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ABSTRACT

Microbial granular biofilms are spherical, multi-layered aggregates composed of communities of bacterial 

cells encased in a complex matrix of hydrated extracellular polymeric substances (EPS). While granular 

aggregates are increasingly used for applications in industrial and municipal wastewater treatment, their 

underlying mechanical properties are poorly understood. The challenges of viscoelastic characterization for 

these structures are due to their spherical geometry, spatially heterogeneous properties, and their delicate 

nature. In this study, we report a model-based approach for nondestructive characterization of viscoelastic 

properties (shear modulus and shear viscosity) of alginate spheres with different concentrations, which was 

motivated by our measurements in granular biofilms. The characterization technique relies on experimental 

measurements of circumferential elastic wave speeds as a function of frequency in the samples using the 

Optical Coherence Elastography (OCE) technique. A theoretical model was developed to estimate the 

viscoelastic properties of the samples from OCE data through inverse analysis. This work represents the 

first attempt to explore elastic waves for mechanical characterization of granular biofilms. The combination 

of the OCE technique and the theoretical model presented in this paper provides a framework that can 

facilitate quantitative viscoelastic characterization of samples with curved geometries and the study of the 

relationships between morphology and mechanical properties in granular biofilms.

Keywords: optical coherence elastography, nondestructive mechanical characterization, viscoelastic 

properties, circumferential elastic waves, granular biofilms
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1. Introduction

Granular biofilms are microbial aggregates composed of multispecies bacterial cells and 

extracellular polymeric substances (EPS) produced by microorganisms. The size of granular biofilms is 

typically at the millimeter scale1-4. In recent years, granular biofilms have generated great interest for 

wastewater treatment1, 2; compared to their predecessor—flocculent activated sludge—that is widely used 

in wastewater treatment systems, granular biofilms provide several advantages including higher biomass 

density, stronger cohesiveness, shorter settling time, higher energy efficiency, and less volume required, 

which leads to a better operational efficiency of wastewater treatment1-4. However, despite these beneficial 

attributes, the number of full-scale municipal or industrial systems utilizing granular biofilms is limited4, 5. 

One reason for their limited use stems from the limited knowledge about the granulation mechanisms that 

are crucial to controlling the granular biofilms’ growth in wastewater treatment systems in a predictable 

and reproducible fashion2, 4, 6. 

EPS plays an important role in forming the network structure and providing bonding to increase 

the cohesiveness of microbial aggregates, which ultimately makes the topology of granular biofilms 

different from flocculent sludge1-3, 5, 7-10. The material properties of biofilms are thought to be controlled in 

part by EPS11. EPS contains polymers produced by bacteria such as proteins, polysaccharides, and nucleic 

acids2. Over the last few decades, researchers have investigated the physical properties of EPS5, 12-16, and 

these studies suggested that granular biofilms are analogous to hydrogels, particularly in regard to their EPS 

composition, since they share similar viscoelastic properties. For example, the behavior of EPS is solid-like 

under small strains as the storage (shear) modulus G’ is always larger than the loss modulus G”, while 

under large strains, G” may exceed G’ so that the EPS is prone to be liquid-like5, 12-14. Rheometry tests also 

showed that granular biofilms are shear-thinning fluids with yield pseudoplasticity3, 5, 11-14. It is worth 

highlighting that for hydrogels, the gelation phenomenon results from the cross-linking of polymer chains, 

and the cross-link density is related to the storage modulus G’5, 17. These discoveries suggest that the 

viscoelastic behavior of EPS is critical to the granulation of granular biofilms and studying their viscoelastic 
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properties may further elucidate the key factors required to produce mechanically stable, predictable, and 

controllable biological aggregates. 

Rheometry is a common technique for viscoelastic characterization; however, in the context of 

granular biofilms, it presents several limitations such as the inability to probe spatially heterogeneous 

mechanical properties and the inability to conduct measurements with biofilms in their native aqueous 

solutions. Optical Coherence Elastography (OCE) is a powerful alternative that overcomes these limitations 

of rheometry18-20. OCE has been used for viscoelastic characterization of soft biological materials, 

particularly in biomedical engineering to evaluate tissue mechanical properties21-26. OCE allows for 3D 

nondestructive imaging of mechanical properties with (1) high spatial resolution at micron-scale, (2) high 

displacement sensitivity at the nanoscale which minimizes the required magnitude of the external load, 

preventing large disturbances in the sample, and (3) high sampling rate at 101~102 kHz that enables real-

time monitoring of the sample deformation. Moreover, the OCE image is co-registered with the Optical 

Coherence Tomography (OCT) image that shows sample’s important internal structural features, such as 

pores in the matrix, which provides a useful tool to study the relationship between the sample morphology 

and mechanical properties27. 

Recently, a dynamic OCE approach that relies on measurements of elastic wave propagation was 

shown to be suitable for characterizing the shear modulus and complex shear viscosity of a mixed-culture 

biofilm with plate-like geometry28. While the plate-like biofilm was explored to demonstrate the feasibility 

of mechanical characterization in environmental biofilms using OCE, broadening application of this 

technique to granular biofilms is challenging due to their curved geometries and depth-dependent properties 

that significantly complicate the elastic wave propagation.

In this paper, we report the OCE measurements of elastic wave propagation in a granular biofilm 

and a theoretical model that is capable of predicting the dispersion (frequency-dependent wave speed) of 

circumferential elastic waves in a cylindrical viscoelastic solid. The model can approximate the propagation 

of elastic waves along a circular contour of fixed radius in a spherical sample, and is used for inverse 

analysis to estimate the viscoelastic properties from OCE measurements of elastic wave propagation. The 
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inverse analysis approach was validated on alginate spheres with two different concentrations, from which 

their shear moduli and complex shear viscosities were obtained. We chose alginate as a model system for 

the OCE measurements because it is commonly present in granular biofilm EPS7, 11, 15. The combination of 

the modeling and experimentation approaches reported in this paper presents a promising framework 

towards nondestructive characterization of viscoelastic properties in practical environmental biofilms with 

curved geometries. 

