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Mechanical Properties of Lipid Bilayers: A Note on the Poisson Ratio
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1Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213,
USA

(Dated: 15 October 2019)

We investigate the Poisson ratio ν of fluid lipid bilayers, i. e., the question how area strains compare to the
changes in membrane thickness (or, equivalently, volume) that accompany them. We first examine existing
experimental results on the area- and volume compressibility of lipid membranes. Analyzing them within
the framework of linear elasticity theory for homogeneous thin fluid sheets leads us to conclude that lipid
membrane deformations are to a very good approximation volume-preserving, with a Poisson ratio that is
likely about 3% smaller than the common soft matter limit ν = 1

2 . These results are fully consistent with
atomistic simulations of a DOPC membrane at varying amount of applied lateral stress, for which we instead
deduce ν by directly comparing area- and volume strains. To assess the problematic assumption of transverse
homogeneity, we also define a depth-resolved Poisson ratio ν(z) and determine it through a refined analysis
of the same set of simulations. We find that throughout the membrane’s thickness, ν(z) is close to the value
derived assuming homogeneity, with only minor variations of borderline statistical significance.
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I. INTRODUCTION

Biomembranes and lipid bilayers exhibit many inter-
esting mechanical properties. Much emphasis has been
placed on the bending modulus KC , which is important
for describing the flexural rigidity of membranes, and
the area modulus KA, which pertains to in-plane com-
pression or stretching. These two are in fact conceptu-
ally related, but the details depend on additional micro-
scopic assumptions, leaving the precise connection open
to debate.1–5 Since local surface geometry is described by
two independent curvatures, the bending modulus KC ,
which penalizes mean curvature, has a partnerKG, which
quantifies the cost of Gaussian curvature. However, due
to the Gauss-Bonnet theorem the Gaussian modulus usu-
ally only matters when the topology changes (say, pore
opening or fission/fusion events), and for the same reason
it is also very difficult to measure.6–10

A mechanical property of lipid membranes that has
seen considerably less attention is their Poisson ratio, ν.
This is the quantity that allows us to address the ques-
tion: what relative area change ∆A/A results if we im-
pose a relative thickness change ∆D/D? Within linear
elasticity, the ratio between these two quantities, multi-
plied by − 1

2 , is called the Poisson ratio.
It is frequently assumed in biophysics, often without

noting it explicitly, that volume remains constant upon
membrane deformation,4,11–21 but a few studies have let
open the possibility that this is not the case for lipids near
protein inclusions and looked into it,22,23 although not in
the way we do here. Since the volume strain uV = ∆V/V
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b)E-mail: deserno@andrew.cmu.edu
c)E-mail: nagle@cmu.edu

can be expressed, to lowest order, as the sum of the area
strain uA = ∆A/A and the thickness strain uD = ∆D/D,
one has

uV = uA + uD. (1)

Incompressibility (i. e., ∆V = 0) enforces the ratio of uA
to uD to be −1, which then implies a Poisson ratio of
ν = 1

2 .
Any sizable deviation from the constant volume as-

sumption could, of course, have consequences for bio-
physical studies that in one way or another rely on a
membrane’s elastic properties. For instance, a lipid vol-
ume change would also occur in membranes containing
mechanosensitive channels and could affect their gat-
ing when they are activated by a mechanical surface
tension.15,16,18,19 The passive permeability of such mem-
branes would also increase due to both thinning of the
membrane and lower mass density, but not necessarily by
the same amount due to the two effects.24

Experimentally, it is difficult to obtain the Poisson ra-
tio by directly measuring both ∆A and ∆D. The contin-
uum mechanics relations developed in Section II show us
how to obtain ν using other quantities from experiment
and simulation, namely, the isothermal area compres-
sion modulus KA already mentioned, and the isothermal
bulk modulus KV along with the membrane thickness D.
However, there is also ambiguity in the parameters that
occur in the continuum mechanics model. Fortunately,
simulations obtain data that remove this ambiguity. The
data are reviewed in Section III along with results for ν.

This continuum mechanics approach assumes that bi-
layers are homogeneous. However, lipid membranes ex-
hibit structure that rapidly varies in the transverse z-di-
rection. We know of no experimental data that can test
whether this heterogeneity effects a conceivably depth-
dependent Poisson ratio ν(z); but, as is often the case,
simulations can address properties not accessible to ex-
periment. In Section IV we therefore define ν(z) and
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determine it from a refined analysis of the same set of
simulations.

