical, magneto-mechanical or electro-
mechanical properties. Colloidal particles allow the study of the
self-organization, crystallization and dynamics of mutually inter-
acting particles and may be considered as ‘mesoscopic atoms’.
Such colloidal systems have been investigated in both three and
two dimensions. Classical examples are studies of structure for-
mation3,4, of the dynamics of the colloidal particles5–8, of glass
transitions, and of crystallization and melting9–20.

Most of the 2D studies deal with solid, spherical particles
trapped at horizontal air-liquid interfaces or at the interface be-
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tween two fluids, or sedimented at the bottom of a fluid-filled
container21. Even though the arrangement of colloidal particles
in these systems is structurally two-dimensional, the dynamics are
significantly distinct from those of a truly 2D system. All flow pro-
cesses involve the 3D subphase and thus the flow field associated
with the lattice dynamics is essentially that of a three-dimensional
system. In some experiments, the particles are confined to a sin-
gle layer in a thin cell (e. g.10,18). In this geometry, however, the
cell boundaries influence the dynamics and phase behaviour of
the particles in the layer14. Confinement to two dimensions can
also be achieved by suspending solid particles in thin, fluid, free-
standing films22 but in such films it is difficult to avoid drainage
and to keep the film thickness constant.

Here we introduce a system that resembles a colloid with gen-
uine 2D dynamics: droplets in freely suspended smectic A (SmA)
liquid-crystalline films. The structural properties of these assem-
blies are comparable to those of the above-mentioned quasi-2D
systems. The dynamics, however, are distinctly different from 3D
and quasi-2D colloids as will be shown here experimentally and
by numerical modeling. The hydrodynamic interactions between
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the droplets are mediated only by the thin film in which they are
suspended, and any diffusion of the droplets and reorganization
of the lattice is constrained by hydrodynamic processes in that 2D
fluid.

The smectic A phase (SmA) consists of elongated mesogens
that arrange in layers, where the mean orientation of the molecu-
lar long axes (optical axis) is normal to the layer planes, and the
phase symmetry is T (2)×D∞h. The material can form stable thin,
freely suspended films in air. The dynamics of single inclusions
in such films have been described previously23–25. A transition
from 3D to 2D dynamics was observed by varying the thicknesses
and lateral dimensions of the film. While earlier studies dealt
with single inclusions or isolated pairs of inclusions, we consider
here the self-organization of ensembles of many inclusions into
colloidal lattices. We have analyzed the structure and dynamics
of these arrangements.

In smectic C films, self-organization of droplets has been de-
scribed previously26–32. Smectic C films are anisotropic in the
film plane, and spatial variations of the local tilt azimuth, de-
scribed by the c-director, can mediate attractive or repulsive in-
teractions between inclusions in such films. In contrast, the SmA
films studied here are isotropic in the film plane. Since there is
no molecular tilt, there are no elastic interactions between the
inclusions. Locally, the films supporting the inclusions are uni-
formly thick on a molecular scale so that we can also neglect any
capillary interactions between droplets.

2 Experimental setup and materials

Smectic bubbles with centimeter diameters are prepared by a
technique introduced in Refs.33,34 using an automatic setup de-
scribed in detail in Ref.35: A flat, free-standing film initially span-
ning the opening of a metal syringe is inflated with air so that
it becomes spherical. Figure 1a shows the top of the inflation
syringe with the smectic bubble sessile on it. The experimental
setup contains additional elements such as the airjet needles seen
at the top of the image, which are not relevant to the present ex-
periment. In principle, the film thickness can be kept constant
when the bubble is inflated sufficiently slowly. Additional smectic
material for the expanding bubble is delivered continuously from
the meniscus around the syringe. Inhomogeneously thick bubbles
such as seen in Fig. 1 can occur for several reasons, for example
when the inflation speed is not kept constant. Then, the film con-
tains large, uniform regions separated by discrete thickness steps,
a well-known feature of freely suspended smectic films. These
inhomogeneities disappear after some annealing time, which in
the present system may be of the order of several minutes up to

hours. The film curvature can be neglected at the scale of the
droplet lattices.

a) b)

Fig. 1 a) Macroview of a smectic bubble 15 mm in diameter on the ISS,
viewed in reflected light. The capillary for inflation is visible at the bottom.
The top of the bubble is obscured in the image by needles used for blow-
ing air across the film 35. Colors reflect local background film thicknesses,
with discrete layer steps. Droplets are not resolved at this magnification.
b) Microview of a 500 × 500 µm2 region of the bubble surface, showing
a uniformly thick background film and a typical droplet lattice. A video in
the supplemental material shows an example of the lattice dynamics in
real time.