2. Materials and methods

2.1 Sample preparation

Granular biofilms obtained from a full-scale AquaNereda Aerobic Granular Sludge (AGS) Reactor (Aqua-

Aerobic Systems, Inc., Rockford, IL, USA) and soft alginate gel samples were characterized with the OCE 

technique. Spherical alginate (Acros Organics, NJ, USA) samples with 0.8% and 1.2% weight-to-volume 

(w/v) concentrations were prepared. Mixtures of the two different concentrations were obtained by mixing 

0.8 and 1.2 grams of alginate powder, respectively, with a 100 mL solution made from 70 mL of 

nanopurified water and 30 mL of 5.0% w/v skim milk (Becton, Dickinson and Company 232100, MD, 

USA). The skim milk was used to increase the optical scattering from the transparent alginate spheres and 

enhance the OCT image contrast. The alginate solution was stirred in a capped 250 mL Pyrex bottle using 

a magnetic stir bar with a stir plate (operated at ~400 rpm and heated at 100oC) for one hour. Subsequently, 

the mixture was removed from the stir plate and held at ambient temperature for ~30 minutes to remove 

entrained air bubbles. Alginate spheres were formed by dripping the mixture into a cross-linking agent 

made from 25% w/v potassium nitrate and 2% w/v calcium chloride (adapted from Chang and Tseng29). 

The mixture was ejected slowly from a 5 mL pipet tip held horizontally and 10 cm above the surface of the 

cross-linking agent. Slow ejection speeds were used to ensure that the weight of the droplet was balanced 

by surface tension, and the droplet hung near the edge of the pipet tip. During the ejection, the size of the 

droplet increased until a critical volume was reached, and, as the weight exceeded the surface tension, the 

droplet detached from the pipet tip and fell into the cross-linking agent. The droplet’s spherical shape was 
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formed by surface tension during its free-fall into the cross-linking agent29. The spherical droplets solidified 

in the agent after curing for approximately 30 minutes. OCE experiments were conducted on the cured 

alginate spheres after 72 hours to ensure that the agent fully diffused through each of them. The process for 

preparing the alginate spheres is highly repeatable, and the diameter of the spheres falls within the range of 

3-5 mm.

2.2 Experimental setup

A schematic of the experimental configuration is shown in Fig. 1. The setup was used to generate and 

monitor elastic wave propagation in the samples. The waves were excited by a paddle actuator in light 

contact with the sample surface. The actuator was composed of a razor blade, an 18-gauge syringe needle, 

and a piezoelectric transducer (Thorlabs PZS001, NJ, USA) driven by a radio frequency function generator 

(Agilent 33120A, CA, USA). The function generator applied a sinusoidal voltage to the transducer to move 

the needle-blade assembly harmonically along its length, leading to small periodic indentation on the 

sample surface that generates the harmonic compressional, shear, and circumferential elastic waves. The 

compressional and shear waves propagate through the interior regions of the sample, and they could be 

reflected back into the sample or transmitted into the surrounding fluid at the sample boundaries. On the 

other hand, circumferential waves travel along the curved boundary of the sample, exhibiting frequency-

dependent wave speeds and penetration depths. The sample was submerged in water during the experiment 

to preserve the moisture content and to prevent changes to the material properties (not shown in Fig. 1).

The local displacement induced by the propagating elastic waves was monitored by a phase-

sensitive, spectral-domain OCT microscope (Thorlabs GAN210C1). The OCT’s imaging mechanism and 

the method used to synchronize the wave frequency and the scanning rate of the OCT were detailed in our 

previously published work28. The OCT microscope provides two types of image output: (1) the intensity 

distribution corresponding to the optical scattering from a partially transparent sample due to refractive 

index variation in the sample (the refractive index variation results from sample’s morphology) and (2) the 
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distribution of the optical phase difference  that is related to the local particle displacement in the sample. Δ𝜙

These two types of images will be referred as OCT and OCE images, respectively, in this paper.

3. OCE measurements in a granular biofilm

Figure 2 shows representative OCT and OCE images obtained in a granular biofilm. The sample was 

submerged in its native aqueous solution from the AGS reactor. The OCT image (Fig. 2a) shows the curved 

geometry of the granular biofilm. The intensity of the OCT signal decreases with depth from the surface of 

the biofilm due to attenuation of the probe light, showing that the optical penetration depth is less than 1 

mm. Furthermore, the sharp intensity gradient observed near the inner boundary of the biofilm separates 

the biofilm into an outer bright layer and an inner dark core. The lower signal intensity of the latter is 

possibly due to the contrasts of the morphology or density in the biofilm2, 3. The thickness of the outer layer 

remains relatively constant (~0.75 mm) within a lateral extent of ~2 mm and reduces monotonically with 

an abrupt curvature change near the right edge of the OCT image. The OCE image (Fig. 2b) shows the 

distribution of  that corresponds to the deformation induced by a 2.1 kHz elastic wave confined along Δ𝜙

the biofilm boundary. The local  signal is proportional to the vertical particle displacement. Note that Δ𝜙

Δϕ is an interferometric parameter that alternates between –π to π radians, but to enhance visibility of the 

fringes, the color contour in the OCE image was modified to saturate at the limits –π/2 and π/2 radians. The 

fringes of the  signal within the constant-thickness region yields a wavelength estimate of 1.8 mm Δ𝜙

(corresponding to the wave speed of 3.78 m/s). It is worth remarking that (1) the apparent wavelength close 

to the right edge of the biofilm is longer than 1.8 mm due to the change in elastic properties or curvature 

relative to the left portion of the biofilm, and (2) the elastic wave also interacts with the surrounding fluid, 

propagating as an interface wave whose amplitude decays with vertical distance into the fluid and the 

biofilm. Note that in an infinite homogenous elastic solid, the elastic wave speeds of the bulk compressional 

and shear waves can be directly related to the elastic properties since the wave speeds are frequency- and 

geometry-independent. However, in the granular biofilm, the elastic wave speed is highly sensitive to the 

sample heterogeneity, local curvature variation, and the properties of the surrounding fluid. Therefore, to 
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determine the viscoelastic properties from the OCE data obtained in the granular biofilm, an appropriate 

inverse modeling approach is needed. The details of the theoretical model developed for this purpose is 

discussed in the next section.