II. RELATIONS FOR THE POISSON RATIO ν FOR A
FLUID MEMBRANE

The harmonic free energy density f of an elastic body
can generally be written as

f =
1

2
λijkluijukl , (2)

where uij is the strain tensor and repeated indices are
summed over the three spatial dimensions. After exploit-
ing a membrane’s in-plane translational and rotational
symmetry, as well as its fluidity, this reduces to25–27

f =
1

2
λAu

2
A +

1

2
λzu

2
z + λAzuAuz , (3)

where the notation has been simplified by introducing
λA = λxxxx = λyyyy, λz = λzzzz, λAz = λxxzz, uA =
uxx + uyy and uz = uzz. It has previously been assumed
that λA = λz, because it simplifies some calculations.25

In this paper we instead allow for an elastic asymmetry

α :=
λz − λA
λA

, (4)

whose value we then estimate.
Eqn. (3) neglects a term that accounts for lipid tilt;

but such a deformation involves non-diagonal strains, like
uxz, that appear not to be of concern for Poisson ratio
considerations. Likewise, the elastic free energy of lipid
membranes also contains a term proportional to a trans-
bilayer lateral pre-stress, σ0(z);11 but since the zeroth
moment of this pre-stress vanishes, and none of our de-
formations are z-dependent, it also drops out of all sub-
sequent considerations.

To obtain the Poisson ratio ν in terms of the elastic
moduli entering Eqn. (3), one fixes a value of uz and
determines the ensuing uA that minimizes f ,

0 =

(
∂f

∂uA

)
uz

= λAuA + λAzuz , (5)

which gives

ν := − uA
2uz

=
λAz
2λA

. (6)

It proves convenient to re-express Eqn. (3) in terms of
the Poisson ratio ν and the elastic asymmetry α; two
equivalent forms, which differ in the choice of indepen-
dent strains, will be used:

f(uA, uz)

λA
=

1

2
u2A +

1

2
(1 + α)u2z + 2νuzuA , (7a)

f(uA, uV )

λA
=

1

2
u2V +

α

2
(uV − uA)2

+ (2ν − 1)uA(uV − uA) . (7b)

Next we obtain expressions for the experimentally de-
termined moduli. The area modulus KA is defined by

min
uz

{
Df(uA, uz)} =

1

2
KAu

2
A , (8)

where D is the thickness of the membrane.
Enforcing the minimization condition via Eqn. (7a)

leads to

(1 + α)uz + 2ν uA = 0 . (9)

Solving this equation for uz, inserting its value into
Eqn. (7a), and combining with Eqn. (8), we find

KA

DλA
=

1 + α− 4ν2

1 + α
. (10)

Similarly, the experimentally determined bulk modulus
KV is defined by

min
uA

{
f(uA, uV )

}
=

1

2
KV u

2
V . (11)

Enforcing the minimization condition, this time via
Eqn. (7b), leads to

(1 + α− 4ν)uA − (1 + α− 2ν)uV = 0 . (12)

Solving this equation for uA, reinserting into Eqn. (7b),
and combining with Eqn. (11), we find

KV

λA
=

(1 + α)− 4ν2

α+ 2(1− 2ν)
. (13)

For subsequent analysis of experimental and simula-
tion data, it is convenient to consider the ratio between a
membrane’s area- and bulk modulus. Dividing Eqn. (10)
by Eqn. (13) eliminates the less convenient modulus λA
and gives

ρ :=
KA

DKV
=

2(1− 2ν) + α

1 + α
. (14)

Notice the occurrence of the membrane thickness D,
which arises for dimensional reasons.

Rearranging Eqn. (14), we can also expresses the Pois-
son ratio ν in terms of two in principle measurable elastic
modulus ratios, ρ and α:

ν =
1

2
− ρ

4
+ α

1− ρ
4

. (15)

In passing, it is interesting to note that Eqn. (14) al-
lows ν to be larger than 1

2 for small ρ when α is pos-
itive. Although this may seem surprising in view of
the well-known limit that indeed holds for isotropic elas-
tics, it should be appreciated that there are no bounds
on ν in the much larger universe of anisotropic elas-
tic materials.28 However, our system is constrained to
|2ν| ≤ 1 + α in order to satisfy the stability requirement
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that both KA and KV be non-negative in Eqns. (10) and
(13).

