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Ideal isotropic auxetic networks from random net-
works

Daniel R Reid,a‡ Nidhi Pashine,b‡ Alec S Bowen,a Sidney R Nagel,b Juan J de Pablo∗a

Auxetic materials are characterized by a negative Poisson’s ratio, ν . As the Poisson’s ratio ap-
proaches the lower isotropic mechanical limit of ν = −1, materials show enhanced resistance to
impact and shear, making them suitable for applications ranging from robotics to impact mitigation.
Past experimental efforts aimed at reaching the ν =−1 limit have resulted in highly anisotropic ma-
terials, which show a negative Poisson’s ratio only when subjected to deformations along specific
directions. Isotropic designs have only attained moderately auxetic behavior or have led to solu-
tions that cannot be manufactured in 3D. Here, we present a design strategy to create isotropic
structures from disordered networks, which result in Poisson’s ratios as low as ν = −0.98. The
materials conceived through this approach are successfully fabricated in the laboratory and be-
have as predicted. ν depends on network structure and bond strengths; this sheds light on the
motifs which lead to auxetic behavior. The ideas introduced here can be generalized to 3D, a
wide range of materials, and a spectrum of length scales, thereby providing a general platform
that could impact technology.

1 Introduction
Precise manipulation of the mechanical properties of solids is crit-
ical to the design of a wide spectrum of materials. Auxetic ma-
terials, which have a negative Poisson’s ratio, ν < 0, represent a
promising yet under-exploited class of systems for potential ap-
plications in areas such as impact mitigation1,2, filtration3,4, and
fabric design5,6. More generally, technologies in which materi-
als must maintain shape under deformation, including aerospace
technologies7,8, provide fertile grounds for the use of auxetic sys-
tems.

A variety of auxetic materials have been proposed in recent
years; examples range from metamaterials8–13 and foams pre-
pared by special processing techniques1,14–16 to composites17.
The vast majority of these materials are anisotropic, meaning that
the Poisson’s ratio, ν , depends on the direction of applied strain;
this restriction is not desirable for applications. Of the few mate-
rials that are isotropic, all except specially prepared foams, which
can reach ν =−0.8216, are inherently two-dimensional or excep-
tionally complex18, thereby rendering them difficult, if not im-
possible to manufacture. To be widely useful, auxetics should be
readily fabricated in three dimensions, and show isotropic Pois-
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son’s ratios approaching ν = −11. Designing such systems con-
tinues to represent a grand challenge for materials research.

Disordered networks derived from jammed packings present an
appealing means of designing auxetic materials that satisfy these
elusive criteria. Such networks can be viewed as a collection of
nodes connected by bonds. Previous work has shown that disor-
dered spring networks, similar to that shown in Fig. 1a, can be
tuned to exhibit an auxetic response through selective pruning of
bonds19–21. In two dimensions, ν is a monotonic function of the
ratio of the shear, G, to bulk, B, modulus: ν =

1−G/B
1+G/B , where ν

and G are both isotropic.

In the simplest crystalline solids, the change in G or B upon re-
moval of a single bond i (termed ∆Gi or ∆Bi respectively) is iden-
tical for every bond. As a consequence, removing any bond does
not change G/B significantly. Disordered networks differ in two
essential ways: First, the distributions of ∆Gi and ∆Bi span many
orders of magnitude. Second, these quantities for any specific
bond are, to a large extent, uncorrelated with one another19–22.
Therefore, by iteratively removing the greatest ∆Bi or smallest
∆Gi bond, one can drive ν to negative values. In particular, it
has been shown that iterative pruning of the smallest ∆Gi from
disordered spring networks leads to materials with ν < −0.8 in
both two and three dimensions20. The networks considered in
that work had only harmonic spring interactions between nodes.
Including angle bending forces in a model21,23 makes it closer to
a real physical system. When networks with such angle-bending
forces were pruned, the Poisson’s ratio reached only ν =−0.2 for
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isotropic systems21. Lower values of ν could only be obtained if
the material was allowed to become anisotropic.

The fundamental question that arises then is whether it is pos-
sible to create isotropic, perfectly auxetic networks with ν ap-
proaching −1 by pruning random networks. In what follows, we
show that by removing some of the constraints that were inher-
ent to past design strategies, we show here that one can indeed
create isotropic networks with ν ≈ −0.98. More specifically, we
use materials-optimization techniques to augment the previous
bond-removal strategies20,21 in two distinct ways: first, we mod-
ify node positions, which changes the network geometry and sec-
ond, we modify individual bond strengths.

