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Colloidal swimmers near curved and structured walls

S. Das,a and A. Cacciuto∗a

We present systematic numerical simulations to understand the behavior of colloidal swimmers
near a wall. We extend previous theoretical calculations based on lubrication theory to include
walls with arbitrary curvature, and show how to extract from simulations a set of parameters cru-
cial to accurately estimate the leading hydrodynamic contributions associated to the curvature of a
wall. Our results show explicitly how introducing curvature to the wall, not only affects the average
incident angle the swimmer acquires when swimming near it, but it also leads to much broader
angular distributions. This suggests an increasingly leading role of thermal fluctuations with cur-
vature, which in turn results in significantly different motility of the swimmers. We also show how
the backwards motion previously reported for pushers also extends to puller-like swimmers under
the appropriate conditions. Finally, aiming at understanding the behavior of colloidal swimmers
near a colloidal crystal, we also considered the case of a wall built from colloidal particles that are
either free to rotate, representing a crystal held together by isotropic forces, or have their rotational
degrees of freedom locked-in, representing a crystal held together by directional interactions. In
both cases, we find that puller-like swimmers follow a stochastic run-and-tumble-like dynamics.

1 Introduction
Self-propelled particles have received a considerable attention
during the last few years due to their relevance in biological sys-
tems as well as their inherent out-of-equilibrium nature which
lends promise for the development of the next generation of
smart, responsive materials1–11. A critical aspect of active sys-
tems is the way hydrodynamic forces mediate the mutual inter-
actions between active components and how they behave in the
proximity of large surfaces12–19. Of particular interest is the ten-
dency of micro-swimmers to accumulate near surfaces20–23, a be-
havior that is routinely observed in experiments of artificial col-
loidal swimmers24–28. Specifically, active colloids are known to
align their axis of propulsion to a specific orientation when in con-
tact with a flat, smooth surface. This is due to a combined effect
of the local chemical reactions generating fluid velocity gradients
around the particle surface (which are ultimately responsible for
its locomotion), and the no-slip constraint imposed on the fluid
by the wall29–33.

Simple theoretical arguments have been proposed to under-
stand this behavior, and depending on the self-propelling mech-
anism, i.e. the specific slip velocity profile of the fluid at the
particle surface, they lead to different orientations of a particle
propelling axis30,34–38. To each orientation corresponds a differ-
ent dynamical state. For instance, when the propelling axis of
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the particle is overall oriented towards the surface, but forms a
specific angle smaller than π/2 with the surface normal, a lat-
eral sliding motion of the particle is observed (forward motion).
Whenever the angle the propelling axis forms with the surface
normal is slightly larger than π/2, the particle moves along the
surface (parallel motion) while an effective attraction of hydro-
dynamic nature keeps it from escaping the surface.

Most of the works with active particles near a wall have in-
volved flat surfaces with few exceptions where convex surfaces
were also considered 39,40. These studies were put forward to
understand the trapping (orbiting) of active colloids in a matrix
of large passive colloids or columnar structures25–27,40.

In this paper we go one step further, and present comprehen-
sive theoretical and numerical results to detail the behavior of a
model colloidal swimmer near smooth surfaces of arbitrary cur-
vature, and near colloidal crystals interfaces, i.e. structured walls
presenting a periodic modulation. We use lubrication theory for
our analytical calculations and employ the multi-particle collision
dynamics (MPC) method to represent the fluid in our numerical
simulations. One advantage of this numerical method is that it
explicitly accounts for thermal fluctuations and allows us to eval-
uate the relative thermal stability of the different states acquired
by the particles.

Our results indicate that the swimmer dynamics has a system-
atic dependence on the surface curvature and can be estimated
by theoretical calculations accounting for near-field lubrication
forces in combination with an approximate far-field-like contri-
bution. We observe that under the appropriate conditions both
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pullers and pushers can develop a backward motion near a no-
slip smooth wall and gain a detailed insight into the mechanism
leading to this behavior. An analogous phenomenology was re-
cently reported only for pushers in references38,41. Finally, we
study how relaxing the no-slip boundary condition by adopting
a colloidal-crystal surface, where each particle is free to rotate,
alters the motion of the active colloid near it. This study is cru-
cial to understand the behavior of binary mixtures of active and
passive particles.

2 Numerical model
We describe an active colloid using a discrete particle swimmer
model similar to the one implemented for passive spherical col-
loids in references42 and43.

In this model, a colloid consists of 60 point particles placed
according to a C60 geometry and one at its center. Each point
on the surface is connected to its three neighboring points and
simultaneously to the center one via harmonic bonds of the form

U(r) =
K
2
(r− r0)

2, (1)

where r0 is the mean distance between two neighboring point
particles, and the spring constant, K, is chosen to be large enough
so that bond-length fluctuations are insignificant.

