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Linear and nonlinear mechanical responses can be quite different in models for
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The fluidity of biological tissues — whether cells can change neighbors and rearrange — is important
for their function. In traditional materials, researchers have used linear response functions, such
as the shear modulus, to accurately predict whether a material will behave as a fluid. Similarly,
in disordered 2D vertex models for confluent biological tissues, the shear modulus becomes zero
precisely when the cells can change neighbors and the tissue fluidizes, at a critical value of control
parameter s; = 3.81. However, the ordered ground states of 2D vertex models become linearly
unstable at a lower value of control parameter (3.72) [1, 2], suggesting that there may be a decoupling
between linear and nonlinear response. We demonstrate that the linear response does not correctly
predict the nonlinear behavior in these systems: when the control parameter is between 3.72 and
3.81, cells cannot freely change neighbors even though the shear modulus is zero. These results
highlight that the linear response of vertex models should not be expected to generically predict
their rheology. We develop a simple geometric ansatz that correctly predicts the nonlinear response,
which may serve as a framework for making nonlinear predictions in other vertex-like models.

INTRODUCTION

The rheological properties of a biological tissue — how
a tissue responds to stresses and strains — and the regu-
lation of such properties are crucial for many biological
processes. For example, mature skin tissue typically be-
haves like an elastic material, where cells maintain their
neighbors and the tissue returns to its original shape after
being stretched, just like a solid. However, in processes
like wound healing, individual cells can change neighbors
and migrate over long distances[3, 4] just as in a fluid.
Tissues that transition between solid and fluid states have
recently been shown to play an important role in devel-
opment [5] and disease [6]. Thus, we would like to un-
derstand how the emergent material properties, such as
the rheology, of the tissue are determined and regulated.

In traditional materials, the rheology of a material is
usually characterized by a linear response variable, such
as the shear modulus that describes how the mechani-
cal stress in the material changes in response to a very
small strain. More recently, it has been recognized that
some biological materials behave very differently when
they experience large strains instead of small strains. For
example, extracellular matrix stiffens by several orders of
magnitude when strained past a critical threshold [7]. In
addition, it has recently been shown that models for het-
erogeneous confluent epithelial layers, with two cell types
and an interfacial tension between them, has non-analytic
cusps in the potential energy landscape so that the lin-
ear and nonlinear response are completely decoupled [8].
Both of these observations suggest that we should not
necessary expect the linear response of a biological tissue
to predict its nonlinear response.

Biologists and biomedical engineers are often inter-
ested in processes that involve very large strains, such

as convergent extension to elongate the body of a devel-
oping embryo, or cells moving over tens or hundreds of
cell diameters to close a wound. Therefore, it is impor-
tant to understand whether the standard tools of linear
response are valid in these systems, and if not, develop
new approaches to predict the nonlinear response.

To explore this question further, we focus on homo-
geneous confluent epithelial monolayers composed of a
single cell type. Vertex models represent these tissues
as a 2D network of edges and vertices, and associate a
mechanical energy with the shape of each individual cell
in a tessellation. Such simple models have been surpris-
ingly successful at describing the statistics and behavior
of many biological tissues [1, 9-12]. The mechanical en-
ergy associated with cell shape is based on experimen-
tal observations in cell doublets and triplets: cells with
more cadherin-based adhesion tend to share longer joint
interfaces, while those with higher cortical tension tend
to have smaller shared interfaces [13, 14]. In all of this
work, an important control parameter of the model is the
dimensionless cell shape index sg, which is the ratio be-
tween the cell’s cross-sectional perimeter and the square
root of the cell’s cross-sectional area.

The next step is to understand how cell shapes in-
fluence the large-scale rheological properties. Within the
framework of vertex models, Farhadifar et al. [1] and Sta-
ple et al. [2] performed a beautiful and comprehensive in-
vestigation of the linear response of ordered tessellations,
which are the ground states of the vertex model. They
demonstrated that the shear modulus of ordered ground
states of the 2D vertex model disappear for all shapes
with sg > 3.722 = sj.., the perimeter to area ratio of a
regular hexagon. In other words, the energy landscape is
flat with respect to small perturbations for sq > 3.722.
However, these works did not investigate the nonlinear
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response — how cells rearrange and change neighbors at
larger strains.