Following this protocol, auxetic networks are created in the lab-
oratory and have the predicted response. These results provide a
framework for the production of highly-auxetic isotropic materi-
als that, importantly, can be readily implemented in three dimen-
sions.

During optimization, the network geometry changes to create
concave polygons. We show that these concave polygons corre-
late well with the value of ν . Auxetic networks also show a high
degree of mechanical heterogeneity. Compressive strains on these
networks change the area of individual polygons that constitute
the network. As ν becomes more negative, changes in the area
of polygons become highly disperse. In addition, as ν →−1, net-
works show regions of negative moduli, serving to highlight the
complex mechanics of these materials.

2 Results

2.1 Disordered networks

Disordered networks, the starting platform for our materials op-
timization process, are created from jammed packings as de-
scribed in detail in previous work19–22. Briefly, polydisperse hy-
perspheres are randomly positioned in any given simulation do-
main. Particles interact via a soft-sphere potential:

V (ri j) =
V0

2
(1−

ri j

σi j
)2

Θ

(
1−

ri j

σi j

)
. (1)

where ri j is the distance between particles i and j, σi j sets the
length scale of interaction, Θ is the Heaviside step function and
V0 sets the energy scale. The density is chosen to control the
average coordination number, Z, which has an important effect
on network properties19,21. The system is allowed to relax to its
closest energy minimum and bonds (unstretched springs) are at-
tached between all pairs of particles for which r < σa +σb, where
σaand σb are the radii of particles a and b. The soft-sphere poten-
tial is then removed to form the network, consisting of nodes and
springs, with no stresses in the system.

2.2 Network model

Having formed a network, the constituent bonds are described
by two potentials - harmonic compression along the length of the
bond, and harmonic bending about the node.

Vcomp(rab) =
kcomp

i

2r0
ab

(rab− r0
ab)

2 . (2)

Vbend(θab~sb) =
kang

i
2

(θab~sb −θ
0
ab~sb

)2 (3)

The coefficient associated with bond compression for the ith
bond is denoted kcomp

i while that for bond bending is denoted kang
i .

The length of bond i, that connects nodes a and b, is denoted rab,
and r0

ab represents the unstretched length of that bond. The bond
bending potentials couple to a director on each node, b, which is
denoted by ~sb. The director for each node is allowed to relax by
rotating, mimicking the rotation of a node in experiment. Using
a director rather than harmonic angle potential between adjacent
nodes allows for simpler handling of two elements: First, as bonds
are pruned, the director naturally becomes easier to rotate with-
out the need to reassign kang

i . Second, the issue of bond angles
crossing 180◦ can be avoided by orienting the director 180◦ from
the largest gap between bonds. These simple potentials have been
shown to capture experimental network behavior accurately both
in the linear regime and also at high compressive strains21.

2.3 Network formation and pruning

After network formation, two distinct steps are followed to cre-
ate highly-auxetic isotropic materials: (i) pruning and (ii) opti-
mization. An example network after each of these steps is de-
picted in the three panels of Fig. 1. Unpruned periodic networks,
as exemplified in Fig. 1a, are initialized with Z = 5.2 and show
ν =+0.41. An initial value of Z = 5.2 has been shown to produce
maximally auxetic pruned networks21. In two dimensions, there
are two independent shear moduli, Gp and Gs: pure and simple
shear. In previous work on networks with angle-bending forces,
bonds having the lowest value of ∆Gp

i were pruned, while ignor-
ing contributions to Gs 21. Because the pruning criteria focused
only on one modulus, a low value, ν = −0.9, could be achieved
anisotropically (auxetic with respect to strain along the principle
axes, but not with respect to strain along the diagonals). In order
to form isotropic networks, the pruning is carried out as in ref.20

by pruning bonds having the lowest contribution to the average
shear modulus (∆Gp

i +∆Gs
i ). The process is repeated until Z is

reduced to 3.5 and ν =−0.18, as shown in Fig. 2a. An example of
a pruned network is shown in Fig. 1b. Further pruning does not
significantly reduce ν .