The surrounding fluid is described via multi-particle collision
dynamics (MPC), a particle-based mesoscopic simulation method
that naturally captures the effect of both hydrodynamic interac-
tions and thermal fluctuations44–46. The MPC fluid consists of
point particles of mass m moving according to a dynamics which
includes a ballistic streaming step and a stochastic collision step.
In the streaming step, the position of i-th fluid particle is updated
as

rrri(t +∆tc) = vvvi(t)∆tc, (2)

where vi is the velocity of i-th particle and ∆tc is the collision
time. In the subsequent collision step, all the particles in the sys-
tem are sorted into cells of cubic lattice size a, and the particles
within a cell exchange momenta locally via a stochastic process.
We employ the angular-momentum conserving stochastic rotation
dynamics (SRD+a) approach of MPC, where the particle velocity
after the collision is given by

vvvi(t +∆tc) = vvvcm(t)+R(α)vvvi,c(t)− rrri,c(t +∆tc)×[
mIII−1

∑
j∈cell
{rrr j,c(t +∆tc)× (rrr j,c−R(α)vvv j,c(t))}

]
.

(3)

Here, vvvi(t) and vvvi(t +∆tc) are the velocities before and after col-
lision respectively, R(α) is the rotation matrix with rotation an-
gle α, vvvcm(t) is the center-of-mass velocity of the considered cell,
rrri,c = rrri− rrrcm is the particle position relative to the center-of-mass
position of the cell, III is the moment-of-inertia tensor of the par-
ticles in the center-of-mass reference frame, and vvvi,c = vvvi− vvvcm.
Galilean invariance is maintained via a random shift of the colli-
sion grid in every collision step.

The coupling between the embedded colloid and the MPC fluid
is achieved by including the colloidal point particles in the col-

lision step for the local momenta exchange. The center-of-mass
velocity of the collision cell containing Nc fluid particles and Np

colloidal surface points is given by

vvvcm(t) =
∑

Nc
i=1 mvvvi(t)+∑

Np
k=1 MVVV k(t)

mNc +MNp
, (4)

where M is the mass of each colloidal surface point, and VVV k is
the velocity of the k-th one. No-slip boundary condition for the
fluid particles near a surface is achieved with a bounce-back rule,
where a fluid particle reverses its velocity from vvvi to −vvvi when it
hits the wall. The temperature of the system is maintained at a
desired value via a collision-cell level thermostat, referred to as
Maxwell-Boltzmann scaling (MBS) method. This ensures that the
simulated system is in the canonical ensemble47,48.

Following earlier works of active rods49, we adopt a discrete
version of the squirmer model to enforce self-propulsion of our
colloidal particles. In our model, each of the C60 points describing
the colloidal surface carries an intrinsic velocity vs(θi), where θi

is the polar angle of that point taken with respect to the axis of
propulsion of the particle. vs(θi) is given a predefined functional
form which defines the type of swimmer under consideration. As
a result, a fluid particle in a cell containing one of the C60 points,
picks up an additional velocity

vvva =
M
Nc

vvvs(θi) . (5)

In the standard squirmer model, vs(θ) = (2/3)u0 sinθ(1+β cosθ),
where the squirming parameters u0 and β are used to characterize
the velocity and the type of swimmer (pusher, puller, or neutral)
respectively35–37,50. Here, we also consider the surface slip ve-
locity proposed by Zhen. et. al.37, where the two hemispheres of
a colloid have two distinct slip velocity v1 and v2 such that

vs(θ) = v1 sinθ , for cosθ ≥ 0

= v2 sinθ , for cosθ < 0.
(6)

This velocity profile provides a more realistic description of an ac-
tive Janus colloidal particle where the two hemispheres have dif-
ferent material properties and correspondingly two different slip
velocities and a discontinuity between the two. The swimming
parameters in this case are given by37

u0 =
1
3
(v1 + v2), β =

1
2u0

(v1− v2). (7)

The sum of all the slip momenta of the fluid particles are applied
to the colloidal center of mass in the opposite direction such that
the overall momentum is locally conserved over the length of col-
loidal swimmer body. The coupling between the fluid and the
colloidal surface points in the collision step happens through the
thermal velocities only, i.e., VVV k(t) in Eq. 4 is the thermal contri-
bution to the velocity of the colloidal surface points, while vvvi(t)
plays the same role as VVV k(t), but for the fluid particles. Thus, no
net external forces or torques act on the colloid.

When considering a flat, cylindrical or toroidal surface, an ac-
tive colloid experiences a repulsive force due to a WCA-like po-
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tential of the form

U(dw
i ) = 4ε

[(
σ

dw
i

)48
−
(

σ

dw
i

)24
+

1
4

]
. (8)

Here, dw
i is the shortest distance between the particle and the

wall. This potential extends up to dw
i = 21/24σ .