4. Theoretical model 

In this section, a theoretical model for calculating the frequency-dependent phase velocity of 

circumferential elastic waves in a viscoelastic solid with curved geometry is presented. This model was 

used to quantify the shear modulus and complex shear viscosity of the alginate gel samples though inverse 

analysis from experimental measurements. To reduce modeling complexity, a two-layer cylindrical 

geometry illustrated in Fig. 3 was adopted. The inner and outer radii of the cylinder are labeled as a and b, 

respectively. The cylinder is surrounded by an inviscid water half-space (r > b) that does not support shear 

stresses, and all material properties in this structure are homogeneous and isotropic. It has been shown that 

the waveform supported on the surface of a homogeneous and isotropic sphere is toroidal30, 31. The 

propagation of a toroidal wave can be monitored by probing only on the meridian circle that is normal to 

the wavefront. As such, the toroidal wave propagation can be approximated by the circumferential wave 

that travels on the surface of a cylinder with the same curvature of the meridian circle. Therefore, the 

cylindrical configuration of this model structure is valid and provides a simple approach for modeling the 

key features of the wave observed in Fig. 2b that is of particular interest to this work: (1) a circumferential 

wave that travels along a circular contour, and (2) an interface wave (or Sholte wave32) that propagates at 

the interface between the solid and the water.

The elastodynamic wave equation formulated in cylindrical coordinates for harmonic wave 

propagation in a homogeneous, isotropic, and viscoelastic solid is expressed as33

                                               (1)(𝜆 ∗ + 𝜇 ∗ )∇(∇ ∙ 𝑢) + 𝜇 ∗ ∇2𝑢 +  𝜌𝜔2𝑢 = 0
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where the displacement vector  comprises the components , , and  along r-, 𝑢 = 𝑢𝑟𝑒𝑟 + 𝑢𝜃𝑒𝜃 + 𝑢𝑧𝑒𝑧 𝑢𝑟 𝑢𝜃 𝑢𝑧

θ-, and z-directions with unit vectors , , and ;  is the density of the material;  is the angular 𝑒𝑟 𝑒𝜃 𝑒𝑧 𝜌 𝜔

frequency;  is the differential operator defined by∇

.                                                          (2)∇ = 𝑒𝑟
∂

∂𝑟 + 𝑒𝜃
1
𝑟

∂
∂𝜃 + 𝑒𝑧

∂
∂𝑧

In eqn (1),  and  are the complex frequency-dependent relaxation functions of the Lamé 𝜆 ∗ 𝜇 ∗

material properties. Following the Kelvin-Voigt viscoelastic model, the relaxation functions are32

                                                                 (3)λ ∗ (𝜔) = 𝜆 + 𝑖𝜂𝜆𝜔

                                                                 (4)𝜇 ∗ (𝜔) = 𝜇 + 𝑖𝜂𝜇𝜔

where  and  are the Lamé first parameter and shear modulus, respectively, and  and  are the 𝜆 𝜇 𝜂𝜆 𝜂𝜇

corresponding complex viscosities, respectively. The shear modulus  and the shear viscosity  are of 𝜇 𝜂𝜇

particular interest in this study.

It can be shown that the solution  to eqn (1) is a linear superposition of the contributions from 𝑢

compressional (longitudinal) and shear waves, which can be expressed in terms of a scalar potential  and 𝜙

a vector potential  by the vector relationship33:𝜓 = (𝜓𝑟,𝜓𝜃,𝜓𝑧)

                                                                   (5)𝑢 = ∇𝜙 + ∇ × 𝜓

To consider only the plane circumferential interface waves, plane strain conditions are imposed on 

the displacements and stresses such that (1) the displacement component in the z-direction vanishes ( ), 𝑢𝑧 = 0

and (2) gradients along the z-direction are zero ( ). From the first condition, the first two ∂/∂𝑧 = 0

components of  must equal to zero ( ), yielding . From the second condition, the 𝜓 𝜓𝑟 = 𝜓𝜃 = 0 𝜓 = (0,0,𝜓)

third term of the differential operator in eqn (2) vanishes.

Substituting eqn (5) into eqn (1) leads to the Helmholtz equations for the scalar and vector potentials:

                                                    (6)( ∂2

∂𝑟2 +
1
𝑟

∂
∂𝑟 +

1
𝑟2

∂2

∂𝜃2)𝜙 +
𝜔2

𝛼2
𝐿
𝜙 = 0

                                                    (7)( ∂2

∂𝑟2 +
1
𝑟

∂
∂𝑟 +

1
𝑟2

∂2

∂𝜃2)𝜓 +
𝜔2

𝛼2
𝑆
𝜓 = 0
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where  and  are complex compressional and shear wave speeds that are related to the material properties 𝛼𝐿 𝛼𝑆

by the relationships:

                                                                     (8)𝛼2
𝐿 =

 𝜆 ∗ +  2𝜇 ∗  
𝜌

                                                                         (9)𝛼2
𝑆 =

 𝜇 ∗  
𝜌

The real parts of  and  are the bulk compressional and shear wave speeds, respectively, and the 𝛼𝐿 𝛼𝑆

imaginary parts determine the attenuation (amplitude decay with propagation distance) of the bulk waves.

Following related work in the literature34, 35, the scalar and vector potential functions corresponding 

to circumferential interface waves in the solid cylinder are defined as

                                                              (10)𝜙 = Φ(𝑟)𝑒𝑖(𝑘𝑏𝜃 ― 𝜔𝑡)

                                                              (11)𝜓 = Ψ(𝑟)𝑒𝑖(𝑘𝑏𝜃 ― 𝜔𝑡)

where  and  represent the complex amplitudes along the radial (r) direction; k is the complex Φ(𝑟) Ψ(𝑟)

wavenumber whose real part  is related to the wavelength  by  and imaginary part Re{𝑘} = 𝑘𝑅 𝜆 𝑘𝑅 = 2𝜋/𝜆

represents the wave attenuation. 