The inclusions, which are microdroplets of the same material
as the supporting film, form when the film is heated sufficiently
rapidly to a temperature slightly above the bulk transition to the
isotropic or nematic phase27,36. Under these conditions, some of
the inner layers of the film melt and the molten material forms
droplets as seen in Fig. 1b, in a spinodal separation process. Be-
cause the surface tension of the droplets is slightly larger than
that of the smectic film, these droplets adopt the shape of very
flat lenses36. Their radii R are of the order of few micrometers
to a few dozen micrometers, and they have aspect ratios (droplet
thickness to droplet diameter) between 0.13 and 0.17, depending
upon temperature.

The molten droplets remain in coexistence with the SmA back-
ground film. With a suitable heating protocol, one obtains locally
rather uniform droplet sizes. Over longer distances (several mm),
droplet sizes vary because the heating rate during droplet creation
is not uniform everywhere on the bubble surface. After prepara-
tion, these droplets can be kept stable for hours under isothermal
conditions. In order to avoid gravitational sedimentation of the
droplets, and to prevent buoyancy-driven convection of the air
surrounding the film, the experiments were performed in micro-
gravity (< 10−3g) on the International Space Station (ISS). Under
normal gravity, similar experiments could only be performed us-
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ing flat, horizontal films. In this case, the meniscus around the
film and its interactions with inclusions in the film cannot be ig-
nored. In the bubble geometry, on the other hand, the meniscus at
the syringe is very small and its influence on the film is negligible.

A remarkable feature of the droplets that has not been de-
scribed previously in SmA films is that they spontaneously form
extended lattices with short-range order. The cells of the lattice
are not very regular, as is evident from Fig. 1b. This lattice has
appreciable dynamics, with the individual cells continuously re-
organizing, and the lattice moving together with the surrounding
film material on the bubble surface. The macroview in Fig. 1a
shows that the film thickness is not uniform across the bubble, but
there are large regions of uniform film thickness. The boundaries
of these regions form natural borders that confine the droplets36,
so that the droplet arrays are trapped within the uniformly thick
regions. In clusters of a few hundred or thousand droplets, they
are rather monodisperse, but in general the droplet and lattice
sizes vary in different parts of the bubble surface.

The experimental setup includes two cameras, which provide
complementary views: a macroscopic view of the entire bubble,
and a small magnified region of the bubble surface as shown in
Fig. 1a,b. The magnified region is located a few millimeters right
of the top of the bubble shown in the macroview. The maximum
frame rate of the cameras is 30 fps. Droplet positions are ex-
tracted from the recorded images using tracking software that
provides the positions and diameters of the droplets with an ac-
curacy of ≈ 0.5 µm. The liquid crystal material investigated is
a commercial mixture (Displaytech MX 12160), with phase se-
quence Isotropic 51.1◦C SmA -3.2◦C Cryst (3.1◦C SmA).

3 Observations and data analysis

3.1 Lattice structure

First we analyze the structure of the droplet arrangements. The
lattice is stabilized by repulsive interactions between the droplets.
Elasto-capillary interaction forces have been described for spheri-
cal inclusions in smectic films37. However, the droplets observed
here are too flat to have detectable menisci. The embedding film
is uniformly thick so that long-range capillary forces can be ex-
cluded. In addition, because SmA films are isotropic in the plane
of the film and there is no molecular tilt, any elastic interactions
between the inclusions mediated by orientational elasticity of the
film are negligible.