In our simulations, all lengths are scaled by the collision-cell
size a, masses by the fluid mass m, and energies by kBT . Thus, the
MPC time unit is τ =

√
ma2/kBT . The MPC collision angle is set to

α = 130◦, the collision time is ∆tc = 0.05τ and the average number
of fluid particles per cell is equal to 20. For this set of parame-
ters the MPC fluid yields a dynamic viscosity, η = 16.66kBT τa−3.
In our simulations, the colloids have a radius R = 2.75a, a spring
constant of K = 104kBT/a2 is chosen to hold together the relative
distance between the C60 constituent point particles and a mass
M = 10m is associated to them. The latter assures adequate fluid-
colloid coupling for the correct hydrodynamic behavior. The free
diffusion constant of a passive colloid when embedded in a three
dimensional fluid and in the infinite dilute limit is measured to
be D0 = 1.21× 10−2a2/τ, while the rotational diffusion constant
is DR = 1.2×10−3τ−1. This is consistent with the Stokes relation
DR = 3D0/(2R)2. We characterize the activity in terms of the di-
mensionless Péclet number, Pe = (2u0R)/D0. Different values of
Pe are obtained by varying the propulsion speed for a fixed dif-
fusion. In all our simulations, we consider colloidal swimmers
embedded in a three-dimensional fluid, yet their translation and
rotation dynamics is constrained in a two-dimensional plane.

θ

x

z

εR

R

uc

hw

Fig. 1 Reference sketch of an active colloid of radius, R, at a distance
εR from a curved surface. The red arrow indicates the colloid propelling
axis, which forms an inclination angle θc with the surface normal. The
direction of the slip velocity of the closest point, uc, is also shown. The
y-axis is into the page.

3 Theoretical description
The near-field hydrodynamic behavior of an active colloidal
swimmer near a wall has been studied using lubrication the-
ory35,36,51. It is assumed that the closest distance (gap) between
the colloidal surface and the wall is significantly smaller than the
radius of the colloid, and the fluid flow is dominated by the sur-
face slip velocity of the closest point to the wall. Here, we gen-
eralize those results to include a wall with two possible radii of
curvature; one that is co-planar with the two-dimensional space,

the X-Z plane, where the colloid moves, and the other that is per-
pendicular to it. Specifically, the wall surface in the vicinity of the
contact point can be approximated as

hw(x,y) =
(

R
Rx

)
x2

2
+

(
R
Ry

)
y2

2
, (9)

where Rx and Ry are the two surface radii of curvature, and the
origin of the coordinate system is placed immediately below the
contact point (see Fig. 1). In the above expression, the lengths
in the X −Y plane, which is the plane of the dominant flow for
the lubrication problem, are rescaled by

√
εR and the lengths in

the Z-direction are scaled by εR. Here, ε is the ratio between
the colloidal-surface gap from the wall and the colloid radius,
with ε � 1 . The different limits of αx = (R/Rx) and αy = (R/Ry)

correspond to the following surface geometries

• flat surface: αx→ 0 and αy→ 0

• spherical surface: αx = αy

• cylindrical surface: αx→ 0 or αy→ 0

• ellipsoidal surface: αxαy > 0

• toroidal surface: αxαy < 0.

Using the general form for the wall surface given in Eq. 9 for
the boundary conditions, the corresponding leading order contri-
bution to the lubrication force and torque parallel to the wall are
given by

Fx =
4πηRuc√

(1−αx)(1−αy)

(1−3αx−αy)

(5−3αx−2αy)
lnε, (10)

Ty =
4πηR2uc√

(1−αx)(1−αy)

(4−3αx−αy)

(5−3αx−2αy)
lnε. (11)

Here, uc is the colloid-surface slip velocity at the point of closest
approach. These expressions are consistent with the results of
ref.51 in the limit of a spherical surface and for a flat surface as in
ref.35. The near-field results are the significant contributions for
colloids that are almost at contact with the surface. For colloids
that are close (but not in contact) to the surface a perturbation
due to the back of the colloid (outer surface) becomes important
and can be approximated by a far-field contribution37. Indeed,
it was recently reported35 that the leading order contribution to
the velocity comes from the outer region.

The fluid flow in the far-field of a squirmer is well established
in the literature34,35. A similar approximate expression for the
far-field of the active Janus colloid near a no-slip flat surface
can be derived via Lorentz reciprocal theorem52,53. In our case,
the auxiliary problem for the reciprocal theorem is the Stokes
drag on a passive sphere with translational and rotational motion
near a surface, for which the flow field in terms of fundamen-
tal flow singularities computed via the method of images is very
well known52,54. From the reciprocal theorem, the leading-order
contribution to the motion of an active Janus colloid due to its
interaction with a no-slip flat-wall in the far-field is given by

v f = u0 sinθc +
9

64

(
R
h

)2
u0β sin2θc +O(h−3), (12)
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(a)

(b)

Fig. 2 Numerically extracted bulk flow fields of the surrounding fluid
around a (a) strong-pusher (β = −5.25), (b) strong-puller (β = 5.25). In
both cases we considered a standard squirmer-slip from the surface. The
black arrow indicates the direction of propulsion.