In a confluent tissue with no cellular proliferation or
death, the only way for a cell to change neighbors and
diffuse over large distances is to make a series of topo-
logical rearrangements, or T1 transitions. During this
process, an edge between two cell shrinks to zero length
and then a new edge grows between two new cells, as
illustrated in Fig. 1(a-c). Many such exchanges lead to
cell diffusion. Therefore, an important parameter that
controls the nonlinear response of the tissue is the height
of the mechanical energy barrier associated with a T1
transition.

Work by Bi et al. [15] on homogeneous disordered tes-
sellations of cells demonstrated that the T1 energy barri-
ers’ height depends sensitively on the target shape index
(so) of cells. For the 2D vertex model, this energy bar-
rier vanishes if for cells with shape parameter sy > 3.81.
In addition, a careful numerical analysis showed that the
shear modulus also vanishes at the same critical value of
3.81, which is different from the critical value of 3.722
identified in the ordered systems.

This presents an interesting open question, which is —
what is the nature of the nonlinear mechanical response
of ordered tissues? Omne possibility is that the energy
barriers also vanish for sg > 3.722, similar to the scenario
in jammed particulate matter, where there is an ordered
and disordered branch to the equation of state and linear
response is highly predictive of nonlinear response [16].
An alternate possibility is that the energy barriers for
ordered tessellations vanish at some other value of sg,
indicating a decoupling between the linear and nonlinear
response.

Understanding this point is important for several rea-
sons. First, there are several examples where forma-
tion and maintenance of ordered 2D tessellations are
important in biology, including the fruit fly wing [17],
the sensory hairs in cochlea [18], and lens fibre cells in
the vertebrate eye [19, 20]. In addition, scientists are
investigating extensions to vertex models such as non-
confluent systems [21, 22], and vertex models with addi-
tional signaling-based dynamics [23, 24]. Therefore, it is
important to understand whether we should generically
expect a strong correlation between linear and nonlin-
ear response in these extended models, or if the correla-
tion observed the simplest disordered homogeneous ver-
tex model may be a special feature unique to that model.

In this work we quantify the energy barriers to T1
transitions in an ordered tissue. We find that although
tissues with syo > 3.722 are linearly unstable, T1 transi-
tions cost finite energy up to si; = 3.81, due to cusps in
the potential energy landscape along those trajectories
in configuration space. This establishes that the linear
and nonlinear response of ordered tissues are decoupled —
cells cannot change neighbors even though the linear re-
sponse indicates the tissue is floppy. To go beyond linear
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response, we develop a simple, mean-field geometric con-
struction that describes this process and correctly quan-
titatively predicts features of nonlinear stabilization, and
discuss implications for extensions of vertex models.

MODEL AND METHODS

To find the transition point based on T1 energy barri-
ers, we simulate a 2D confluent monolayer using a Vertex
model [1, 2, 9, 10, 15, 25-28].

Vertex models describe the energy of a 2D tissue con-
taining N cells as

N
E; =Y Kaj(Aj — Ay))* + Kpj(P; — Py)*. (1)

J

Here the first term represents cell volume incompressibil-
ity, and A; and Ag; are the actual and preferred areas of
cell j. The second term models actomyosin contractility
and adhesion between the cells, where P; and Fy; are the
actual and preferred perimeter of cell j. K 4; and Kp; are
the area and perimeter moduli, respectively. We consider
the homogeneous case where all single-cell properties are
equal (KAj = KA,Kpj = KP7AOj = Ao, POj = Po) The
energy functional in Eq. 1 can be non-dimensionalized
in length /Ay resulting an effective target shape index
so = Py/\/Ay which has been shown to control rigidity
or glass-like transitions in such systems [15].
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FIG. 1. Energetics of an ordered T1 transition:(a) A T1
edge, highlighted in red, at its rest length, (b) the T1 edge
shrinks to zero length (c) the T1 edge rotates by 90° and is
then expanded. (d) A typical energy profile across the T1
transition plotted with respect to the T1 edge length | during
of T1 junction remodelling, for so 3.71, 3.72, 3.73 and 3.75
(light red to dark red). The T1 energy barrier for the lowest
S0 is the peak height (highlighted in blue vertical line).
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Cell neighbor exchanges happen through T1 transi-
tions. A typical T1 process is shown in Fig. 1(a-c). As
the T1 edge [ shrinks from its rest length, ly, (Fig. 1(a)),
it eventually achieves a transition state at [ = 0 with a
4-fold vertex where all 4 cells are neighbors (Fig. 1 (b)).
This is followed by a 90° reorientation of the T1 edge
and expansion along the new direction (Fig. 1 (c)). We
find that the mechanical energy of the tissue is maxi-
mized at the transition state with the 4-fold coordinated
vertex. As in previous work, we describe the difference
between the initial energy and maximum energy as an
energy barrier that must be overcome for cells to change
neighbors. In analogy with activation energies required
for diffusion in Arrhenius processes, we can then think of
the T1 edge-length (1) as a reaction coordinate [15, 29].