We finally obtain the relative volume change uV result-
ing from a given area strain uA. Setting (∂f/∂uV )uA

= 0
in Eqn. (7b) leads us to the associated strain ratio s,

s :=
uV
uA

=
1 + α− 2ν

1 + α
. (16)

In the next section we will determine values for the two
ratios ρ and s, from which we then proceed to calculate
the observables of interest: Poisson ratio ν and elastic
asymmetry α. It is hence convenient to express the latter
set directly in terms of the former:

ν =
1− s

2(1 + ρ− 2s)
, (17a)

α =
2s− ρ

1 + ρ− 2s
, (17b)

III. DATA AND RESULTS FOR HOMOGENEOUS
FLUID MEMBRANES

The definition of the modulus ratio ρ in Eqn. (14) in-
volves the area expansion modulus KA, the bulk modulus
KV , and the membrane thickness D. Experimental work
has established that KA depends remarkably weakly on
the specific lipid under study; it typically has a value
around (250± 50) mN/m.1,14,29,30 This range of values is
encompassed in the first column of Table I for the four
experimental rows.

Because isotropic pressure P and its conjugate ther-
modynamic variable V are relatively less interesting than
the more relevant canonical surface pressure π and sur-
face area A pair, fewer experimental results exist for
a lipid bilayer’s bulk modulus KV = −V (∂P/∂V )T
than for its area modulus KA = −A(∂π/∂A)T . How-
ever, the value 1.3 GPa has been measured for KV for
DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bi-
layers in the fluid phase at T = 47.4◦C.31 A somewhat
larger value of 2.2 GPa has been reported for the shorter
chain length lipid DMPC (1,2-dimyristoyl-sn-glycero-3-
phosphocholine) in its fluid phase at lower temperatures
near T = 30◦C.32 Although another study of DPPC un-
der pressure did not quote a value for KV ,33 from their
Fig. 1 we estimate KV = 0.9 GPa in the fluid phase of
DPPC at T = 45.13◦C and a smaller value of KV ∼
0.6 GPa closer to the main transition TM = 41.4◦C. It
is well known that there is anomalous softening of the
bending modulus KC in the fluid phase as the main tran-
sition is approached34,35 and an even more pronounced
softening has recently been reported for the tilt modulus
Kθ.

36 The few data for KV suggest a similar but weaker
trend. A non-lipid bilayer (and non-anomalous) compar-
ison is n-hexadecane, for which KV is about 0.6 GPa at
T = 45◦C.37 Although hexadecane has similar hydrocar-
bon chains as DPPC, it is an isotropic liquid with more
gauche-trans disorder than DPPC,38 so its bulk modulus

would be expected to be smaller. On the other hand,
nearly 30% of the volume of lipids is in the headgroup
region, which, being surrounded by water, is not likely
to be compressible beyond that of the water. This would
not change ∆V , but it would reduce the effective com-
pressible volume V factor in KV , thereby reducing its rel-
evant value by 30%, closer to that of hexadecane. Based
on all these considerations, we will consider the range of
experimental estimates for KV shown in Table I.

The D dependence in ρ, necessitated by dimension-
ality, causes some conceptual difficulties, because mem-
brane thickness is microscopic, and how to define a geo-
metric reference surface within a molecular-scale object is
neither obvious nor in practice unique.12 Two frequently
encountered reference surfaces in the context of mem-
brane bending are a leaflet’s pivotal plane,39 at which
bending leads to no area strain, or its neutral surface,40

at which bending and stretching energies decouple. How-
ever, these surfaces are introduced to conceptually lo-
calize strain or simplify elastic energies, not to serve as
definitions of bilayer thickness—and hence they are not
usually used for this purpose. A more common way to
specify a membrane’s transverse dimension is the Luzzati
thickness DB, which refers to the surface that arises when
one imagines expelling all water from the headgroup re-
gion and rearranging the lipids to form a gedanken sheet
of pure lipid. This definition approaches the problem
thermodynamically, in the spirit of a Gibbs dividing sur-
face. Typically, DB has values around 3.6 nm.41 An al-
ternative structure-based definition is the hydrocarbon
thickness, sometimes denoted 2DC. It refers to the di-
viding surface for the methylene groups on the lipid tails.
This choice identifies a bilayer with its hydrophobic lipid
tail region; its value is about 2.7 nm for typical bilayers.12

In our subsequent analysis we will examine both the
Luzzati- and the hydrocarbon thickness, since they have
different points in their favour. The Luzzati definition
bridges between continuum theory and molecular real-
ity without having to make a potentially arbitrary struc-
tural choice. The hydrocarbon thickness makes such a
choice, but it is not arbitrary: simulations have shown
that headgroup volume remains essentially constant with
area strain,42 consistent with it being immersed in water,
and so one might not expect it to support anything other
than ν = 1

2 . Hence, the hydrocarbon thickness focuses
on that part of the bilayer for which we would expect a
“nontrivial” Poisson ratio.