2.4 Network optimization

Once networks are pruned, an optimization process is carried out
to reduce ν to a value close to the isotropic mechanical limit ν =

−1. A gradient descent optimization technique is used, which
optimizes the compression and angle coefficients of each bond
as well as the position of each node. At each step, t, the spring
constants are updated according to:

ki(t +1) = ki(t)−∆k
∂ν

∂ki
(4)

where ki is the compression or angle coefficient for the ith bond.
Values of ki are constrained to lie between 0.5 and 5.0 times their
initial value, to ensure that their values are not too disperse for
experimental realizations. The parameter ∆k is the step size of
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Fig. 1 Networks at three steps in the materials design process. In Panel (a), an unpruned network with Z = 5.2 and ν =+0.41. In Panel (b), the same
network after low-∆Gi bonds have been pruned, with ν = −0.18. Panel (c) shows the same network after optimization, with ν = −0.98. The color of
a bond near the node represents that bond’s relative angular strength, kang

i /kang
i,0 , while the color along the remaining length of the bond represents its

relative compressive strength, kcomp
i /kcomp

i,0 . As can be appreciated, most values of kcomp
i are increased while those of kang

i are decreased.

the optimization, and is set so that the maximum change of any
coefficient is 10% of the largest value of ki at each step in opti-
mization.

Node positions are also optimized to minimize ν:

ra(t +1) = ra(t)−∆r
∂Ea

∂ ra
(5)

Ea = ν + ∑
a,b∈nodes

ε

(
σ

rab

)6
. (6)

The second term in Eq. 6 is a repulsive term that ensures that
nodes do not cross bonds. rab is the distance between nodes a
and b. The quantities σ and ε set length and energy scales of
the repulsion, and are chosen to be 0.3 length units and 0.05
respectively. As with bond coefficients, ∆r sets that maximum step
size which is chosen such that the maximum node displacement
after every iteration is 0.1, while initial bond lengths range from
1.2 to 1.6.

2.5 Optimization results

Figure 2b shows ν during three optimization procedures: (i) bond
coefficients (Eq. 4), (ii) node positions (Eq. 5), and (iii) both bond
coefficients and node positions simultaneously. All optimization
algorithms yield isotropically auxetic materials. Optimizing only
bond parameters yields materials with ν =−0.50, and optimizing
only node positions yields ν = −0.91. Optimizing both quanti-
ties simultaneously yields ν = −0.98. An example of a network
in which both node positions and bond strengths have been opti-
mized is shown in Fig. 1c. These results demonstrate that node
positions play a dominant role in controlling ν , a feature that
bodes well for creation of experimental realizations of the net-
works, where node positions can be more precisely controlled
than bond strengths.

Fig. 2 Poisson’s ratio, ν , over the pruning and optimization process.
Panel a shows ν as the network is pruned from Z = 5.2 to Z = 3.5. Pruned
networks are then optimized as shown in Panel b. The three data sets
show ν as (i) only bond strengths are optimized, (ii) only node positions
are optimized, and (iii) both bond strengths and node positions are opti-
mized.
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Fig. 3 Isotropic auxetic networks in simulation and experiment. (a) Un-
compressed simulation of auxetic network predicted to show ν = −0.98.
(b) Simulated network uniaxially strained to εy = −3.6% with outline of
uncompressed network shown in black. (c) Uncompressed experimental
realization of identical network. (d) Compressed experimental network
at εy = −3.6% with outline of uncompressed network shown in black.
(e) Comparison of experimental (red) and simulated (blue) networks at
εy =−3.6%. The network in red is reconstructed from experimental data.
(f) Bond-level contributions to B in network under uniform compression,
as determined by computing the virial coefficient contributions of each
bond. Contributions are normalized by the largest value of Bi.

2.6 Experimental realizations

Experimental realizations of simulated networks are created by
laser-cutting the configurations from sheets of silicone rubber.
In order to measure the Poisson’s ratio, the network is com-
pressed uniaxially along one direction (y) and its response is
measured along the perpendicular direction (x). Poisson’s ratio
is then defined as, ν =−(∆x/x)/(∆y/y). The displacement of each
edge is taken to be the average displacement of the nodes along
that edge. A representative network with a simulated value of
ν ≈−0.98 is shown in Fig. 3a. Upon uniaxial compression in the
vertical dimension (y), the network behaves auxetically, as shown
in Fig. 3b.