From eqn (6), (7), (10) and (11), we obtain the following differential equations that  and  Φ(𝑟) Ψ(𝑟)

must satisfy:

                                                    (12)
𝑑2Φ
𝑑𝑟2 +

1
𝑟

𝑑Φ
𝑑𝑟 + (𝑘2

𝐿 ―
𝑘2𝑏2

𝑟2 )Φ = 0

                                                    (13)
𝑑2Ψ
𝑑𝑟2 +

1
𝑟

𝑑Ψ
𝑑𝑟 + (𝑘2

𝑆 ―
𝑘2𝑏2

𝑟2 )Ψ = 0

where  and  are complex wavenumbers for the bulk compressional and shear waves.𝑘𝐿 = 𝜔/𝛼𝐿 𝑘𝑆 = 𝜔/𝛼𝑆

Eqn (12) and (13) are Bessel differential equations whose general solutions are linear 

superpositions of Bessel functions as expressed below:

                                                    (14)Φ(𝑟) = 𝐴1𝐽𝜈(𝑘𝐿𝑟) + 𝐴2𝑌𝜈(𝑘𝐿𝑟)

                                                    (15)Ψ(𝑟) = 𝐴3𝐽𝜈(𝑘𝑆𝑟) + 𝐴4𝑌𝜈(𝑘𝑆𝑟)

where A1, A2, A3, and A4 are unknown coefficients,  and  are Bessel functions of the first and 𝐽𝜈(𝑥) 𝑌𝜈(𝑥)

second kind, and  is the order of the Bessel functions.𝜈 = 𝑘𝑏
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In cylindrical coordinates, the components of the particle displacement and the stress tensor have 

the relationships with the scalar and vector potentials as below:

                                                                  (16)𝑢𝑟 =
∂𝜙
∂𝑟 +

1
𝑟

∂𝜓
∂𝜃

                                                                  (17)𝑢𝜃 =
1
𝑟

∂𝜙
∂𝜃 ―

∂𝜓
∂𝑟

                        (18)𝜎𝑟𝑟 = (𝜆 ∗ + 2𝜇 ∗ )∂2𝜙
∂𝑟2 + 𝜆 ∗ (1

𝑟
∂𝜙
∂𝑟 +

1
𝑟2

∂2𝜙
∂𝜃2) +2𝜇 ∗ (1

𝑟
∂2𝜓

∂𝑟∂𝜃 ―
1
𝑟2

∂𝜓
∂𝜃)

                                       (19)𝜎𝑟𝜃 = 𝜇 ∗ (2
𝑟

∂2𝜙
∂𝑟∂𝜃 ―

2
𝑟2

∂𝜙
∂𝜃 ―

∂2𝜓
∂𝑟2 +

1
𝑟

∂𝜓
∂𝑟 +

1
𝑟2

∂2𝜓
∂𝜃2)

By substituting eqn (10) and (11) into eqn (16) – (19), using the expressions for  and  in Φ(𝑟) Ψ(𝑟)

eqn (14) and (15), the components of the particle displacement and the stress tensor can be expressed in 

terms of the unknown coefficients and combined as the following matrix set: 

                           (20)[ 𝑢𝑟
𝑢𝜃
𝜎𝑟𝑟
𝜎𝑟𝜃

] =  [𝐷11 𝐷12 𝐷13 𝐷14
𝐷21 𝐷22 𝐷23 𝐷24
𝐷31 𝐷32 𝐷33 𝐷34
𝐷41 𝐷42 𝐷43 𝐷44

][𝐴1
𝐴2
𝐴3
𝐴4

]𝑒𝑖(𝑘𝑏𝜃 ― 𝜔𝑡)

The expressions of the matrix elements Dmn (m,n = 1,2,3,4) in eqn (20) are provided in the Appendix.

The displacement and pressure in the surrounding water half-space are formulated in terms of a 

scalar potential function . The displacement is given by the gradient of :𝜙𝑤 𝜙𝑤

                                                                     (21)𝑢𝑤 = ∇𝜙𝑤

Eqn (21) does not include the vector potential because the water half-space is assumed to be inviscid 

and does not support shear waves.

We specifically focused on the solution of the interface waves that are simultaneously coupled in 

the solid and the water half-space. We formulated this by matching the phase of the scalar potential in the 

water to that in the solid, such as

                                                              (22)𝜙𝑤 = Φ𝑤(𝑟)𝑒𝑖(𝑘𝑏𝜃 ― 𝜔𝑡)

where the complex amplitude must satisfy the Bessel differential equationΦ𝑤(𝑟) 

                                                (23)
𝑑2Φ𝑤

𝑑𝑟2 +
1
𝑟

𝑑Φ𝑤

𝑑𝑟 + (𝑘2
𝑤 ―

𝑘2𝑏2

𝑟2 )Φ𝑤 = 0
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that is obtained by substituting eqn (22) into eqn (6). In eqn (23),  is the wavenumber of the 𝑘𝑤 = 𝜔/𝛼𝑤
𝐿

compressional wave as  1481 m/s is the wave speed in water. Because the water half-space is assumed 𝛼𝑤
𝐿 =

to be inviscid,  is a real number without the imaginary part. Moreover, the water half-space has no 𝛼𝑤
𝐿

excitation source, as such, only the partial waves traveling outward in the radial direction exist in the water, 

and the solution of eqn (23) is represented by the Hankel function of the first kind, given by

                                                             (24)Φ𝑤(𝑟) = 𝐴5𝐻(1)
𝜈 (𝑘𝑤𝑟)

The unknown coefficient A5 is determined by the boundary conditions at the solid-water interface.

From eqn (16), (18), and (21) − (24), the displacement and the pressure (equivalent to the normal 

stresses in the solid) along the radial direction in the water half-space are derived as functions of the 

unknown coefficient A5:

                                                        (25)𝑢𝑤
𝑟 = (𝑘𝑤𝐻(1)

𝜈 ′)𝐴5𝑒𝑖(𝑘𝑏𝜃 ― 𝜔𝑡)

               (26)𝑝 = (𝜆𝑤𝑘2
𝑤𝐻(1)

𝜈 ′′ + 𝜆𝑤1
𝑟𝑘𝑤𝐻(1)

𝜈 ′ ― 𝜆𝑤𝜈2

𝑟2𝐻(1)
𝜈 )𝐴5𝑒𝑖(𝑘𝑏𝜃 ― 𝜔𝑡) = 𝑃(𝑟)𝐴5𝑒𝑖(𝑘𝑏𝜃 ― 𝜔𝑡)

where

                 (27)𝐻(1)
𝜈 = 𝐻(1)

𝜈 (𝑘𝑤𝑟),  𝐻(1)
𝜈

′ =
𝑑

𝑑(𝑘𝑤𝑟)(𝐻(1)
𝜈 (𝑘𝑤𝑟)),  𝐻(1)