The nature of the repulsive interactions between the droplets
is not fully understood. The main contribution to the repulsive
forces is presumably electrostatic. The droplets are slightly nega-
tively charged. This can be demonstrated by placing an electrode

needle at a high potential (≈ 150 V relative to the film holder)
close to the film. When the needle potential is positive, droplets
move along the film, towards the needle. When the electric po-
tential of the needle is reversed, the droplets are repelled. Sim-
ilar electrostatic effects have been reported earlier34 in smectic
islands on bubbles exposed to large electric fields. One of the
reasons for the charging of the droplets may be an overall elec-
tric charge of the bubble after inflation, and an accumulation of
charges in islands or droplets. It may also be that ions present
in the LC material, particularly bulky anions, have a tendency to
accumulate in isotropic material, being expelled by the ordered
smectic phase of the film. Such electrostatic interactions will
be partially screened by ions in the background film. However,
since the film thickness (about a dozen molecular layers, i. e. a
few dozen nanometers) is much smaller than the droplet height,
screening is incomplete. The density of counter-ions in the thin
film is not sufficient to fully screen the electrostatic interactions
and the Debye length is of the order of dozens or maybe hundreds
of micrometers.

R

Fig. 2 Lattice geometry: mean lattice constant 〈d〉 (mean distance to the
centers of the neighboring droplets) vs. droplet radius R. The variation is
essentially linear, with 〈d〉= 3.25R+2.5 µm. The solid red line is a linear
fit. The upper inset shows a typical 500 × 500 µm2 image of coexisting
regions with different droplet and unit cell sizes. The lower inset shows
the dependence of the average cell aspect ratio 〈α(R)〉= 〈d〉/R on droplet
size.

The droplets form a local lattice with predominantly hexag-
onal cells, tending to maximize the distances between nearest
neighbors. The film area over which a droplet array can spread
is bounded by dislocations (thickness steps of the films). Such
thickness steps demarcate regions of uniformly thick background
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film (identified by different colors in Fig. 1a) and form natural
boundaries that the droplets cannot cross36. This geometrical
confinement stabilizes the droplet arrays, which would otherwise
tend to expand without bound.

When one constructs Voronoi cells with the droplets as gen-
erators (Wigner-Seitz cells), a quantitative analysis of snapshots
(such as in Fig. 1b) shows that approximately 57 % of the cells
are hexagons, 31 % are pentagons, 10 % are heptagons, and 2
% are tetragons. The lattice as a whole drifts with its confining
domain in the film plane, with the local structure remaining es-
sentially unchanged, but without long-range correlations. In the
following, we perform model computations with the simplifying
assumption that all of the cells are regular hexagons. One may
carry out the same computations with a more realistic distribu-
tion of cell shapes, but then one has to sacrifice simplicity and
the opportunity to employ analytical approaches to describe the
potentials and the particle mobilities.

The ratio 〈d〉/R between the mean lattice constant 〈d〉 (average
distance to nearest neighbors) of unit cells containing droplets of
radius R in one and the same film increases monotonically with R.
For a first statistical characterization of the lattice properties, we
average over cells with similar particle sizes to obtain the mean
lattice constant as a function of the radius of the central particle.
The result is shown in Fig. 2. The mean ‘aspect ratio’ 〈α〉 ≡ 〈d〉/R
of the unit cells, shown in the inset, is weakly dependent on R,
with small droplets preferentially forming cells of slightly larger
aspect ratios. For individual sites, α(R) ranges between 2.5 and
6. This will be important when we analyze the statistics of the
droplet dynamics.

We now consider the total electrostatic potential φ(r) produced
by the six nearest neighbors (all at the same radius) of a droplet at
position P, expanding the potential to second order in the radial
distance r of P from the center of the hexagon. We assume, to a
first approximation, that there is a point charge q at the centre of
each droplet, and we neglect Debye screening by ions in the thin
background film. The potential due to each neighboring charge as
a function of its distance r′ from the point P is φ1(r′) = q/(4πε0r′).
The net potential experienced by the central droplet (expanded
to second order in r) is axially symmetric

φ(r)≈ q
4πε0d

[
6+

3r2

2d2 +O

(
r4

d4

)]
. (1)

Correction terms with sixfold symmetry enter only in fourth and
higher orders of (r/d) and are ignored here. Equation (1) con-
siders only the nearest neighbors, neglecting any charges further
away, and may thus underestimate the steepness of the potential.