Turning to simulations, row Sim 1 in Table I shows
results from the only simulation43 we could find that re-
ported results for KA and D, as well as data from which
KV can be extracted as we now show. What was re-
ported using the CHARMM27r force field was a bulk
modulus for the entire system of Ksys = (1.5± 0.3) GPa.
As nearly half (φ = 0.42) of the system consisted of wa-
ter, its contribution to the overall modulus must be taken
out in order to arrive at the bulk modulus of the bilayer
alone. Deviating slightly from the procedure proposed in
Ref. [43], we note that the volume strains of the water-
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and membrane-phase must add, which implies (in anal-
ogy to a springs-in-series argument)

1− φ
KV

=
1

Ksys
− φ

Kwater
. (18)

Taking the value Kwater = 2 GPa for the bulk modulus of
TIP3P water from another CHARMM27r simulation,44

we then find KV = 1.3 GPa for the bilayer in very good
agreement with experiment.

Let us now turn to the strain ratio s. We are not
aware of any experimental measurements of this vari-
able, but we have been able to extract s from the simu-
lation data (and later simulation trajectories) of Braun
et al.,42 who used the united atom force field GROMOS
43A1-S345 to simulate flat bilayers (288 DOPC (1,2-
dioleoyl-sn-glycero-3-phosphocholine) lipids, 9428 SPCE
water molecules) at T = 29.85◦C under fixed (projected)
area A. Of the several areas simulated we have picked
five, equally spaced from 0.64 nm2 to 0.72 nm2, whose
surface tensions γ had also been determined. The vol-
umes of the total lipid, VL, as well as of the hydro-
carbon region alone, VC , were obtained using a sim-
ple procedure46 incorporated in the SIMtoEXP analysis
software,47 and values were reported in the Supplemen-
tary Material of Braun et al..42 As the simulation con-
ditions are identical to those for Eqn. (16), we obtained
the value of s from a plot of lnV versus lnA. Using the
entire lipid volume VL corresponds to choosing the Luz-
zati thickness DB as the membrane thickness; it gives
∂(lnV )/∂(lnA) = s = 0.0297 ± 0.0041. Using only the
hydrocarbon volume corresponds to choosing the hydro-
carbon thickness; it gives s = 0.0399± 0.0055. The area
modulus KA and the thicknesses were also reported;42

their values are shown in the Sim 2a and Sim 2b rows of
Table I.

Table I illustrates ranges for the values of the KA, KV ,
and D data discussed in this section, and these give the
values in the column of the modulus ratio ρ. For the
D column, the smaller values are the hydrocarbon thick-
nesses and the larger values are the Luzzati thicknesses.
The values in the s column come from the previous para-
graph, and they correspond to the choice of D. The
Poisson ratio is close to 1

2 , so Table I shows the differ-

ence 1
2 − ν. That difference is largest for Case Exp 3

which puts KA at its upper range and KV at it lower
range, and the difference even becomes slightly negative
for the opposite end of the KA and KV ranges as seen
for Case Exp 2. Using hydrocarbon thickness versus Luz-
zati thickness makes less difference as seen by comparing
Cases Exp 1a and 1b and between Sim 2a and 2b; that
is due to a compensating effect of s. Based on these four
cases we suggest that ( 1

2 − ν) ≈ 0.015, a 3% deviation

from the usual assumption that ν = 1
2 . The strain ratio

s directly gives the relative volume change uV for a given
area strain uA. Lipid bilayers typically rupture when the
area strain uA exceeds 6%,48 so relative changes in vol-
ume would be less than 0.2% for Cases Exp 1a and 1b
and Sim 2a and 2b.