RΩ f =
9

128

(
R
h

)3
u0β sin2θc +O(h−4). (13)

Here, v f and Ω f are the colloid translational velocity and angular
velocity parallel to the wall, θc is the inclination angle of the col-
loid orientation with the wall normal, h is the distance from the
center of the colloid to the no-slip wall. These expressions refer
to the case where h� R. When h ≈ R, the outer contribution to
the translational and angular velocity of the active Janus colloid
near a non-flat boundary can thus be approximated, by analogy
with the Faxen’s law for the far-field contribution of the squirmer
model, as

vout = λ1
(
Rx,Ry

)
u0 sinθc +λ2

(
Rx,Ry

)
u0β sin2θc, (14)

RΩout = λ3
(
Rx,Ry

)
u0 sinθc +λ4

(
Rx,Ry

)
u0β sin2θc. (15)

Here, λ1(Rx,Ry), λ2(Rx,Ry), λ3(Rx,Ry) and λ4(Rx,Ry) are coeffi-
cients expected to be dependent on the local curvature of the
wall.

The parallel translational speed of the active colloid can be es-
timated by combining the force contribution from the lubrication
region and that from the outer region. Thus, the force-free condi-
tion (no external forces) on a colloid moving with speed vx in the

(a)

(b)

Puller
Pe=110

Pusher
Pe=110

Fig. 3 CYLINDRICAL SURFACE: Distribution of the inclination angle, θc,
of a squirmer near surfaces with in-plane curvature αx = R/Rx = 0 (red)
and αx = R/Rx = 0.0724 (blue) for (a) Pe = 110, β = 5.25 (puller) and (b)
Pe = 110, β = −5.25 (pusher). The insets show the relative thermal sta-
bility of the average angle θmin selected by the swimmers.

x-direction (parallel to the surface) gives

6πηR(vout − vx)+
4πηR lnε(uc + vx)√
(1−αx)(1−αy)

(1−3αx−αy)

(5−3αx−2αy)
= 0. (16)

If the outer contribution vout is known, then the above expression
can be used to extract the speed vx. Similarly, the torque-free
condition yields

8πηR3
Ωout +

4πηR2 lnε(uc + vx)√
(1−αx)(1−αy)

(4−3αx−αy)

(5−3αx−2αy)
= 0, (17)

from which one can extract the orientation of the particle with
respect to the normal to the surface, provided an estimate of Ωout

is available. Although there is not a simple way of estimating the
λ coefficients in Eqs. 14 and15, these parameters can be directly
extracted from numerical simulations.

4 | 1–12Journal Name, [year], [vol.],

Page 4 of 12Soft Matter



(a)

(c) (d)

(b)

Puller
Pe=110

Pusher
Pe=110

Puller
Pe=55

Pusher
Pe=55

Fig. 4 CYLINDRICAL SURFACE: Distribution of the inclination angle of a Janus colloid near surfaces with curvature αx = R/Rx = 0 (red), 0.0724 (blue),
0.0917 (green) for (a) Pe = 110, β = 5.25 (puller), (b) Pe = 55, β = 5.25 (puller), (c) Pe = 110, β =−5.25 (pusher) and (d) Pe = 55, β = 5.25 (pusher). The
insets show the relative thermal stability of the angle θmin selected by the swimmers.

4 Results

We begin our numerical analysis by checking that our colloidal
swimmer model reproduces the expected bulk properties of a sin-
gle colloidal particle of comparable size, i.e. we measured the
mean-square-displacement (MSD) and orientational correlation
over time. While the orientational correlation is independent of
the strength of the active force and the type of the swimmer, as
the thermal fluctuation are solely responsible for the rotational
diffusion in the infinite dilute limit, the MSD shows the expected
u2

0 dependence in the diffusive regime. Figure 2 shows the fluid
flow-field for a puller and a pusher-type colloidal swimmer with
a surface-slip described by the standard squirmer model. These
patterns are fully consistent with those previously reported in the
literature37,55. Next, we consider the behavior of our colloidal
particle near a smooth wall.

4.1 Swimming modes

As discussed earlier, hydrodynamic torques reorient an active
swimmer when it approaches a no-slip wall and depending on
the type of swimmer different modes of locomotion, e.g. lateral
sliding, scattering and hovering, are observed35,37. More specif-
ically, while strong pushers tend to move parallel to the surface
and strong pullers slide laterally with the propelling axes facing
the surface, neutral, weak pullers and weak pushers are generally
able to escape the surface by reorienting their propelling axis.

In our simulations, for both the squirmer and the Janus colloid,
we observe a similar kind of locomotion near a flat no-slip surface.
We considered five distinct cases characterized by different values
of the parameter β which determines the type of swimmer. β =

-5.25 (strong pusher), β = -1.5 (weak pusher), β = 0 (neutral),
β = 1.5 (weak puller), β = 5.25 (strong puller). As expected, for
both squirmers and Janus colloids when |β | ≤= 1.5 the particle
tends to leave the surface some time after making contact. The
results showing the probability distributions of the orientational
angles, P(θc), for strong squirmers at Pe = 110 are shown in Fig. 3
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(a)

(b)

(c)

Fig. 5 Sketches of the surfaces considered in the simulations. (a) In-
finitely long cylinder with the axis perpendicular to the plane of motion,
and fully containing the fluid. (b) Finite sized torus with its the axis per-
pendicular to the plane of motion, and surrounded by an unbounded fluid.
(c) A linear string of colloidal particles lying in the plane of motion, and
surrounded by an unbounded fluid.