The experimental network, the counterpart to the computer-
generated one shown in Fig. 3a is shown in Fig. 3c. In order to
create the experimental network, the thicknesses and shapes of
all the bonds must be carefully controlled since they are the ex-
perimental analogues of kcomp

i and kang
i . In experiment, the bond

compression strength, kcomp
i , is controlled by the thickness of the

bond along its length. The angular strength, kang
i , on the other

hand, is controlled by the thickness of the bond near its end close
to a node24. The exact protocol adopted here for setting thick-
nesses and taper of bonds is described in Methods and Materials.

When the experimental network is compressed along the verti-
cal dimension (y), it is auxetic as shown in Fig. 3d. In Fig. 3e, the
compressed experimental (red) and simulated (blue) networks
are superimposed. They overlap extremely well over most of the
area. (The solid black outline shows the original outline of the
uncompressed network.)

Recent work on atomic glasses has revealed that regions of neg-
ative moduli exist that influence a material’s mechanical response
and relaxation25. Regions of negative moduli also appear in our
disordered networks. These local moduli are defined as the virial
coefficients associated with individual particles or bonds. A bond
that has a negative contribution to B is under tension while the
material is under compression. Figure 3f shows the per-bond con-
tribution to B for a network with ν =−0.8. Interestingly, 34% of
bonds in optimized networks contribute negatively to the bulk
modulus, compared to 24% and 2% in pruned and unpruned net-
works, respectively.

To validate that the networks are isotropic, two realizations of
a 500 node auxetic network were created in laboratory experi-
ments. The two networks were cut from the same periodic unit
cell of the simulation, one as a square that lies flat along the x
axis, and the other lying at 45◦ to the x axis (the xy axis). In the
experiment, these two networks can be compressed along the x
and xy axes, respectively.

Deforming the first network along the x (or y) axis probes ν ,
as it relates to Gp/B, which we denote ν0. Deforming the sec-
ond network along the xy (or yx) axis probes ν as it relates to
Gs/B, which we denote ν45. It has been shown26 that for a 2D
system, the shear modulus as a function of shear angle is a si-
nusoidal variation around an average value. The period of this
sinusoidal variation is π/2. Thus two measurements of the shear
moduli separated by π/4 is a good indication of how anisotropic
the material can be. As shown in Fig. 4, while the networks pro-
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Fig. 4 Response of networks in simulations and experiments. Starting
from the same unit cell, two different 2×1 tilings were made, one rotated
by 45◦ with respect to the other as shown in the inset. Abscissa shows the
compressive strain applied along the principal axis of the two networks
to determine ν0 (red circles, dotted line) and ν45 (blue squares, dashed
line) respectively. The solid points are from experiment and the lines are
from simulations.

duced here are not perfectly isotropic, they have the same value of
Poisson’s ratio within± 0.1. Moreover, they show excellent agree-
ment between simulation and experiment: ν0 =−0.88,−0.87 and
ν45 = −0.98,−1.03, for simulation and experiment, respectively.
In simulations, the values for ν stay fairly constant as a function of
strain up to strains of −0.04. However, the same measurements in
experiments show a slight increase in ν as the strain is increased.
This slight anomaly could be due to other non-linear effects com-
ing into play in the experiments that are not taken into account
in the simulations. We present data where the networks are mea-
sured under compression, because our experimental setup makes
it hard to measure deformations under expansion. However, for
simulations, the values of ν remain fairly symmetric under com-
pression and expansion.

2.7 Physical understanding of auxetic behavior
In order to develop an understanding of the structural features
that give rise to auxetic behavior, we now examine the properties
of the individual polygons (also called minimal cycles) that com-
pose the network. As shown in the Methods Section, the Poisson’s
ratio can be related to a change in each polygon’s area due to a
uniaxial compression in the y-direction, εy:

ν =
1

(εy +1)

(
1−

∑
N
j=1 ∆A j

NεyA

)
=

1
(εy +1)

(
1− 1

N

N

∑
j=1

∆A∗j
)

(7)

Here, ∆A j is the change in the area of the jth polygon, N is the
total number of polygons, A is the average area of all the polygons
in the network and

∆A∗j =
∆A j

εyA
(8)

As seen in equation 7, large positive value of ∑
N
j=1 ∆A∗j con-

tribute to lower values of ν . Since ∑
N
j=1 ∆A∗j is the sum of con-

tributions from all polygons, we can also look at the contribution
of each polygon separately. Polygons with large positive values of
∆A∗j contribute predominantly to lowering ν .