Case KA KV D ρ s 1
2
− ν α

[mN/m] [GPa] [nm] [10−2] [10−2] [10−2] [10−2]

Exp 1a 250 1.3 3.6 5.3 3.0 1.2 0.7

Exp 1b 250 1.3 2.7 7.1 4.0 1.6 0.9

Exp 2 200 2.0 3.6 2.8 3.0 -0.1 3.3

Exp 3 300 0.6 3.6 14. 3.0 5.0 -7.3

Sim 1 138 1.3 3.9 2.7 3.0 0 3.4

Sim 2a 277 1.3 3.8 5.6 3.0 1.3 0.4

Sim 2b 277 1.3 2.8 7.6 4.0 1.8 0.4

TABLE I. Values of area modulus KA, bulk modulus KV ,
membrane thicknessD, modulus ratio ρ from Eqn. (14), strain
ratio s from Eqn. (16), deviation of the Poisson ratio ν from
its usually assumed limit of 1

2
from Eqn. (17a), and the elas-

tic asymmetry α from Eqn. (17b), for a select set of cases
discussed in the text.

The final column in Table I provides, to the best of
our knowledge, the first estimate for the magnitude of
the elastic asymmetry α from Eqn. (4), which quantifies
the extent to which the diagonal elements λA = λxxxx =
λyyyy and λz = λzzzz of the general elastic from Eqn. (3)
differ from one another because a membrane’s anisotropy
breaks full rotational symmetry. The values for Cases
Exp 1a and 1b and Sim 2a and 2b suggest that λz is
about 0.5% larger than λA. However, uncertainties in
the ratios ρ and s are consistent with α = 0, so we simply
conclude that any symmetry breaking is quite small.

It may also be noted that a coarse-grained simulation
study obtained elastic ratios,49 but it does not appear to
relate those results to the classical Poisson ratio defined
in Section II.

IV. INHOMOGENEOUS POISSON RATIO

A fluid lipid bilayer is laterally uniform, but along the
normal direction it exhibits significant inhomogeneity, for
instance in terms of its structure,12 or lateral pressure
profile,11,50,51 or even its lateral area modulus profile.27

This need not imply that results using homogeneous elas-
ticity theory are wrong; but it behooves us to examine
this issue, especially since any sizable variation with po-
sition could have implications for other theories which
instead assume that ν is uniform (and close to 1

2 ). It
is furthermore of interest whether it is possible to oper-
ationally ascribe a local Poisson ratio to characteristize
subregions of the bilayer.

A first and relatively straightforward step in this direc-
tion is to recognize the elastic difference between a mem-
brane’s head group region compared to the hydrocarbon
tails. As noted above, a detailed analysis of molecu-
lar volumes indeed indicates that lipid head group moi-
eties essentially do not change their volume upon bilayer
stretching.42 If so, the volume change is confined to the
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hydrocarbon tails, and so we expect the bilayer-averaged
value of 1

2 − ν to be larger when the focus is only on the
hydrocarbon region as shown in Table I by the cases Exp
1a and 1b and by Sim 2a and Sim 2b.

Let us now strive to go beyond a binary division be-
tween heads and tails and define a truly local Poisson
ratio ν(z). As we know of no experiment that has the
sensitivity to measure inhomogeneity in the Poisson ra-
tio at such a small scale, we once more turn to simulation
and propose a refined way to analyze the previous set of
simulations.42

At first glance, it might seem promising to examine
how much the mean positions zm of various molecular
groups ‘m’ move as the membrane strain varies. Such
an approach would be flawed, though, because the over-
all distribution of material varies as the molecular con-
formations perforce vary. This is especially easy to un-
derstand with regard to the terminal methyl groups, be-
cause a surprisingly larger fraction of the chain ends turn
back towards the headgroup region when chain packing
becomes more jumbled at larger area per lipid.52,53 In-
deed, the simulations42 readily show that the proportion
of terminal methyls in a central slab of thickness 1 nm
decreases when the membrane area A is increased.

Our way to address this issue is by taking the focus
away from individual lipids, or specific locations within
them, and instead consider the total amount of material,
no matter of what provenance, within specified regions
of space. Consider therefore material slabs of thickness
2L(M) centered on the bilayer midplane, where the argu-
ment M identifies how much material is contained within
the slab. If we now consider different areas Ai, the con-
straint of fixed M then yields the associated values of Li.
In the simulations different areas Ai were enforced by im-
posing a biaxial strain, and hence the condition required
by Eqn. (9) which gives:

−2ν12(M)

1− δ
=

uD
uA

=
∆L(M)

〈L(M)〉

/
∆A

〈A〉
(19a)

=
L1(M)− L2(M)

L1(M) + L2(M)