Contributions from other sites separated by a distance d′ from the
origin decay as 1/d′3, and lead to a finite correction factor in the
r2 term of Eq. (1), deepening the potential. In order to estimate
the magnitude of such a correction, we computed the potential
near the origin for an infinitely extended perfect triangular lat-
tice (Appendix A). For such a perfect lattice, the correction factor
would be 1.836. Note, however, that these additional interactions
are largely averaged out for two reasons: First, long-range elec-
trical interactions are screened by counterions in the film, which
acts as a weak electrolyte. More importantly, the aforementioned
fluctuations of the lattice reduce the influences of charges beyond
the next neighbors. The actual forces in our experiments may
therefore be somewhat larger than those predicted by Eq. (1), but
the general form of the potential is adequate and the calculated
forces are of the right order of magnitude.

In the approximation of Eq. (1), a central particle with charge
q experiences a radial force F =−d(qφ)/dr:

F =−Kr ≈− 3q2

4πε0d3 r (2)

and the particle distribution in the cage is expected, on average,
to be axially symmetric. The force constant K can be extracted
from the spatial distribution of the central droplet positions. The
distribution

ρ(r) = ρ0r exp
(
− Kr2

2kBT

)
, (3)

assuming a Boltzmann distribution in 2D with axial symmetry,
has its maximum at rmax =

√
kBT/K. An analysis of the spatial

excursions of droplets of a given size yields the distribution shown
in Fig. 3a. From the maximum of this distribution, one obtains a
force constant K ≈ 0.3 nN/m. While small fluctuations from the
center (< 7 µm) are well represented by Eq. (3), the observed
large fluctuation tail clearly deviates from that prediction. The
main reason is that the cages are not perfectly hexagonal, so that
larger excursions occur more frequently than expected. We note
that this calculation is a rough approximation since we have no
quantitative information of the screening effects. If the Debye
length is of the order of d, then the potential generated by the six
outer droplets will be partially screened, and thus larger droplet
charges q may have to be assumed. If the Debye length actually
is much larger than d, one may have to include more neighbors
in the calculation of the potential in the cell. In any case, the
functional form of the potential in the center of the cage will not
change to leading order.

The assumption of point charges is a convenient but crude ap-
proximation. A more reasonable assumption is that the charges
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are either distributed uniformly over the droplet area, approxi-
mated by a uniformly charged disk with radius R, or, even more
realistically, that the charges of the same sign within each droplet
repel each other, and thus are confined to the droplet circumfer-
ence, still remaining in the isotropic region. Such arrangements
lead to quadrupolar corrections to φ1(r′) in the film plane, of the
form φ1(r′) = q/(4πε0r′) · [1+ ξ R2/r′2] with ξ = 1/4 for the ring
and ξ = 1/8 for the disk. The correction terms are obtained by
expanding the well-known potentials of homogeneously charged
rings or disks. These higher order corrections do not affect the
second order term in Eq. (1), they enter this equation only in
O(r4/d4). However, they would both lead to a suppression of the
tail of the theoretical distribution in Fig. 3a for large r, increasing
the mismatch with the experiment.

Fig. 3 a) Distribution density ρ(r) of the positions of the central droplets
with radius R = 4.05± 0.25 µm in the cage, averaged over all droplets
of this size. The solid line is a fit of the small r data (r < 7 µm) using
Eq. (3). The systematic deviations for large fluctuations may result from
asymmetries of the cages and a non-harmonic potential. b) Typical time
dependence of the mean square displacement from the center of the
cage (Eq. (4)), averaged over all droplets in the radius range R = 5.66±
0.25 µm and cell aspect ratio range 4.75± 0.21. The inset sketches the
central particle with the neighbors forming the cage. The dashed circle is
the approximate region in which the particle position fluctuates.

3.2 Droplet dynamics

In order to analyze the individual droplet dynamics, we subtract
the local drift of the lattice and evaluate the droplet diffusion
relative to the cage formed by the six nearest neighbors (the mean
square displacement, MSD, relative to the cage). A typical MSD
curve, obtained by analyzing 500 images with 400± 20 droplets
each, is shown in Fig. 3b. The solid line is a fit assuming diffusion
in a parabolic potential,

MSD≡ 〈∆r2(∆t)〉= 4kBT
K

[
1− exp

(
−KD∆t

kBT
,

)]
(4)

where D is the ‘free diffusion’ coefficient of the central droplet.
The asymptotic value of 〈∆r2(∆t)〉 for large ∆t yields 4kBT/K, pro-
viding another means of determining the force constant K. Since
the system is ergodic, K obtained this way agrees with that from
the stationary distribution density (Fig. 3a). The dashed circle
in the inset of Fig. 3b has a radius equal to the square root of
the asymptotic MSD lim∆t→∞〈∆r2(∆t)〉, marking the approximate
extent of the zone in which the central particle diffuses.