We focus on the first part of the T1 process for the
rest of this paper, as this is sufficient to compute the
energy barrier (shown in blue vertical line in Fig. 1). We
choose the sign convention as positive for this part of the
transition, which is different from the convention used for
[ in work that studies both sides of the transition [15].

The difference between the peak energy F; and the ini-
tial energy E; gives the T1 energy barrier (Fig. 1 vertical
line in blue),

AE(l) = Ef — E; = E(I) — E(0). (2)

For the bulk simulations, we use the open source cell-
GPU code [30]. A FIRE minimization protocol [31] is
used for bulk energy minimization. The initial FIRE
step, dt, is set to 0.01. The T1 protocol is such that a T1
transition forms whenever the distance between two ver-
tices is less than a critical value, [.. We chose [, = 0.006
for the ordered tissue simulations.

As discussed in the ESI, we apply the same procedure
to compute the transition point in disordered systems.
Unlike ordered systems, which have a unique hexagonal
initialization, in a disordered systems we average the en-
ergy barrier profile over different initializations. See the
ESI for more details.

Recent work [32] has shown that the transition point
in vertex models is unaffected by the choice of K 4. Here,
we choose K4 = 100, which enforces that cells remain
close to their preferred area Ag = 1.

Many-cell system

To test the transition point of ordered tissues sub-
ject to a specific non-linear perturbation, we construct
a rectangular periodic box that can accommodate an in-
teger number of hexagons, with a length-to-width ratio

3m
of NI

where m is the number of hexagons along the vertical
axis and n is the number of hexagons along the horizontal
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axis. We investigate small systems with N = 90 such that
n =9 and m = 10, simulated using cellGPU code.
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FIG. 2. Many-cell energy profile: (a-c) A snapshot from
an ordered tessellation of 90 cells with so = 3.76. A randomly
chosen edge (highlighted in red), shrinks to zero length (left to
right as directed by the arrows). (d) In this process, the total
energy of the tissue, F, is plotted against the shrinking T1
edgelength [ for increasing values of so (3.72 to 3.81 in steps
of 0.01 and 3.810 to 3.825 in steps of 0.001) varying from red
to green. The energy cut-off is shown by yellow dash-dot line.
(e) The critical edgelength [* associated to the cut-off shown
in (d) is plotted for each so value in yellow circles. The dashed
line indicates critical s; found for disordered tissues.

A random edge of the ordered confluent tissue is cho-
sen to undergo a T1 transition, and the energy profile is
analyzed across different sy values. A typical T1 edge,
with its neighbourhood, is shown in Fig. 2 (a) along with
energy profiles for different sq values (Fig. 2(d)). For val-
ues of sg < 3.722, any perturbations of edge lengths costs
finite energy, as illustrated by the red curve in Fig. 2(d).
For values of sg > 3.722, we find that small perturbations
of [ require zero energy as previously predicted [1, 2] us-
ing linear response. This is indicated by values of E(I)
near zero on the left-hand side of Fig. 2(d). A similar
transition can be seen by studying the normal modes of
the system. We find that the number of nontrivial normal
modes with zero frequency (i.e. “zero modes”, Fig. SI
2) is zero for s9 < 3.722 and immediately rises to 3N,
where N is the number of cells in the tesselation, for sq
slightly above 3.722.