/
A1 −A2

A1 +A2
. (19b)

To implement Eqn. (19b), we must define how much ma-
terial is in a slab. Consider for instance the hydrocar-
bon region. Even though it is dominated by methylene
groups, there are also terminal methyls and the methine
groups at the double bonds in DOPC. We assume that
all of these additively contribute to M , but in different
proportions and with different weights. For the Poisson
ratio, which focuses on volumes, the appropriate weight
for each component is its volume. As already mentioned,
component volumes have been previously reported for
each simulated area.42 Since differences in the ratios of
the component volumes, shown in Table S1 of that paper,
have little area dependence, we used the same weights for
all areas—relative to a weight of unity for methylenes:
wCH3

= 1.969, wCH1
= 0.890, wPO4

= 1.229, w2(COO) =
2.899, wGly = 2.425, wChol = 5.683 and wwater = 1.118.

dcdzz c

FIG. 1. Geometry and coordinates in a stress-free and a lat-
erally stressed piece of flat material.

We emphasize that we only fix the relative weights; fixing
the component volumes would perforce require ν = 1

2 .
Instead of just calculating Poisson ratios for central

slabs, let us proceed now to a method that allows us-
ing simulations at many areas to obtain a Poisson ratio
as a function of z. Therefore, we can read our defining
equation in a localized version,

−uD(z)

uA
=

2ν(z)

1 + α
, (20)

where ν(z) is the depth-dependent value of the Poisson
ratio, and where the z-coordinate must be defined via
a “material perspective” analogous to the one outlined
above.

To be more specific, consider one of the simulated ar-
eas, Az, to be a reference area and focus on a thin slice
dz within the bilayer. For a different simulated area, Aζ ,
we can write the local z-strain as

uD(z) =
dζ − dz

(dζ + dz)/2
= −2

1− dζ/dz

1 + dζ/dz
, (21)

where ζ is the height-variable corresponding to the
stretched bilayer, in the manner described after
Eqn. (19b) (see also Fig. 1). Using Eqn. (20) to elim-
inate uD(z) yields

ν(M)

1 + α
=

1

uA
× 1− dζ/dz

1 + dζ/dz
(22)

for each area strain uA.
We used simulation data for five different bilayer sys-

tems featuring areas per lipid of (64, 66, 68, 70, 72) Å
2
,

choosing 68 Å
2

as the reference Az, and directly calcu-
lated the area strains for the other four areas as

uA =
Aζ −Az

(Aζ +Az)/2
. (23)

Using the same relative volume weights for the compo-
nent groups of lipids (terminal methyls, methylenes, me-
thines, etc.) as above, we determine a set of ζ(z) values
that corresponds to the same amount of material in the
central slab between ζ(z) and −ζ(z) (for each area). We
numerically differentiated ζ(z) for each area strain uA to
obtain dζ/dz, which together with Eqn. (22) yields four
estimates of ν(z)/(1 +α) from which we obtain averages
with stadard deviations for the uncertainties. It may be
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FIG. 2. Position-dependent Poisson ratio ν(z) as a function
of distance z from the bilayer midplane, obtained from an
atomistically simulated DOPC bilayer.42 The first average is
over all z and the second average is only for the chain re-
gion. Overlaid are the simulated main structural regions with
the hydrocarbon thickness DC and the Luzzati thickness DB

indicated by arrows.

noted that the elastic asymmetry α could conceivably de-
pend upon z, but we know of no way to investigate that.
Rather, given the small value of α suggested by Table I
and the errors of our local strains, we will proceed by
ignoring α altogether.

Our main result for the z-dependent Poisson ratio is
shown in Figure 2. In the region in which there is
only water, z >∼ 2.3 nm, ν(z) is statistically consistent
with a value of 1

2 . For smaller z, the respective av-
erages of ν(z) are consistent with the value obtained
from the homogeneous analysis in Section II. More pre-
cisely, averaging ν(z) over the hydrocarbon region yields
1
2−〈ν(z)〉hc = 2.1×10−2, quite close to the Sim 2b value,
in which we proposed a Poisson ratio within the hydro-
carbon region using simpler arguments. Looking beyond
averages, there appear to be two small “dips” that are
borderline statistically significant: one at z ≈ 0.4 nm,
and one at z ≈ 1.6 nm (near the location of the glycerol
groups). We explored whether these oscillations could
be removed by varying the relative weights of the com-
ponent groups. Although this affected the values of ν(z)
somewhat, we found no set of weights that eliminated
the small oscillations.