Figure 4 shows the force constants determined for droplets with
different cell aspect ratios from the asymptote of the MSD. Figure
4a contains the raw data of 5000 individual sites. In Fig. 4b,
we have averaged data in bins of δα = 0.1 width, to obtain mean
values of the interaction force as a function of the cell aspect ratio.
The force constant clearly increases for smaller aspect ratios. This
is probably a reflection of the actual charge distribution (disk or
ring like) in the droplets, which leads to larger effective force
constants when the aspect ratio is smaller (the droplet boundaries
are closer to each other). There is no obvious correlation of K
with droplet radius R (graph not shown). An estimate of the net
charges q necessary to produce the force constants shown in Fig. 4
yields q ≈ −10−17C, corresponding to only a few dozen negative
excess elementary charges.

Whereas the long term, asymptotic value of the MSD provides
information on the interaction potential, the short-time slope of
the graph in Fig. 3b is determined by the particle mobility b alone.
The term ‘free diffusion’ that we have chosen refers to the fact
that the particle does not experience the influence of the poten-
tial during short intervals (∆t� kBT/(KD) in Eq. (4)). However,
this mobility is significantly different from the diffusion of an in-
dividual free particle without neighbors, because the flow field
generated by the droplet motion is ‘disrupted’ at the boundaries
of the cage formed by the neighbors. This flow field is essentially
confined to the quasi-2D film, the surrounding air playing only
the role of a correction term.

Models for the mobility of single particles in 2D fluids have
been developed primarily for the description of biological mem-
branes38–41. In two dimensions, the mobility b = v/F of a particle
moving with velocity v under the action of a force F in a thin fluid
film with thickness h and viscosity η , bounded by a second fluid
with viscosity η ′, can be found from Saffman’s equations38,39, ei-
ther considering the surrounding air (the 3D case), or lateral fixed
boundaries of a circular film region (the 2D case). The Saffman
length `S = ηh/(2η ′) provides a criterion for deciding which of
these two approximations applies. Thin films, where `S is shorter
than their lateral dimensions, are more 3D like, whereas thicker
films with `S exceeding the film width behave like 2D fluids. In
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Fig. 4 Force constant K(α) determined from the asymptotic limit of the
MSD (see Eq. (4)) vs. cell aspect ratio α. Measurements from 5000
individual unit cells are shown. The film thickness is 41 nm. (a) shows the
complete set of data for all individual sites, (b) is obtained by averaging
all cells with similar aspect ratios, with bin widths of δα = 0.1 . The solid
red line is an empirical fit K = 2.87×10−9α−3/2 N/m, to guide the eye.

our case, the experimentally determined viscosity of the mixture
is η = 14 mPas. With h on the order of few dozen nanometers and
η/η ′ on the order of 103, `S is between 10 and 100 µm, larger
than the mean droplet separation. We may therefore ignore the
air surrounding the film and consider the hydrodynamics of each
caged droplet as being essentially 2D.

We computed the droplet mobility numerically for the case of a
regular hexagonal lattice, using Finite Elements Methods (FEM)
software (COMSOL), assuming that the flow field around a mov-
ing droplet is zero at the circumferences of the six neighbors and
at the sides of the hexagonal unit cell. We set the velocity at the
boundary of the central droplet to a constant value, solved the
flow field numerically, and computed the net viscous force act-
ing on the droplet by integrating the viscous stress at the droplet
boundary. For a unit cell formed by droplets of uniform size, the
cell aspect ratio α is the only free parameter, the droplet sizes be-
ing irrelevant39. This situation is roughly analogous to a particle
diffusing in a circular film with non-slip flow at the boundaries23.
There, the mobility is determined by the ratio of the film and par-

ticle radii alone39.