Fig. 5a, b, and c respectively show ∆A∗j of each polygon in
an example of an unpruned, pruned, and optimized network.
In the unpruned system, the values of ∆A∗j are relatively uni-
formly distributed in space and have roughly the same magni-
tude throughout. The values of ∆A∗j fluctuate much more and
become more heterogeneously distributed as the networks are
pruned, and even more so when optimized. Additionally, it can be
observed that all polygons with very high values of ∆A∗j are con-
cave, consistent with recent predictions21. It is unclear to what
extent these observations apply to other auxetic materials, how-
ever many classes of auxetics possess concave structures similar
to those seen here5,14,21,27.

Figure 5d shows P(∆A∗j), the distributions of ∆A∗j , taken from
30 independent networks at the three stages in the formation pro-
cess. As networks become more auxetic, a decreasing number of
polygons become responsible for the auxetic behavior; most poly-
gons show relatively little change in area when compressed.

Pruning and optimization of these networks makes the distri-
bution P(∆A∗j) sharper. However, the most probable value of ∆A∗j
for unpruned, pruned, and optimized networks decreases from
0.35, to 0.03 to −0.01. This is unexpected since a more positive
value of ∆A∗j contributes to lowering the Poisson’s ratio.

To understand this, the relevant quantity is the probability
distribution weighted by ∆A∗j , as shown in Fig. 5e. Unpruned,
pruned, and optimized networks respectively have average ∆A∗j
of 0.55± 0.72, 1.04± 2.38, and 1.87± 3.75. A significant contri-
bution to the auxetic response in optimized networks is from the
long positive tail of ∆A∗j which goes as high as 25. Another fea-
ture seen in these plots is the growing number of polygons with
∆A∗j < 0. The fraction of such polygons for unpruned, pruned, and
optimized networks is 0.06, 0.16, and 0.17 respectively.

These results paint a picture in which materials become highly
heterogeneous as they become auxetic via this pruning and opti-
mization process. While very positive values of ∆A∗i contribute to
lowering ν , most polygons in our auxetic networks are relatively
unchanged when the material is compressed. For example, in the
optimized case, only 21% of the polygons have ∆A∗j > 3, but they
contribute to 77% of the area change when the network is com-
pressed. The auxetic behavior we have found is largely the result
of a relatively small number of highly compliant polygons.

As networks are pruned and optimized, we note distinct
changes in their underlying structure. Figure 6a shows the prob-
ability distributions of angles between adjacent bonds on nodes
for unpruned (Z=5.2), fully pruned (Z=3.5), and fully optimized
networks.

In the unpruned network, angles are tightly distributed around
1.2 radians, which corresponds to 2π/Z0 where Z0 = 5.2. In
pruned networks, the average angle grows to 1.8 radians, and
the distribution becomes broader. In optimized networks, small
angles become more common and a second peak appears at π.

The strength of the bonds also varies during pruning and
optimization. We measure the ratio of the spring constants
on each bond before and after pruning and optimization,
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Fig. 5 Normalized changes in minimal polygon areas, ∆A∗j of a single 500 node network at the three stages of preparation: (a) unpruned, (b) pruned,
and (c) optimized. ∆A∗j was measured after the networks were compressed by ε = −0.01%. Higher values of ∆A∗j contribute to lowering ν . As can
be observed, networks with lower values of ν are more mechanically heterogeneous. (d) Probability Distributions of minimal polygon deformations,
∆A∗j upon uniaxial compression for unpruned, pruned, and optimized networks. As networks are pruned and then optimized, the distributions becomes
increasingly sharp. (e) Probability distribution, P(∆A∗j) weighted by ∆A∗j , demonstrates that for pruned and optimized networks, the low probability
outliers of ∆A∗j are responsible for the majority of the material deformation.