(case αx = 0), the same data for the Janus colloid are shown in
Fig. 4(a),(c)). Strong pullers pick up an angle θmin ≈ 40◦ when
propelled according to the squirmer-slip and an angle θmin ≈ 45◦

when propelled with the Janus-like slip velocity at Pe= 110. Since
the system is at steady states, the deviations from the equilibrium
angle are due to thermal fluctuations. It is therefore reasonable
to interpret −kBT ln[P(θc)] as an effective free energy providing
information about the thermal stability of that hydrodynamically
selected angle θmin. The insets of the figures, therefore, also show
how −kBT ln[P(θc)/P(θmin)] depends on θc, and indicate that sev-
eral kBT s are required to either change the direction of motion
of the particle on the surface by selecting the symmetric point at
−θmin, or move away from the surface by reaching an angle larger
than 90◦. Either cases are therefore very unlikely to occur sponta-
neously. Similarly, a strong pusher picks up an orientation angle
θmin ≈ 106◦ against the surface normal for both the squirmer and
the Janus colloid slip type. Figures 3(b) and 4(c) show the re-
sults of this analysis for the two cases at Pe = 110. The swimming
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θ m
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Pe= 110, β= 5. 25

Pe= 110, β= − 5. 25

Fig. 6 CYLINDRICAL SURFACE: The average inclination angle of a
Janus colloid near a no-slip surface as a function of the in-plane sur-
face curvature αx, for Pe = 110, β = 5.25 (puller), and Pe = 110, β =−5.25
(pusher).

modes of both models are indeed expected to be qualitatively sim-
ilar near a flat no-slip wall37. A direct comparison of our results
for the squirmer model with those of Ishimoto et. al.56 gives a
reasonable agreement of the steady state angle, θmin, for pushers,
but there is a notable difference for pullers. The reason is that our
ε for pushers matches that of Ishimoto et. al., however, our esti-
mate of the same parameter for pullers is a bit different. As the
lubrication interaction is the dominant contribution in selecting
the steady state angle, a small change in ε can lead to significant
changes in θmin.

It is important to stress that the theoretical description of the
system discussed in the previous section ignores the role of ther-
mal fluctuations. Solving Eq. 17 for the rotational dynamics pre-
dicts an inclination angle θmin that is independent of the Péclet
number. We therefore performed simulations also at a different
Péclet number, Pe= 55, yet with the same values of β . Our numer-
ical results for the Janus colloid are shown in Fig. 4, and indicate
that upon decreasing Pe the inclination angle of a strong puller
not only acquires a significantly broader distribution with an al-
most flat free energy barrier around θc = 0 (Fig. 4(b)), but also a
smaller value of θmin. In other words, thermal fluctuations easily
deviate the colloid orientation for relatively lower activity57 and
makes it easy for the particle to invert direction of motion on the
surface. Upon increasing Pe to values larger than 110 we observe
only a slight increase of θmin followed by a narrowing of the dis-
tribution (data not shown). This is likely due to the dependence
of the re-scaled gap distance ε with the Péclet number. Our data
does indeed indicate that ε decreases when increasing Pe. A sim-
ilar behavior is observed for pushers (Fig. 4(c),(d)), however, the
overall perturbation due to thermal fluctuations is less dramatic,
and unlike the case of pullers, we never observe pushers invert
their motion along the surface (at least for the Péclet numbers
considered in this study).

Next, we examine the effect of the wall curvature on the mo-
tion of a strong puller and pusher. For this we consider a colloid
inside a cylinder oriented with its axis parallel to the normal to
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(a) (b) (c)

(f)(e)(d)

(Squirmer)
  Puller
  Pe=110

(Squirmer)
  Pusher
  Pe=110

(Janus)
 Puller
 Pe=110

(Janus)
 Puller
 Pe=55

(Janus)
 Pusher
 Pe=55

(Janus)
 Pusher
 Pe=110

Fig. 7 CYLINDRICAL SURFACE: Distribution of the speed parallel to the surface, v||, for an active colloid. The top row is for pullers and the bottom one
for pushers. Cases (a) and (d) refer to Pe = 110 for a standard squirmer, cases (b) and (d) refer to Pe = 110 for a Janus colloid, finally cases (c) and (f)
refer to Pe = 55 for a Janus colloid. The different colors indicate the various wall curvatures.

the plane of motion of the colloid, see Fig. 5(a). In this study, we
only select cylinder radii that are at least ten times larger than
the colloidal radius, so that the effect of the confined fluid on
the colloidal motion is negligible. As observed in Fig. 3(a) and
Fig. 4(a), the distinct peak in the incident angle distribution of
a puller at relatively higher Péclet number (Pe = 110) shifts to
smaller values upon increasing the wall curvature. Furthermore,
the angular distribution becomes broader. For instance, already
for αx ' 0.1 the angular probability for the Janus colloid presents
an almost flat profile for any value smaller than θmin. This indi-
cates that the particle can easily switch direction of motion along
the surface even for this large Péclet numbers. When consider-
ing the pusher, the perturbation of the curvature on the incident
angle presents overall a similar trend, yet to a much smaller ex-
tent, see Fig. 3(b) and Fig. 4(c). Figures 4(b) and 4(d) show the
same analysis for a smaller Péclet number, Pe = 55 for the Janus
colloid. Even in this case, where thermal fluctuations dominate,
change in the angle distribution can be clearly observed as the
wall-curvature increases for both strong puller and pusher.