(a)

(b)

Fig. 5 (a) Flow fields around a moving particle in a cage formed by six
neighbors of similar size, with α = 3.0: (left) particle motion towards the
nearest neighbor, and (right) towards the cell edge. The magnitude of the
velocity is color-coded, in units of the central droplet velocity. Box sizes
are 2d×2d. (b) Specific mobility b′ = bh as a function of the aspect ratio α

for Saffman’s model (dotted line), numerical result for a circular area with
the incircle of the hexagonal cell (solid line) and exact numerical solution
(dashed line).

Fig. 5a shows the unit cell and the flow field caused by the mo-
tion of the central droplet towards one of the nearest neighbors
(left) and a next-nearest neighbor (right). Within our numerical
precision, the calculated resulting drag forces are equal in the two
cases. Fig. 5b shows the calculated specific mobilities b′ = bh as
a function of the aspect ratio α (dashed line). The dotted line
shows, for comparison, the analytical result of Saffman’s model
for a circular film,

b =
1

4πηh

(
ln

RS

R
−0.5

)
. (5)

As a suitable equivalent radius RS, we have chosen that of the in-
circle to the hexagon (RS =

√
3/4 d). This approximation is valid

only for large aspect ratios39, but it nevertheless still yields rea-
sonable results for smaller aspect ratios, like those found in our
lattices. The solid line in Fig. 5b is the numerical result for diffu-
sion in the center of a circular film with radius RS. It agrees with
Saffman’s analytical solution of Eq. (5) for large α. Since it ne-
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glects the effective reduction in cage dimension due to the finite
size of the six surrounding droplets, however, it understandably
deviates considerably from the hexagon simulations at small α.

As seen in Eq. (5), droplet mobility depends solely on the aspect
ratio α. They are therefore only indirectly (via α(R), see Fig. 2)
dependent on actual droplet sizes, in contrast to freely moving
inclusions23,24.

Fig. 6 Calculated diffusion coefficients D = bkBT vs. cell aspect ratio α

and experimental data for individual droplets. The solid line is Saffman’s
solution, Eq. (5), for a circular boundary, while the dashed line shows the
numerically computed curve for a hexagonal cell, see Fig. 5. (a) complete
set of data for all individual sites, (b) is obtained by averaging all cells with
similar aspect ratios, with bin sizes δα = 0.1.

The diffusion coefficients D = bkBT determined using Eq. (4)
are shown in Fig. 6. The dashed line shows the predictions of
the numerical simulations using hexagonal cages, while the solid
line is Saffman’s approximation for a circular boundary with the
radius of the inscribed circle of the hexagonal unit cells. As in
the previous graphs for the force constant, we show one image
with the complete data set (Fig. 6a) and the same data averaged
over bins with widths δα = 0.1 (Fig. 6b). Within experimental
error, there is satisfactory agreement between the model and the
experiment. The deviations from theory are mainly caused by
variations in the shapes of the unit cells. Even though the ma-
jority of droplets have six neighbors, few of the cages are regular

hexagons.

4 Summary
Lens-shaped droplets on SmA freely suspended films form a two-
dimensional colloidal lattice with predominantly hexagonal unit
cells because of mutually repulsive electrostatic interactions. The
particle dynamics are distinctly different from those of 2D col-
loidal particles at fluid surfaces and interfaces. The droplet mo-
bility depends solely on the ratio α of cage and droplet sizes. The
observed diffusion behavior is described well by Saffman’s model
for the mobility of particles in a 2D fluid with restricting lateral
boundaries.

An interesting option in this experimental system is that one
could in principle tune the lattice constants and cell aspect ra-
tios by inflating or deflating the bubble. For a given number of
droplets, the lattice would be expected to expand or shrink with
the smectic bubble radius. However, a prerequisite for such stud-
ies will be the availability of a microgravity environment such as
provided by the ISS or suborbital rockets.
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Appendix A: Potential of the perfect triangu-
lar lattice
Equation (1) describes the potential of six electric point charges
symmetrically arranged in a distance d around the origin. The
strength of such a potential decreases with increasing d as d−3. A
crude estimate shows that the potential of an infinitely extended
perfect triangular lattice in 2D will remain finite, in contrast to
a 3D lattice. In 2D, the number of lattice points in distance d
grows on average linearly with d, thus all charges in distance d
contribute a term proportional to d−2 to the potential at the ori-
gin. The integral of these contributions over the complete lattice
does not diverge but it remains finite. One can estimate an upper
limit for this potential analytically, and calculate the exact value
numerically.