Fig. 6 Probability distributions of network structural features. (a) Probability distributions of angles between adjacent bonds at nodes. (b) Probability
distribution of compressive and angular coefficients for optimized networks.
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kcomp
i /kcomp

i,0 and kang
i /kang

i,0 . Figure 6b shows probability distri-
butions P(kcomp

i /kcomp
i,0 ) and P(kang

i /kang
i,0 ) for optimized networks;

82% of the angular coefficients are weakened while a small frac-
tion are unchanged or grow stronger. The average angle is 0.73
times as strong as its original value. (Note that the large peak at
0.5 is due to the imposed minimum angle strength.) Compressive
coefficients, on the other hand, show a broad distribution with
98% growing stronger. The average kcomp

i is 2.6 times stronger
than its original value.

3 Methods

3.1 Experimental methods

Experimental systems were laser cut from rubber sheets. These
are silicone rubber sheets that are 1.5mm thick and have a Shore
hardness value of 70A. Each bond of the network was made to
have a specific thickness, depending on its value of kang

i and kcomp
i .

Each bond has an optimized kcomp
i and two kang

i ’s, one for each end
of the bond. The simulations have upper and lower bounds on the
values that kcomp

i and kang
i can take. These bounds are based on

the relative values of kcomp
i and kang

i that can be easily realized
in experiments. In the experimental systems, the width of each
bond is kept between 1mm and 2mm near the nodes and between
2mm and 4mm at the center of the bonds.

To calibrate simulations, an experimental network was created
with bond widths of 1mm near the nodes and 2mm at the cen-
ter of the bonds, and ν was measured for small deformations. In
simulation, the value of kang

i for all bonds was varied (using the
same kang

i for all bonds) until the best fit with experiment was
achieved. This occurred at kang = 0.01, kcomp = 1. In optimized
networks where each bond had a different kang

i and kcomp
i , the ex-

perimental bond widths were scaled such that width of the center

and the ends of bond i goes as
√

kcomp
i and

√
kang

i , respectively.
In order to prevent bonds from running into each other, as we go
from the middle of the bond towards a node, the central part of
the bond tapers off and connects smoothly to the thin part near
the node. Average bond lengths in the network are 15mm and the
system size is around 300mm×600mm for a 2×1 tiling of periodic
networks.

3.2 Poisson’s ratio as a function of minimal polygon area

Here we relate the Poisson’s ratio of a network to the area of the
individual polygons. For a rectangular network, the total change
in area of the entire system is a sum over the contributions from
all of the polygons:

Σ∆A j = x f y f − x0y0 (9)

where (x0,y0) and (x f ,y f ) are respectively the initial and final
widths and lengths of the entire network. For uniaxial compres-
sion along y axis, the Poisson’s ratio is given by:

ν =− εx

εy
=
( 1

εy

)(
1−

x f

x0

)
(10)

where εy =
y f−y0

y0
. Substituting x f /x0 in terms of Σ∆A j gives:

ν =
( 1

εy

)(
1−

Σ∆A j

x0y f
− y0

y f

)
=

1
(εy +1)

(
1−

∑
N
j=1 ∆A j

NεyA

)
. (11)

This is the same as Eq. 7.

4 Conclusions
The work presented here lays out a framework for the design
of tunable, highly auxetic isotropic materials with unique me-
chanical properties. The structures will be auxetic if fabricated
at any size, from molecular to architectural-scales. While fabri-
cation for large-scale devices is relatively straightforward, fabri-
cation at smaller scales presents a greater challenge. For small
scales, one option could be to use purposefully assembled DNA-
functionalized nanoparticles. Such assemblies have been shown
to have a host of unusual mechanical properties28,29 and can be
made amorphous, a requirement for these materials. Glassy ma-
terials can also show a host of unusual and tunable properties
depending on material processing and formation conditions30–32.
With sufficiently high resolution, 3D printing may also provide a
feasible path towards material fabrication33. A similar design and
optimization approach could be used to develop 3D auxetics from
random networks. However, there are extra forces that come into
play in 3D systems that are not present in 2D, therefore our model
will need slight modifications before it could be applied in 3D.
Now that several possible fabrication routes have become avail-
able, the manufacture of micro-scale auxetic networks prepared
by pruning should prove a fruitful avenue for materials develop-
ment.
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We design and create isotropically auxetic networks with Poisson’s ratio close to -1 in 
experiments. To achieve this, we selectively prune bonds from disordered networks, and then 
optimize the properties of individual bonds and nodes.
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