It is worth mentioning that we also performed simulations with
weak Janus colloids. Unfortunately, given the relatively short
time spent by the particles on the surface, it is hard to obtain
accurate distributions for weak Janus swimmers. For complete-
ness, we added the relevant distributions in the supplementary
material. Overall, for flat surfaces we observe a similar behavior
established for their strong counterparts, however the curvature
has a more dramatic impact on the inclination angle. See SFig. 1

and SFig. 2 in the supplementary information.

Back to the case of strong Janus swimmers, using Eq. 17 and
our numerical simulations, a rough estimate of the contribution
to the rotational motion from the outer region of the colloid away
form the wall is achieved. In Fig. 6, we measure the average angle
of a Janus colloid at various wall curvatures, and fit the data to
extract the λ parameters in Eq. 15. We obtain

RΩout =−
0.4245

(1−2.095αx)
u0β sin(2θmin). (18)

We now turn our attention to the particle speed parallel to the
surface. Enhanced motion of the swimmers near a no-slip surface,
i.e. an increase in the swimming speed near the surface compared
to their bulk speed, has been observed in theoretical studies35,37.
Even in experiments a speed up of the velocity of active Janus col-
loids near an air-water interface has been reported58. This can be
understood by considering that both pushers and pullers are ori-
entated near the wall in such a way that the fluid flow due to the
colloidal surface-slip near the contact point is against the wall. As
a result, they acquire a boost in speed due to hydrodynamic re-
flection (see Fig. 8(a) and 8(c)), as evident from the lubrication
expression for the force Eq. 10. Our results are consistent with
these observations as shown in Figure 7 that plots the swimming
speed parallel to the surface also as a function of surface curva-
ture. The enhancement of the motion near a flat-surface is signif-
icant for the strong pushers and pullers with a speed of v|| ≥ 2u0

for a standard squirmer, as well as for the Janus colloid. However,
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(c) (d)

(a) (b)
Puller

Pusher Pusher

Puller

Fig. 8 Schematic of the direction of motion (denoted by the green arrow)
of an active Janus colloid depending on its orientation (as denoted by
dashed arrows) near a no-slip boundary. (a) and (b) show the motion of
pullers. (c) and (d) show the motion of pushers. The solid black arrows
indicate the fluid flow direction close to colloid surface.

a notable change in the speed distribution with a reduction in the
average speed can be observed for strong pushers-pullers as the
wall curvature increases. The speed distributions follow the same
trend with the curvature and Péclet number as the ones observed
for the angular distributions of the incident angle discussed in
Fig. 3 and 4.

In general, one should expect that when a pusher or a puller
are aligned in opposite direction with respect to the sponta-
neous orientation they acquire when near a surface, they should
experience a hydrodynamic reflection against the direction of
their orientation as sketched in Figs. 8(b) and 8(d). Whenever
the strength of the reflections is larger than the swimmer for-
ward momentum, the active colloid moves backwards. This phe-
nomenon has recently been observed for pushers having their
axis of propulsion pointing in the direction of the surface (rather
than away from it)38,41. We observe this backward motion for
a pusher-type Janus colloid when a bias potential that forces the
self-propelling angle to point towards the surface while simulta-
neously keeping the particle near the surface is introduced. In-
terestingly, this behavior is not exclusive to pushers. In fact, we
also observe it for the pullers when they are forced to orient away
from the surface. The translational velocity of a Janus colloid
moving parallel to the wall, v||, as a function of its inclination an-
gle θc is shown in Fig. 9 for flat wall (αx = 0), and for a curved
one with αx = 0.0724. These data were obtained adding a har-
monic angular bias to the direction of the propelling axis to force
it to point to the desired angles which wouldn’t otherwise spon-
taneously be sampled. Plugging Eq. 14 into Eq. 16 one obtains an
expression for v|| (labeled as vx in the theoretical description) in
terms of the unknown curvature-dependent lambda coefficients.
We fit that functional form to the numerical data for v||, and find
the expression for the swimming speed near a no-slip surface to

(a)

(b)

Fig. 9 The magnitude of the velocity of Janus colloids moving parallel to
the wall normalized by their bulk velocity as a function of the inclination
angle θc. Data for curvature αx = 0 are shown in (a). Data for αx = 0.0724
are shown in (b). The data corresponding to Pe = 110,β = 5.25 are shown
with red squares, those for Pe = 55,β = 5.25 with blue circles, those for
Pe = 110,β =−5.25 with green squares, and those for Pe = 55,β =−5.25
with magenta circles. The solid and dashed lines are fits for pullers and
pushers respectively using Eq. 19.

be well described by the following function

v||
u0

=
1

(1− (2/3)µ lnε)

[(
1.38

(1−1.32αx)

9
64
− 1

2
µ lnε

)
β sin2θmin

+

(
1.1

(1−0.254αx)
−µ lnε

)
sinθmin

]
,

(19)

where µ = (1−3αx)/[
√

1−αx(5−3αx)]. Here, following the ap-
proach in ref.37, we have considered an approximate continuous
form of the surface slip velocity that only includes the first two
terms of the Legendre polynomial expansion of Eq. 6. This con-
tinuous form does indeed give an accurate dependence of v|| on
u0 and β .