V. DISCUSSION

Our observations, derived from both experiment and
simulation, and summarized in Tab. I and Fig. 2, in-

dicate that the Poisson ratio for lipid bilayers is close
to 1

2 , with relative deviations about 3%. The predicted
relative volume changes ∆V/V are very small, even for
strains that would rupture most bilayers.48 Therefore, we
should be on safe ground when making the usual approx-
imation that volumes do not change significantly under
anisotropic mechanical stresses of biophysical interest.

The values of ν obtained by comparing experimental
and simulation results (Cases Exp 1a compared to Sim
2a and EXP 1b compared to Sim 2b), and the values
determined in our simulation (Cases Sim 2a and 2b) are
in remarkably good agreement. This is to some extent
fortuitous, though, since the experimental values for KV

and KA have neither been determined for the same lipid,
nor at the same temperature. Likewise, values of KA,
KV and s have not been obtained from the same simula-
tion. It would be valuable to do simulations on the same
system, varying both lateral pressure and bulk pressure,
to obtain the three quantities independently.

While the most immediate lesson of our work is confir-
mation that a lipid bilayer is nearly perfect soft matter,
in the sense that it is highly deformable relative to its
bulk compressibility, there may be more to be learned
from further considering the local Poisson ratio. Admit-
tedly, the variations in ν(z), as extracted from our data,
are statistically not very compelling; but they would be
highly interesting if true and might merit following up
on. Observe that the deviation in 1

2 − ν at z = 1.6 nm
in Fig. 2 is about three times as large as in regions away
from the two “dips.” This means that KA(z)/KV (z)
is about three times larger, or, relatively speaking, it is
about three times harder to stretch membranes at this
particular depth than elsewhere. This is intriguing, be-
cause the location where area strain is found to be par-
ticularly expensive happens to coincide with the location
of the pivotal plane, where area strain indeed vanishes.
Moreover, Fig. 2 also suggests that the “active region”
for deviations of ν(z) from 1

2 is not limited to the hydro-
carbon region, but appears to extend into the headgroup
region nearly as far as the Luzzati thickness DB.

Our z-dependent findings are consistent with observa-
tions by Campelo et al.,27 who have shown (on the ba-
sis of simulations using the MARTINI54,55 model) that
the lateral stretching modulus profile has indeed a max-
imum near the neutral surface (which is not identical to,
but quite close to,56 the pivotal plane). To determine
this profile, they followed an entirely different technique,
based on monitoring the tension-dependence of the lat-
eral pressure profile. This, however, requires measuring
stresses fairly precisely, which is computationally expen-
sive. In contrast, our method for accessing KA(z)/KV (z)
via the Poisson ratio relies exclusively on keeping track
of local bilayer material rearrangements, which can be
done based on configurations alone, without calculating
stresses or energies. It is hence conceptually easier and
can—potentially—be done with higher accuracy. The
idea is similar in spirit to a recent proposal to measure
the ratio of tilt and bending modulus by counting the
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fraction of lipids within slices of buckled membranes—
i. e., again by a purely geometric procedure.57

VI. CONCLUSION

In this paper we have shown that lipid bilayers behave
like typical soft condensed matter, having a Poisson ra-
tio that deviates about 3% from the common soft matter
limit of ν = 1

2 . While not unexpected, this fills a niche
in the elasticity theory of membranes, and it supports
the approximation used in many theories that area and
thickness deformation are strongly coupled, with only a
negligible correction due to volume change. We have also
seen that the elastic asymmetry α describing the differ-
ence between the lateral and perpendicular diagonal ele-
ments of the full elastic tensor deviate by less than 1%.

Beyond this homogeneous finding, any depth depen-
dence of the Poisson ratio, or of a membrane’s elastic
moduli, would surely have profound implications for a
number of local membrane processes, such as protein in-
sertion, gating of channels (especially mechanosensitive
ones), fission, and fusion. This simply mirrors some of the
interesting possibilities opened by the depth dependence
of the lateral pressure profile. However, it seems safe to
expect in the foreseeable future that the study of locally
resolved constitutive relations must rely on simulation
approaches, for lack of sufficient resolution in present ex-
perimental techniques. This paper is a step in that di-
rection.
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TOCF caption:

Experimental and simulation data are brought to bear on the Poisson ratio to answer the 
question, just how soft are Biomembranes?
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