𝜈
′′ =

𝑑2

𝑑(𝑘𝑤𝑟)2(𝐻(1)
𝜈 (𝑘𝑤𝑟))

In eqn (26),  is the Lamé first parameter for the water half-space that is related to the 𝜆𝑤

compressional wave speed and the water density by .𝛼𝑤
𝐿  𝜌𝑤 𝜆𝑤 = 𝜌𝑤(𝛼𝑤

𝐿 )2

To determine the five unknown coefficients associated with the potential functions in the solid and 

water, five boundary conditions are required. Here, we prescribe the inner boundary (r = a) to be rigid, so 

the boundary conditions are (1) continuity of the displacement along radial direction at the water-sphere 

interface, , (2) continuity of the normal traction in the solid and pressure in the water at 𝑢𝑟|𝑟 = 𝑏 = 𝑢𝑤
𝑟 |𝑟 = 𝑏

the water-solid interface, , (3) zero shear traction at the water-solid interface, , 𝜎𝑟𝑟|𝑟 = 𝑏 = 𝑝|𝑟 = 𝑏 𝜎𝑟𝜃|𝑟 = 𝑏 = 0

(4) zero radial displacement at the inner boundary, , and (5) zero circumferential displacement 𝑢𝑟|𝑟 = 𝑎 = 0

at the inner boundary, . Applying these boundary conditions leads to five equations for the 𝑢𝜃|𝑟 = 𝑎 = 0

coefficients as shown in the matrix form below:
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[𝐷11|𝑟 = 𝑏 𝐷12|𝑟 = 𝑏 𝐷13|𝑟 = 𝑏 𝐷14|𝑟 = 𝑏 ― 𝑘𝑤𝐻(1)
𝜈 ′|𝑟 = 𝑏

𝐷31|𝑟 = 𝑏 𝐷32|𝑟 = 𝑏 𝐷33|𝑟 = 𝑏 𝐷34|𝑟 = 𝑏 ― 𝑃(𝑟)|𝑟 = 𝑏
𝐷41|𝑟 = 𝑏 𝐷42|𝑟 = 𝑏 𝐷43|𝑟 = 𝑏 𝐷44|𝑟 = 𝑏 0
𝐷11|𝑟 = 𝑎 𝐷12|𝑟 = 𝑎 𝐷13|𝑟 = 𝑎 𝐷14|𝑟 = 𝑎 0
𝐷21|𝑟 = 𝑎 𝐷22|𝑟 = 𝑎 𝐷23|𝑟 = 𝑎 𝐷24|𝑟 = 𝑎 0

][𝐴1
𝐴2
𝐴3
𝐴4
𝐴5

] = 𝟎

or

                                                                         (28)𝐒𝐀 = 𝟎

To obtain non-trivial solutions for unknown coefficients in matrix A of eqn (28), the determinant 

of the matrix S must equal to zero36:

                                                                    (29)det (𝐒) = 0

which is the characteristic equation of this model. Solving the characteristic equation yields infinite solution 

pairs of angular frequency and complex wavenumber (𝜔,k) that represent the dispersion relation of the 

plane circumferential interface wave in the water-loaded cylindrical solid. The phase velocity (c) of the 

interface wave is obtained from the relation between the angular frequency ω and the real part of the 

complex wavenumber , defined by . Since the matrix S is complex, eqn (29) is solved Re{𝑘} = 𝑘𝑅 𝑐 = 𝜔/𝑘𝑅

by searching the combinations of (𝜔,k) where the determinant of S has zero magnitude, |det(S)| = 0. Note 

that it may be difficult to achieve absolute zero in numerical calculation; therefore, in practice, the solutions 

are determined instead by locating local minima in the (𝜔,k) space. (see Section S1 of the Supplementary 

Information for further details).

5. Results and discussion

5.1 Numerical simulation

The theoretical model presented in the previous section was implemented numerically in a commercial 

software MATLAB (Release R2016b, MathWorks) to calculate the dispersion curves for the 

circumferential elastic waves. The model was validated against a thin, pure-elastic curved plate with a very 

small thickness to inner radius ratio (b − a)/a = 0.05, which approximates the curved plate to a flat plate. 

The plate has the same parameters and boundary conditions as those reported by Liu and Qu (1998)34: a = 
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20 mm, b = a/0.95, αL = 5660 m/s, αS = 3200 m/s, and traction-free boundary conditions at the inner and 

outer boundaries (r = a and b). The characteristic equation for this case is discussed in Section S2 of 

Supplementary Information. The dispersion curves for the thin curved plate were calculated by our 

MATLAB program, and the results are presented in Fig. 4 by plotting the normalized angular frequency 𝜔

 against the normalized wavenumber , which is the same as the Fig. 2(c) in = 𝜔(𝑏 ― 𝑎)/𝛼𝑆 𝑘 = 𝑘(𝑏 ― 𝑎)

Liu and Qu (1998).

From Fig. 4, we observe that the dispersion curves for the thin curved plate resemble the 

antisymmetric and symmetric guided wave modes in a thin flat plate—(1) the phase velocities of the two 

lowest modes are strongly frequency-dependent at low frequencies, but become non-dispersive at high 

frequencies, approaching the Rayleigh wave velocity; (2) the higher order modes originate at cut-off 

frequencies defined by  or  (n = 1,2,3,…) for longitudinal or shear thickness 𝜔𝑐 = (𝛼𝐿/𝛼𝑆)𝑛𝜋 𝜔𝑐 = 𝑛𝜋

resonance modes, respectively. These resemblances, which are expected due to the flatness of the thin 

curved plate, provide the validation for the circumferential elastic wave model. In addition, the dispersion 

curves shown in Fig. 4 are identical to those calculated by Liu and Qu (1998), which verifies the correctness 

of our MATLAB program. Note that the axis parameters for Fig. 4 were chosen to be the same as those 

used by Liu and Qu34 for easy and direct comparison. For the other dispersion curves presented in this 

paper, the phase velocity was plotted as a function of frequency. The dispersion curve of phase velocity is 

directly relevant to the OCE measurements and will be used for inverse analysis to quantify the viscoelastic 

properties. 