Using the expression in Eq. 19, we can predict the onset angle
for the backward motion for both pullers and pushers. Notice,
however, that such backward motion is only possible in the pres-
ence of some sort of biasing potential, for instance a magnetic
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field. Furthermore, plugging the expression for v|| (Eq. 19) and
that for Ωout (Eq. 18) into Eq. 17, one can predict the orienta-
tion angle at different curvatures for any type of Janus colloidal
swimmer.

(a)

(b)

Puller
Pe=110

Pusher
Pe=110

Fig. 10 TOROIDAL SURFACE: Distribution of the inclination angle, θc,
of (a) Janus puller with Pe = 110, β = 5.25, and (b) Janus pusher with
Pe = 110, β =−5.25 near no-slip toroidal surfaces. The surface curvature
perpendicular to the plane of motion is set in both cases to αy =−1. The
data in red correspond to an in-plane curvature of αx = 0, those in blue
to αx = 0.0724. The insets show the relative thermal stability of the angle
θmin selected by the swimmers.

For completeness, we also considered the behavior of a strong
pusher and puller, β =±5.25 at Pe = 110, near a smooth toroiodal
wall. Unlike the previous cases, where the wall is infinite along
the direction perpendicular to the plane of colloidal motion, now
the wall curves onto itself to form a finite-sized object, and the
fluid is not longer fully confined by the wall (see Fig. 5(b)). To
be specific, we fix αy = R/Ry =−1, so that the difference between
the outer and inner radius of the torus equals the diameter of the
particle, and we consider two different values of αx: αx = 0 and
αx = 0.0724. In general, the particle outer region hydrodynamic
contributions to the force and torque would also include addi-
tional terms dependent on the second radius of curvature, and

(a)

(b)

Puller
Pe=110

Pusher
Pe=110

Fig. 11 TOROIDAL SURFACE: Distribution of the speed parallel to the
toroidal wall for (a) Janus puller with Pe = 110, β = 5.25, and (b) Janus
pusher with Pe = 110, β = −5.25. In both cases, the wall curvature per-
pendicular to the plane of motion is αy =−1. The data in red correspond
to an in-plane curvature of αx = 0, those in blue to αx = 0.0724.

can be extracted following the strategy previously discussed. We
will not do that here, and we limit our discussion to the behavior
of the orientation angle for the two values of αx.

As expected from the theory, when compared to the earlier re-
sults with a single radius of curvature in the plane of motion, the
lubrication contribution to the forces and torques is altered by
the presence of a second curvature. For both pullers and pushers,
the inclination angle adjusts accordingly and we observe a more
relevant role of thermal fluctuations as visible from the signifi-
cantly broader distributions of the orientational angle. Typically,
we observe smaller values of θmin for a fix value of αx upon in-
troducing the second radius of curvature Ry. This trend is more
dramatic when the in-plane curvature αx is larger than zero. The
same trends holds true for the velocity distribution along the wall
as can be seen in Fig. 11. The reduction in velocity suggests that
the leading hydrodynamic contribution to v||, which as discussed
earlier is due to the outer region of the particle, decreases upon
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increasing αy.
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Fig. 12 Trajectories of a Janus puller in the lateral direction of a surface
made of colloidal particles. The data in green refer to the case where the
colloids are free to rotate, those in red refer to colloids that are rotationally
locked-in.

4.2 Colloidal walls

In this final section, we briefly discuss the behavior of a Janus
swimmer near a colloidal crystalline interface built by placing
particles, having the same diameter as the swimmer, in linear for-
mation and at a kissing distance from each other, see Fig. 5(c).
We consider two distinct cases: one where the colloids forming
the boundary are translationally locked in place, but are free to
rotate, and one where also the rotational degrees of freedom are
forbidden. The first case mimics the presence of a crystal formed
by colloidal particles interacting via a strong isotropic potential,
whereas the second scenario corresponds to the case where the
colloids are held together by strong directional interactions. For
both scenarios, we only consider the limit where the strength of
the active forces is small enough that no disruption of the or-
der/position of the colloids on the surface is expected.

For both colloidal surfaces, we find that a strong pusher, β =

−5.25 and Péclet number Pe = 110, upon approaching the sur-
face tilts its axis of propulsion to form an angle of roughly 90
degrees, and moves near it until it finally leaves it. The main
difference between the two surfaces is that the residence time of
the swimmer near the rotationally frozen colloids is much longer
than that near freely rotating colloids. Furthermore, in the lat-
ter case, the momentum due to the slip velocity of the swimmer
is also transferred to the colloids in contact with it which begin
to rotate accordingly. The net result is that the swimmer moves
at a relatively lower speed along the surface and feels an overall
weaker attraction to it.