But as the T1 process proceeds further, the energy be-
comes finite at a critical lengthscale [*. In practice, we
identify [* as the point at which the energy first rises
above a cutoff value of 10~7 shown by the dashed yellow
line in Fig. 2(d). We find that [* diminishes with in-
creasing sg, and drops to zero at sf = 3.81, which is the
same value identified in disordered systems, as shown in
Fig. 2(e). We note that the lowest value of [* accessible
in our simulations is limited by the T1 threshold length,
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l. = 0.006.

We focus on T1 processes for the transition path
through configuration space because they are simple to
parameterize and correctly capture the rigidity transi-
tion in disordered systems [15]. However, there are other
possible transition paths, including one of the 3N non-
trivial zero modes identified by a normal mode analysis.
However, a visual inspection of these modes shows no ob-
vious spatial structure (Fig. SI 2(a)) and because there
are so many modes with the same degenerate eigenvalue
(where any linear combination of them would also be a
zero mode), an exhaustive search of these possibilities
is beyond the scope of this work. Nevertheless, we find
that as we execute a T1 trajectory, the number of zero
modes starts to decrease precisely at the cusp in the en-
ergy landscape Fig. SI 2(c), suggesting that some zero
modes start to cost finite energy at that point in config-
uration space.

Our data is consistent with the hypothesis that the
energy landscape is locally flat in many directions for
So > 3.772, but that any finite displacement in configu-
ration space will cost finite energy if the displacement is
large enough. More work to study many paths in config-
uration space would be required to confirm this hypoth-
esis.

Single cell prediction

In both many-cell and 4-cell systems (Fig. SI 1) ,
the ordered polygons that undergo a T1 transition start
out as perfect hexagons but become pentagons as the
edgelength () shrinks to zero (Fig. 2 (c) and Fig. SI'1
(c)). For disordered systems, the formation of a pentagon
was proposed as a mean-field lower bound on the T1
transition point previously by Bi et al [15].

Here we construct a simple geometric ansatz to pre-
dict the T1 edgelength (I*) at which the energy barrier
becomes non-zero. We restrict ourselves to study a poly-
gon whose vertices lie on a circle of radius R (Fig. 3
(a)). This constraint is a simple way to enforce that
the polygon remains roughly isotropic, consistent with
our observations from simulations. To model the ordered
case, we enforce that the polygon has six sides, one of
which is constrained to shrink and subtends an angle 6
at the center. We assume the remaining sides adjust
themselves to be of equal length, which minimizes the
remaining perimeter subject to having one constrained
edge, as illustrated in Fig. 3.

In the ESI we show that the minimum energy geometry
in numerical simulations is slightly more complex than
our simple ansatz, because the non-T1 sides of the poly-
gon have two different edgelengths instead of one. On
the other hand, if we compare the equal-edge assump-
tion to a generalized ansatz (Fig. SI 3), the simplest
one-edgelength assumption generates a lower bound on

4
4/2
. /|
‘ R(60) sin(a/2)
\ / R(0) sin(8/2)

FIG. 3. A geometric mechanism for formation of a
uniform pentagon: The 6-sided polygon has five sides equal
to each other and one that is allowed to be different subjected
to the constraints that the polygon lies on a circle and its area
remains unity. The angles correspond to two different types
of sides (a and 0) are highlighted in pink and green.

the transition length [* (See Fig
predictive, as shown below.

We can then study the perimeter change of this poly-
gon as it transforms from a uniform hexagon to a uniform
pentagon. We constrain the area of the polygon to unity
to account for incompressibility of cells.

The area of the polygon can be written in terms of
the area of six triangles that make up the polygon. Five
of them are congruent to each other, since they subtend
the same angle a at the center and the sides are of length
R (triangle A, labelled in violet in Fig. 3). The left-
over triangle subtends angle 6 at the center and will be
referred to as Ay.