Next, the dispersion curve for the lowest order mode is examined to understand the penetration 

depth of the circumferential interface wave and how its phase velocity is affected by the viscoelastic 

properties and the outer boundary curvature of the water-loaded model cylinder. The model material was 

assumed to be homogeneous, isotropic biofilm with the density ρ = 1000 kg/m3, longitudinal wave speed 

αL = 1481 m/s, and shear wave speed αS = 2 m/s. ρ and αL were chosen to be the same as water due to the 
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high ratio of water content (over 90%) in biofilms28. The boundary condition of the inner boundary (r = a) 

was assumed to be rigid.

The penetration depth of the circumferential elastic wave is investigated by fixing the outer radius 

b = 2 mm and changing the inner radius a of the cylinder. Figure 5a shows a series of dispersion curves for 

three different inner radii a = 0.1 μm, 0.5 mm and 1 mm. The dispersion curves are plotted with the phase 

velocity c and frequency f on the ordinate and abscissa axes, respectively, for convenience. All dispersion 

curves originate from higher phase velocities at low frequency region and decrease monotonically with 

frequency. The difference at low frequencies results from the cut-off frequencies of the modes for these 

cases since the cut-off frequency increases with reduced thickness. The overall decreasing trends of the 

dispersion curves imply that the penetration depths, which have positive correlation with the wavelengths 

 (determined by  = c/f), also decrease with frequency for these three cases. Take the case a = 1 mm for 

example, below 2700 Hz, the dispersion curve has higher phase velocity than other two cases since the 

penetration depth is still larger or comparable to the thickness between the two boundaries (b − a = 1 mm) 

so that the wave propagates as a guided wave that interacts with both boundaries of the cylinder. Above 

2700 Hz, the penetration depth becomes smaller than all three thicknesses considered so that three 

dispersion curves collapse on top of each other, indicating the wave propagates as an interface wave whose 

energy is confined near the solid-water interface. At the transition frequency 2700 Hz, we may conclude 

that the penetration depth of the interface wave is 1 mm, while the wavelength, calculated from the phase 

velocity 2.75 m/s, is 1.02 mm, which confirms the common rule-of-thumb that the penetration depth of the 

interface wave is approximately equal to one wavelength. This attribute of the interface wave may be 

suitable for depth profiling of the viscoelastic properties in a radially gradient sample through 

measurements of the frequency-dependent wave speeds.

The calculated dispersion curves for water-loaded pure-elastic and viscoelastic cylinders are 

compared in Fig. 5b. For these calculations, the complex viscosity was changed from ημ = 0 for the pure-

elastic case to ημ = 0.1 Pa-s for the viscoelastic case. The inner and outer radii of the cylinder are a = 0.1 

μm and b = 2 mm. For the pure-elastic cylinder, the phase velocity of the interface wave decreases 
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monotonically with frequency. On the other hand, the viscoelastic cylinder has similar decreasing phase 

velocity at low frequencies but shows a flattened trend from 2500 Hz and a slight increase beyond 3500 

Hz. This is because the complex shear modulus of the viscoelastic cylinder increases linearly with 

frequency by the factor of the shear viscosity as defined in eqn (4). The increase in the phase velocity of 

the interface wave at high frequencies is directly related to the viscoelastic properties of the material and 

will be explored in this paper to characterize the complex shear modulus of the curved alginate gel samples.

Finally, the influence of the radius of curvature on the phase velocity of the interface wave in the 

water-loaded viscoelastic cylinder is presented in Fig. 5c. Three different outer radii (b = 1.5 mm, 2 mm, 

2.5 mm) were used in the calculations, while the inner radius was fixed to a = 0.1 μm. The shear viscosity 

is the same as the viscoelastic case in Fig. 5b (ημ = 0.1 Pa-s). The dispersion curves in Fig. 5c show a clear 

dependence of the phase velocity on the radius of curvature of the solid-water interface—the phase velocity 

decreases with the radius of curvature. In addition, all dispersion curves show the flattened-to-increase 

trends at high frequencies, which results from the escalating complex shear modulus with frequency by the 

factor of shear viscosity as observed in Fig. 5b. The results suggest that the curvature of the interface plays 

an important role in the frequency-dependent phase velocity of the interface wave. We will accommodate 

the curvature effect in the analysis works in following sections.

5.2 Application of OCE and model-based inverse analysis to alginate gel spheres

Figure 6 shows representative OCT and OCE images for a 0.8% alginate sphere with a diameter of 4 mm 

submerged in water. During the experiments, the water height was kept at least 2 mm higher than the top 

of the sphere, so that the effect of the water surface on the circumferential interface waves was negligible. 

The OCT image shows very limited intensity variation within the sample, indicating structural homogeneity 

and the integrity (no voids or cracks) of the sample. The local intensity in the OCT image decreases with 

depth below the sample surface due to attenuation of the OCT light source. The penetration depth of the 

OCT light beam depends on the wavelength of light source and the optical properties of the sample. The 

OCE image shows periodic oscillation of the optical phase difference Δϕ associated with the periodic 
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displacement profile of the elastic wave excited by the actuator at 1600 Hz. The displacement profile 

follows the curvature of the sample surface, as expected for a circumferential interface wave. The amplitude 

of the fringes decreases with the circumferential distance from the source due to damping in the viscoelastic 

solid. 

To determine the phase velocity of the circumferential wave, which equals to the product of the 

excitation frequency and the wavelength, the wavelength was obtained from the fringes in the OCE image 

by following four steps: (1) the contour of the sample surface in the OCT image was identified; (2) a circular 

arc was fitted to the contour to determine the approximate radius of curvature and the propagation path 

(white dotted line in Fig. 6b); (3) the spatial OCE data along the propagation path was processed by fast 

Fourier transform to obtain the amplitude spectrum from which the spatial frequency ( ,  is the 1/𝛬 𝛬

wavelength) of the wave was determined. For convenience, the curve fitting in step (2) was performed in 

the cylindrical (r-θ) coordinates system instead of the normal Cartesian (x-y) system so that the wavelength 

 has the unit of radians rather than meters, and the phase velocity of the interface wave c was calculated 𝛬

using the relationship  where f is the excitation frequency and b is the radius of curvature.𝑐 = 𝑓𝑏𝛬

The measurements of the frequency-dependent elastic wave speed were conducted on alginate 

spheres with 0.8% and 1.2% alginate concentration. For each concentration, the measurements were 

repeated on three samples of similar sizes. The experimental results of the six samples are demonstrated by 

the sparse circles in Fig. 7. Comparing the overall ranges of the experimentally measured wave speeds from 

the 0.8% and 1.2% alginate spheres, as expected, the results from the 1.2% alginate spheres have higher 

wave speeds. In addition, all examples show that wave speeds slightly increase or remain relatively constant 

with increasing frequency. This suggests that the dispersion curves are clearly different from the elastic 

case, where the phase velocity decreases with frequency, as shown in Fig. 5b; therefore, the shear viscosity 

needs to be considered when employing the theoretical model to predict the dispersion curves and obtain 

the best fits for the experimental data.