The behavior is rather different when considering strong Janus
pullers. In this case, when the rotational degrees of freedom
of the colloids are locked in, the swimmer can become locally
trapped when it stacks between two passive colloids. In fact,
when the swimmer axis points towards the normal to the sur-
face in that configuration, the lubrication force from the nearest

left and right colloids is perfectly balanced and no net motion can
occur. Only when thermal fluctuations drive the swimmer out of
that configuration, a net (lateral) sliding motion on the surface
can be achieved. This results in a run-and-tumble-like motion
along the surface. Allowing the colloids on the surface to freely
rotate has the main effect of increasing the time a Janus swimmer
remains locked-in when stacked between two colloids, and short-
ening the average length of the directed motion along the surface
in between two successive trapping events. Apart from that, the
swimmers are moving at roughly the same speed, as evident from
the slopes in Fig. 12 which shows typical time trajectories of Janus
swimmers near these two kinds of surfaces.

5 Conclusions
In this paper, we presented a combination of theoretical calcula-
tions and numerical simulations to understand the motion of dif-
ferent kinds of colloidal swimmers adjacent to various surfaces.
Our numerical calculations include hydrodynamic interactions as
well as thermal fluctuations, and can be used to extract a set of
parameters that can be fed to our theoretical expressions to esti-
mate the complex dependence of the hydrodynamics contribution
for the outer region of the colloid on the curvature of a no-slip
surface. These results can be used to predict the inclination angle
and the parallel speed of an active Janus colloid. Moreover, they
shed light on the origin of the backward motion of an active col-
loid near a surface observed when its axis of propulsion is tilted
beyond an onset value. We show that such a backward motion is
feasible for both pushers and pullers when they orient contrary to
their natural inclination near a no-slip surface.

Overall, we find that both thermal fluctuations and the local
curvature of the surface have a significant effect on the swimming
modes of the colloidal swimmers near the surface. We detail how
both effects alter the average tilt angles and surface velocities ac-
quired by the swimmers with respect to the case of an infinite flat
wall, and show how their distributions change with these param-
eters.

Although our theoretical description should hold for any wall
geometry, in this study, we presented numerical simulations for
flat, cylindrical, and toroidal geometries for the wall. We have
not considered the case of a spherical wall because in this case it
is hard to numerically disentangle the effect of the wall near the
swimmer from that of the confined fluid away from it on the tilt
angle and parallel velocity of the swimmer on the surface. We
should also mention that we performed a few simulations consid-
ering convex surfaces, i.e. a Janus active colloid near a frozen,
larger spherical colloid. In this case we observe trapping of the
Janus swimmer on the colloidal surface for both pushers and
pullers, but overall, it is easier to trap pullers rather than pushers.
This is consistent with the results reported in reference39.

Most of our results has been obtained for swimmers with |β |=
5.25, this is because, as discussed in the paper, the hydrodynamic
attraction for very weak swimmers, |β | = 1.5, is rather weak,
and thermal fluctuations are able to easily disrupt their motion
and push them away from the surface, nevertheless they show
a behavior similar to their stronger counterparts when bound to
it. A very recent experimental study, published while finalizing
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this paper59, reported a direct measurement of the flow field
around a Pt-PS colloidal swimmer. This was mapped into an ef-
fective squirmer-like model. For this specific system it was found
β =−2.45 roughly in the middle of our range. Although it is not
clear that a mapping onto a simple squirmer model can always
be done accurately, and different active components could have
different degrees of strength β , our results suggests that addi-
tional interactions, beyond the hydrodynamic ones, between par-
ticle and surface would be necessary for weak swimmers to have
a significant residence time near a surface.

Finally, we discussed the case of swimmers near the surface of
a colloidal crystal, and show how in this case the dynamics of the
pullers can be described as a run-and-tumble motion rather then
a persistent, unidirectional one. Although, this study is limited
to stiff colloidal interfaces whose relative position is unaffected
by the active forces, it nonetheless gives useful insight into the
behavior of active colloids in passive/active binary mixtures in
the limit of strongly attractive passive particles. An extension of
this work considering colloidal surfaces held together by explicit
interactions competing with the active forces is underway. It is
worth pointing out that a system of ABP particles with a short
range attraction 60, can be mapped into an effective weak pusher
swimmer. This can be argued by looking at the statistics of the
clusters during phase separation. Furthermore, using similar ar-
guments it was shown61 that under certain conditions it is possi-
ble to map the behavior of repulsive ABP particles into an effective
run-and-tumble system. Unlike these works, the run-and-tumble-
like motion developed by our swimmer only occurs for pullers
near a corrugated boundary and it emerges from an explicit hy-
drodynamic trapping and thermal releasing of individual particles
from within the interstitial spaces between the colloids. As such,
our results do not directly add to the discussion on the effective
mapping between the collective behavior of swimmers and run-
and-tumble particles while phase separating in the bulk.
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