The area constraint ensures 5Ar(Ay,) + Ar(Ay) = 1.
Substituting the area in terms of angles and radius R,
the radius of the circle is determined as a function of 6:

SI 4) that is highly

2
RO) = \/ sin(0) + 5sin(«))

where 0 + 5o = 27.
Adding all the edgelengths, the total perimeter P, of
the polygon is P(0) = 2R(0){sin(0/2) + 5sin(a/2)} =

2
\/sin(@)—|—5sin(a)2{sm(g/2) + 5sin(a/2)}.

For this T1 process, the edge facing 6 mimics the T1
edge that shrinks to zero as shown in Fig. 4(a). This T1
edge-length can be easily determined from 6 as I(0) =
2R(0)sin(0/2).

For a cell of unit area the total vertex energy depends
only on the deviation of the perimeter from its target
value. The target perimeter equals the actual perimeter
when the angle 6* associated with a T1 edgelength [*
satisfies the following analytic equation:

P0) =Py = \/Sm(e*) +25 Sin(a*)Q{sin(HQ*)Jr5 sm(%*)}.

3)
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FIG. 4. Single-cell energy profile: (a-c) For a single
cell inscribed on a circle, the T1 edge (highlighted in red)
shrinks to zero length (right to left as directed by the arrows).
(d) In this process, the total energy E is plotted against the
shrinking T1 edgelength [, for increasing values of so (3.72
to 3.81 in steps of 0.01) varying from red to green. (e) The
critical edgelength [* associated to the drop shown in (d) is
plotted for each so value in blue dot-dashed line. The blue
dashed line indicates critical s§ found for disordered tissues.

3.78 s
S0

3.84

FIG. 5. Non-linear stabilization seen in ordered bulk
systems can be produced in 4-cell system and single
cell model: Critical edgelength [* plotted against s is super-
imposed for both- many-cell (green circles) and 4-cell systems
(magenta circles). In addition, the analytical prediction from
the geometric mechanism explained in the text is shown in
blue dashed line.

For each value of Py, this equation then identifies the
[* at which the energy barrier goes to zero, as shown
in Fig. 4(d). These results are quantitatively consistent
with the results for [* for the 4-cell and bulk simulations,
demonstrating that a very simple geometric ansatz pre-
dicts the onset of nonlinear stabilization in the ordered
vertex model. All the models exhibit very similar behav-
ior, as shown in Fig. 5, with {* dropping to zero when
I* ~ 3.81.

DISCUSSION AND CONCLUSION

We have demonstrated that the ordered ground states
of the frequently-used 2D vertex model for biological tis-
sues are stable with respect to localized cell rearrange-
ments when the target shape parameter sg is between
3.72 and 3.81. This is surprising, as previous analytic
calculations for the linear response highlights that the
ordered states become linearly unstable for all sy values
greater than 3.72 [1, 2].

We demonstrate this nonlinear stabilization in a full
simulation of the vertex model, and also in two toy mod-
els, one of which is analytically tractable. In all three
models, we find that for values of sy between 3.72 and
3.81, small perturbations to the structure cost zero en-
ergy, in line with previous calculations of linear response.
However, there is a finite scale of perturbation at which
the energy suddenly becomes non-zero. In ordered sys-
tems, we characterize this behavior in terms of the edge-
length [* at which the energy first becomes non-zero, and
find that [* decreases monotonically from the ordered
edge length Iy at sg = 3.72 to zero at sg ~ 3.81. In
the simplest analytically tractable and purely geometric
model, we see that [* vanishes precisely at sy ~ 3.81 be-
cause that is the point at which an isotropic pentagon
costs zero energy.

As discussed in the Supplementary materials, a very
similar analysis can be performed on disordered configu-
rations of the 2D vertex model. While the data is nois-
ier due to the disorder in edge length, it is clear that
in disordered tissues the smallest values of [* remains
on the order of the average edge length in the tissue
for all sy < 3.81, and drops precipitously to zero for
so > 3.81. This Heavyside-function-like behavior is con-
sistent with the hypothesis that disordered tissues also
destabilize when it is possible for an isotropic pentagon
to form at zero cost, as postulated previously [15]. An
interesting direction for future work would be to care-
fully characterize how the statistics of short edge-lengths
and [*s vary as a function of system size and model pa-
rameters in disordered systems, extending previous work
demonstrating the importance of edge length statistics
to rigidity in Vertex models [33].