The best-fit dispersion curves are presented by the solid lines in Fig. 7, which show good agreement 

with the experimental data. The curves were calculated by using the shear modulus and the complex shear 
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viscosity as free fitting parameters in the numerical model. The best-fit viscoelastic properties and other 

parameters used for calculating the dispersion curves are listed in Table 1. The average shear moduli and 

complex shear viscosities from the measurements on samples with the same concentration are shown in 

Fig. 8a and 8b, respectively. For every data point in Fig. 8, the circular marker indicates the average over 

three samples, and the error bar represents the standard deviation. The coefficient of variation (COV), 

defined by the ratio of the standard deviation to the average value, of each data point is presented in Table 

2. The COV values imply small variabilities of shear moduli and complex shear viscosities from sample to 

sample with the same alginate concentration, and the stronger sensitivity of the dispersion curves to the 

shear modulus versus the complex shear viscosity. We remark that the shear moduli are in the same order 

of magnitude with the ones characterized with rheometry5, 37. Furthermore, the shear moduli and the 

complex shear viscosities of the 0.8% samples are within the same order of magnitude of those found in a 

mixed-culture biofilm as reported in our previous work28, which verifies a commonly accepted analogy 

between the alginate and bacterial biofilms in terms of mechanical properties.

The calculations for alginate spheres in Fig. 7 were carried out by using a small value for the inner 

radius a to eliminate the effect from the inner boundary. This inevitably leads to a limitation that the energy 

carried by the circumferential interface waves must be distributed within the span [a,b]. As such, the model 

is unable to capture low frequency interface waves that have penetration depths longer than or comparable 

to the radius of the sphere. On the other hand, for high frequency interface waves, this limitation does not 

hinder the accuracy of the frequency-dependent phase velocity since the penetration depths of the waves at 

high frequencies are short so that the effect from the inner boundary is negligible. Therefore, the frequency 

range 1.6~4 kHz was selected for experimental measurements to limit the penetration depths. For example, 

the wave speed at 1.6 kHz in Fig. 7e is 3.11 m/s and the corresponding wavelength is 1.94 mm, which is 

smaller than the sphere radius. In addition, this frequency range provides (1) good signal-to-noise ratio of 

the OCE images, which deteriorates with frequency due to wave attenuation; (2) sufficient alternating 

fringes of displacement profile in the OCE images to enhance the estimate accuracy of the circumferential 

wavelength and the corresponding wave speed. A minimum of three fringe cycles is required to achieve the 
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estimate precision of 0.02 m/s. In the example of Fig. 7e mentioned above, the circumference length of ~7 

mm contains more than three spatial periods of the circumferential wave at 1.6 kHz, which is beyond the 

requirement of fringe number to reach desired estimate accuracy.

The frequency bandwidth of Kelvin-Voigt model fbw to characterize material’s viscoelasticity is 

controlled by the retardation time of the material, defined by fbw = 1/tR = μ/ημ. By substituting the 

characterization results in Table 1 into this relation, the applicable bandwidths for 0.8% and 1.2% alginate 

gel samples are 28 and 22 kHz, respectively. Since the frequency range used in the OCE measurements was 

much lower than the bandwidths, it is valid to apply the Kelvin-Voigt model for the viscoelasticity 

characterization of the alginate samples.

The framework developed here—combining the OCE measurements of circumferential interface 

waves and the model-based inverse analysis—paves the way for the mechanical characterization of real 

granular biofilms utilized in wastewater treatment systems. The structure of the theoretical model (the 

boundaries at r = a and b) allows for extending to the layered granular biofilm (Fig. 2a), where the 

frequency-dependent circumferential interface wave can be harnessed to its compositional distribution. The 

knowledge gained from this study can advance our understanding of structure-composition-mechanical 

properties relationship in granular biofilms and to enhance their performance in wastewater treatment 

reactors.

6. Conclusions

In this paper, we first demonstrated the feasibility of OCE measurements in real granular biofilms obtained 

from a wastewater treatment facility, and then developed a metrology approach that combines the OCE 

measurements with a forward modeling of the dispersion relation of circumferential interface waves in soft 

viscoelastic samples with curved geometries. The OCE technique was used to obtain the geometry- and 

frequency-dependent phase velocities of the circumferential interface wave propagating in alginate spheres 

surrounded by water. The numerical model was based on the elastodynamic wave equation, from which the 

frequency-dependent phase velocities of elastic waves in a water-loaded curved sample were predicted 
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using the information of sample geometry, material properties, and the boundary conditions. Our numerical 

calculations suggest that the circumferential interface wave is highly dependent on sample geometry and 

composition. The numerical model was fitted to the OCE data to estimate the shear moduli and complex 

shear viscosities of the alginate spheres. This framework was used to characterize the shear moduli and 

complex shear viscosities of alginate spheres with two different concentrations (0.8% and 1.2% w/v). The 

estimated properties are in good agreement with reported values in the literature. Our future work will aim 

at mapping depth-dependent structural differences in granular biofilms by representative layering in the 

theoretical model. Ultimately, this effort can facilitate deeper understanding of the relationship between 

morphology, biological and chemical composition, and spatially heterogeneous mechanical properties in 

granular biofilms. Furthermore, the numerical model can be used to study elastic wave propagation in 

curved structures from other areas. For example, the approach we describe based on circumferential elastic 

waves may find application in viscoelastic characterization of cornea and may be of use as a predictive tool 

for evaluating ophthalmic disease state. 
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Appendix: D Matrix

Details of the elements Dmn in eqn (20):