For the exact mathematical treatment of the hypothetical per-
fect infinite lattice, we start with the solution for the potential
created by six neighbors, Eq. (1). We subtract the constant term
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and consider only only the lowest order contribution in r,

φ̃ = φ(r)−φ0 = Q
r2

d3 (6)

with the constants Q = 3q/(8πε0) and φ0 = 4Q/d.

Fig. 7 Lattice geometry: the lattice sites are labeled by their coordinates
i, j in one 60◦ sector around the central droplet, the other sectors are
similar because of the sixfold symmetry axis. As an example of the defi-
nition of coordination regions (see text), sites belonging to s = 3 are filled
light-red.

Now, we consider the additional contributions of all other
droplets in the lattice. We introduce a non-orthogonal coordi-
nate system i, j as shown in Fig. 7 and set the central droplet to
the origin (0,0). The other droplets with point charges q are at
positions (i, j). The coordinates are given in units of the lattice
constant d. We need to consider only a 60◦ sector as sketched in
the figure, the other five sectors are similar for symmetry reasons.
The six droplets in the nearest-neighbor model, Eq. (1), are the
one at position (1,0) and the corresponding sites in the remaining
five sectors.

We define for convenience ’coordination regions’ (in analogy
to coordination spheres of crystals) by the number s = i + j of
unit steps along coordinates i and j that are necessary to reach
a certain site starting from the origin. The distance of site (i, j)
from the center is d ·

√
s2− i j. In coordination region s, all sites

have distances from the origin between d ·
√

3/4s and d ·s. Exactly
s sites in the sector belong to each coordination region s: (s,0),
(s− 1,1),. . . , (1,s− 1). For instance, those of region 3 are filled
light-red in Fig. 7. In order to compute the contribution φi j of
site (i, j) and its equivalents in the remaining five sectors to the
potential at the origin, one only needs to replace d in Eq. (1) by
d
√

s2− i j. One finds

φi j = φ̃ (s2− i j)−3/2 (7)

One can calculate an upper and a lower estimate of the contri-
bution φs of all sites in region s. Their distance to the origin is
≥ d ·

√
3/4s, thus all s sites in that region together contribute

φs < φs,max = s · φ̃ s−3
(

3
4

)−3/2
≈ 1.54 φ̃

1
s2 (8)

We sum up all regions s > 1,excluding the nearest neighbors (1,0)
that are already contained in Eq. (1). Exploiting

∞

∑
k=1

1
k2 =

π2

6
≈ 1.644,

we obtain

φmax =
∞

∑
s=2

φs,max = 0.644 ·1.54 φ̃ ≈ 0.993 φ̃ (9)

This finite value is an upper limit for the additional contribu-
tions to the potential of Eq. (1) for an infinitely extended lat-
tice. We note in passing that a lower estimate is found when the
maximum distance s of the charges in each region s is inserted,
φmin = 0.644 φ̃ . The numerical computation of the exact factor is
straightforward, it yields ≈ 0.8356. Probably, this result can even
be obtained analytically. The conclusion is that the contributions
of the outer sites in a perfectly ordered triangular lattice can be
included in a finite correction factor of 1.8356 in Eq. (1), which
makes the central potential steeper, but does not change the func-
tional form. Of course, the constant term φ0 subtracted in Eq. (6)
increases with the number of lattice points so that the potential
of an infinitely extended lattice would be infinite in the origin,
but this is only an abstract mathematical feature without physical
consequences. For any physical, arbitrarily large but finite lattice,
this constant term remains finite and can be subtracted. For the
actual forces acting on the central particle, it is irrelevant.

Finally, we emphasize again that the inclusion of far-reaching
interactions requires a perfect long-range order which is clearly
absent in our lattices, and no Debye screening. Thus we expect
that Eq. (1) may somewhat underestimate the correct potential,
but probably by no more than about 25 %.
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