Overall, this result is interesting because it suggests
that unlike particulate glassy materials, where there are
two branches to the equation of state associated with
ordered and disordered states [16], vertex models are ul-
timately destabilized at the same point (or at least very
nearly the same point) on the state diagram, at so ~ 3.81,
regardless of the degree of disorder.

This deep connection between ordered and disordered
states is only possible because the potential energy land-
scape of vertex models is non-analytic, or “cuspy”. Un-
like most particulate matter, in vertex models there is
a decoupling between the linear response and the non-
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linear response. In this specific case, the energy land-
scape for the ordered tissue is perfectly flat in a ball of
radius lp — I* from the ordered ground state, and then
rises sharply from zero starting at {*. This cuspy land-
scape has already been identified and implicated in other
processes in 2D vertex models, including unexpectedly
sharp interfaces between two tissue types [8]. In that
work, it was demonstrated that the cuspy landscape is in-
dependent of the exact form of the model (i.e. Vertex vs.
Voronoi). It was also argued that we should expect non-
analytic behavior in any model with topological interac-
tions between cells, where neighbors are defined as those
that share an edge, instead of metric interactions, where
neighbors are defined by how far apart they are. Addi-
tional work by some of us confirms that many types of
models with topological connections, including undercon-
strained fiber networks, exhibit universal behavior gov-
erned by an underlying geometric incompatibility [34].
Therefore, it is interesting to conjecture that any model
with topological interactions, such as those for bird flocks
and certain biomimetic- and meta- materials, might have
similar features with deep connections between ordered
and disordered states.

Another hint at this deep connection comes from beau-
tiful work by Moshe et al [35], who develop an analytic
model based on intrinsic metrics for periodic vertex lat-
tices. In that work, they focus on an elastic model with
no rearrangements where deformations from target met-
rics are quadratically penalized, and they predict from
first principles that for sg > 3.72, the energy landscape
in the space of metrics is also perfectly flat. It would be
interesting to see if extensions of that framework might
be able to account for nonlinearities, and perhaps find
some non-analyticity in the space of metrics, in order to
explain non-linear stabilization in real space. If possible,
our work suggests that may be a productive path towards
a first-principles prediction of rigidity in a disordered sys-
tem, which would be very exciting.

A related manuscript that also highlights the impor-
tance of flat energy landscapes in ordered and disordered
cellular systems is the work by Noll et al [36] on isogonal
modes in force-balanced tension networks. In that work,
a different version of the vertex model, without a P? term
in the energy functional to act as a restoring force, is cou-
pled with myosin dynamics. The form of feedback chosen
to model the myosin dynamics, which has recently been
confirmed in experiments on fruit flies [23], introduces a
different type of restoring force that permits mechanically
stable cellular networks. Although their myosin-feedback
model and our standard ordered vertex model both pos-
sess zero-energy linear modes, their zero modes must be
angle-preserving while perturbations associated with our
T1 transitions explicitly change angles. Given this, it
would be interesting to study how the functional form of
restoring forces in the energy functional for vertex mod-
els impacts the linear and nonlinear stability of cellular
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networks.

Finally, this work focuses on vertex models in the ab-
sence of fluctuations, i.e. at zero temperature. An inter-
esting future direction would be to study how the effec-
tive linear response and nonlinear stability changes as
a function of temperature or self-propulsion. For ex-
ample, in ordered systems with 3.72 < so < 3.81 one
might expect that at low temperatures, fluctuations typ-
ically remain small and only probe the linear regime with
no shear modulus. At higher temperatures fluctuations
would regularly probe the nonlinear response, so the ef-
fective linear response has a finite shear modulus. More-
over, active or driven fluctuations with a persistence time
would sample these non-linear regions in different ways,
perhaps leading to very rich behavior.

Given the existence and importance of ordered cellu-
lar networks in epithelial layers in developmental sys-
tems ranging from fruit flies to vertebrates, our results
might impact how we think about their form and func-
tion. Specifically, we suggest that the mechanical prop-
erties of such tissues are quite exotic, with interesting
nonlinearities and possible fluctuation-induced solidifica-
tion. We speculate that perhaps some biological tissues
tune themselves to take advantage of these interesting
properties and functions.
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