                                                                    (A1)𝐷11 = 𝑘𝐿𝐽𝐿
𝜈′

                                                                   (A2)𝐷12 = 𝑘𝐿𝑌𝐿
𝜈′

                                                                    (A3)𝐷13 = 𝑖
𝜈
𝑟𝐽𝑆

𝜈

                                                                    (A4)𝐷14 = 𝑖
𝜈
𝑟𝑌𝑆

𝜈

                                                                     (A5)𝐷21 = 𝑖
𝜈
𝑟𝐽𝐿

𝜈

                                                                    (A6)𝐷22 = 𝑖
𝜈
𝑟𝑌𝐿

𝜈

                                                                  (A7)𝐷23 = ―𝑘𝑆𝐽𝑆
𝜈′

                                                                 (A8)𝐷24 = ―𝑘𝑆𝑌𝑆
𝜈′

                                       (A9)𝐷31 = (𝜆 ∗ + 2𝜇 ∗ )𝑘2
𝐿𝐽𝐿

𝜈′′ + 𝜆 ∗ 1
𝑟𝑘𝐿𝐽𝐿

𝜈′ ― 𝜆 ∗ 𝜈2

𝑟2𝐽𝐿
𝜈

                                    (A10)𝐷32 = (𝜆 ∗ + 2𝜇 ∗ )𝑘2
𝐿𝑌𝐿

𝜈′′ + 𝜆 ∗ 1
𝑟𝑘𝐿𝑌𝐿

𝜈′ ― 𝜆 ∗ 𝜈2

𝑟2𝑌𝐿
𝜈

                                                (A11)𝐷33 = 2𝑖𝜇 ∗ 𝜈
𝑟𝑘𝑆𝐽𝑆

𝜈′ ― 2𝑖𝜇 ∗ 𝜈
𝑟2𝐽𝑆

𝜈

                                               (A12)𝐷34 = 2𝑖𝜇 ∗ 𝜈
𝑟𝑘𝑆𝑌𝑆

𝜈′ ― 2𝑖𝜇 ∗ 𝜈
𝑟2𝑌𝑆

𝜈

                                                (A13)𝐷41 = 2𝑖𝜇 ∗ 𝜈
𝑟𝑘𝐿𝐽𝐿

𝜈′ ― 2𝑖𝜇 ∗ 𝜈
𝑟2𝐽𝐿

𝜈

                                               (A14)𝐷42 = 2𝑖𝜇 ∗ 𝜈
𝑟𝑘𝐿𝑌𝐿

𝜈′ ― 2𝑖𝜇 ∗ 𝜈
𝑟2𝑌𝐿

𝜈

                                         (A15)𝐷43 = ― 𝜇 ∗ 𝑘2
𝑆𝐽𝑆

𝜈′′ + 𝜇 ∗ 1
𝑟𝑘𝑆𝐽𝑆

𝜈′ ― 𝜇 ∗ 𝜈2

𝑟2𝐽𝑆
𝜈

                                       (A16)𝐷44 = ― 𝜇 ∗ 𝑘2
𝑆𝑌𝑆

𝜈′′ + 𝜇 ∗ 1
𝑟𝑘𝑆𝑌𝑆

𝜈′ ― 𝜇 ∗ 𝜈2

𝑟2𝑌𝑆
𝜈

as

                                         (A17)𝐵𝛽
𝜈 = 𝐵𝜈(𝑘𝛽𝑟),  𝐵 = 𝐽 or 𝑌,  𝛽 = 𝐿 or 𝑆

and

                                (A18)𝐵𝛽
𝜈′ =

𝑑
𝑑(𝑘𝛽𝑟)(𝐵𝜈(𝑘𝛽𝑟)),  𝐵𝛽

𝜈′′ =
𝑑2

𝑑(𝑘𝛽𝑟)2(𝐵𝜈(𝑘𝛽𝑟))
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Fig. 1. Optical coherence elastography setup. 
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(a)

(b)

Fig. 2. (a) OCT image and (b) OCE image of the granular biofilm (excitation frequency 2.1 kHz).
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Fig. 3. Geometry of the multilayered model cylinder for circumferential elastic waves. Symbols L and S 
represent longitudinal and shear waves. Positive and negative superscripts represent outward and inward 
propagating partial waves. a and b are the inner and outer radii of the viscoelastic solid layer.
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Fig. 4. Validation of the theoretical model and the numerical calculation. Replicate of dispersion curves are 
from Liu and Qu (1998)34.
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Fig. 5. Dispersion curve comparison for (a) different inner radii a with pure elastic properties (b) pure-
elastic and viscoelastic properties, (b) different outer radii b with viscoelastic properties.
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(b)

(a)

Fig. 6. (a) OCT image and (b) OCE image showing circumferential interface wave propagation in an 
alginate gel sphere. An animated GIF file can be found in the Electronic supplementary information.
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Fig. 7. Experimentally measured elastic wave speeds in alginate gel samples and the best-fit dispersion 
curves calculated by the theoretical model. Each figure corresponds to an individual sample with the 
alginate concentration of 0.8% (a, b, and c) and 1.2% (d, e, and f).
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(a)

(b)

Fig. 8. Mean values (circles) and standard deviations (error bars) for (a) shear moduli and (b) shear 
viscosities estimated for alginate gel samples.
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Sample properties (a) (b) (c) (d) (e) (f)
Alginate concentration 0.8% 0.8% 0.8% 1.2% 1.2% 1.2%
Inner radius a (μm) 0.1 0.1 0.1 0.1 0.1 0.1
Outer radius b (mm) 1.84 1.77 2.17 2.18 2.39 2.02
Shear modulus (kPa) 1.69 1.69 1.96 3.10 4.20 3.61
Complex shear viscosity (Pa-s) 0.055 0.06 0.06 0.14 0.13 0.14

Table 1: Model inputs and estimated mechanical properties for alginate gel samples.

Sample properties
Alginate concentration 0.8% 1.2%
Mean shear modulus (kPa) 1.78 3.64
COV of shear modulus 8.76% 15.2%
Mean complex shear viscosity (Pa-s) 0.058 0.137
COV of complex shear viscosity 4.95% 4.22%

Table 2: Mean values and variations of shear moduli and shear viscosities for alginate gel samples
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