
Mechanical behavior of nonwoven non-crosslinked fibrous 
mats with adhesion and friction

Journal: Soft Matter

Manuscript ID SM-ART-04-2019-000658.R2

Article Type: Paper

Date Submitted by the 
Author: 26-Jun-2019

Complete List of Authors: Negi, Vineet; Rensselaer Polytechnic Institute
Picu, Catalin; Rensselaer Polytechnic Institute, 

 

Soft Matter



1

Mechanical behavior of nonwoven non-crosslinked fibrous mats with adhesion and friction

V. Negi and R.C. Picu1

Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic 
Institute, Troy, NY 12180

Abstract

We present a study of the mechanical behavior of planar fibrous mats stabilized by inter-fiber 

adhesion. Fibers of various degrees of tortuosity, and of infinite and finite length are considered in 

separate models. Fibers are randomly distributed, are not cross-linked, and interact through 

adhesion and friction. The variation of structural parameters such as the mat thickness and the 

mean segment length between contacts along given fiber with the strength of adhesion is 

determined. These systems are largely dissipative in that most of the work performed during 

deformation is dissipated frictionally and only a small fraction is stored as strain energy. The 

response of the mats to tensile loading has three regimes: a short elastic regime in which no sliding 

at contacts is observed, a well-defined sliding regime characterized by strain hardening, and a rapid 

stiffening regime at larger strains. The third regime is due to the formation of stress paths after the 

fiber tortuosity is pulled out and is absent in mats of finite length fibers. Networks of finite length 

fibers loose stability during the second regime of deformation. The scaling of the yield stress, 

which characterizes the transition between the first and the second regimes, and of the second 

regime’s strain hardening modulus, with system parameters such as the strength of adhesion and 

friction and the degree of fiber tortuosity are determined. The strength of mats of finite length 

fibers is also determined as a function of network parameters. These results are expected to become 

useful in the design of electrospun mats and other planar fibrous non-cross-linked networks. 

1 Corresponding author: Tel: 1 518 276-2195, E-mail: picuc@rpi.edu
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1. Introduction

Fiber networks form the key microstructural component of many soft biological and man-made 

materials. Collagen fibers form athermal network structures providing strength to extra-cellular 

matrix (ECM) and to connective tissues in animals. F-actin networks and microtubules are 

structural components of the cytoskeleton in eukaryotic cells. Networks of various polymeric 

nanofibers, like polyacrylonitrile (PAN), poly-L-lactide (PLLA), polypropylene (PP) etc., are used 

in applications like textile, filtration, hygiene products, and tissue engineering. The abundance of 

example of soft materials whose mechanics is controlled by a network is due to the superior 

specific properties (per unit weight of network material) of such structures. 

Crosslinked athermal fiber networks with inter-fiber permanent bonds have been studied 

extensively, as reviewed in 1,2. Such networks show mechanical response dependent on whether 

strain energy is stored predominantly in the bending or axial deformation modes of fibers. High 

network density, , and high fiber axial stiffness result in stiff, affine, axial energy-dominated, and 𝜌

mostly linear response. Whereas, a highly nonlinear, bending dominated, and non-affine response 

is obtained at low network densities . The nature of the inter-fiber bonds, i.e. rigid, pin-jointed or 𝜌

flexible, also influences the mechanical properties of fiber networks. 

Less understood are the properties of non-crosslinked fiber networks with non-bonded interactions 

such as excluded volume, adhesion, and friction. Non-crosslinked networks can be woven or non-

woven. Woven networks, like textiles, have patterned layouts of fibers designed to enhance 

(predominantly frictional) inter-fiber interactions. Nonwoven networks have random layout of 

fibers. Electrospinning has been widely used to produce planar mats of nonwoven fiber networks 

of various polymeric materials, fiber diameters, and fiber tortuosity 3–6. These networks have found 

multiple applications. When used in tissue engineering, as scaffolds, the network must be 

biocompatible and should have mechanical properties similar to those of the ECM 3,7. Thus, it is 

important to establish the structure-property relationship for these nonbonded networks in order to 

achieve control of their properties.

Electrospun nanofibrous mats typically show in tension a bilinear stress-strain response, with an 

initial linear regime, a knee-region of yielding transition, and a long strain-hardening plastic 

regime of constant slope3,5,8–10. Their small-strain elastic modulus is weakly dependent on the fiber 

diameter 9,10. Increasing fiber diameter is found to decrease the yield stress and the tangent slope 
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in the strain-hardening plastic region (also termed as strain-hardening modulus), but increases the 

strain-to-failure9,10. Heat treatment leading to fusion of fibers at contacts8 and chemical 

crosslinking11 of such electrospun mats dramatically increases the small-strain modulus, the yield 

stress, the strain-hardening modulus, but reduces the failure strain at the same time. This indicates 

that the physics of deformation and stress production changes upon network crosslinking. 

Cellulose nanofibrillar (CNF) sheets (cellulose nanopaper) exhibit similar bi-linear behavior12. 

Their linear elastic response lasts up to 0.2 – 0.3% strain, followed by a long strain-hardening 

inelastic regime which extends up to ~ 10% strain 12–15. Henriksson et al.14  reported that decreasing 

the porosity of CNF nanopaper increases the small-strain elastic modulus, the yield stress, the 

strain-hardening modulus, and the failure stress; while the yield and failure strains remain largely 

unaffected. Zhu et al.15 reported a sharp increase of the failure stress and strain when decreasing 

the fiber diameter from 27  to 11 n , while maintaining the fiber density of the mats in the 𝜇m m

range 1.2 – 0.8 g/cm3. An experimental study by Benitez et al.16 revealed that increasing the 

relative humidity decreases the small-strain modulus, the yield stress and the strain-hardening 

modulus. On the other hand, dry CNF nanopaper showed negligible inelasticity. Mao et al.13 used 

Digital Image Correlation to study the deformation of the nanopaper during loading and found the 

deformation to be homogeneous during the strain-hardening inelastic regime. Several mechanisms 

have been proposed to explain the post-yield regime including slippage at contacts assisted by the 

breakage and reformation of hydrogen bonds14–16, and molecular mechanisms at the level of 

individual cellulose nanofibers13.

Semi-analytical17 and numerical finite element (FE) based analyses 18–20 have attributed the elastic-

plastic response of cross-linked nanofibrous mats to the elastic-plastic behavior of their constituent 

fibers. Zündel et al.20 developed a 3D model of quasi-planar electrospun mats with crosslinks 

between fibers. The stress-strain response observed is bilinear owing to the elastic-plastic fiber 

constitutive properties. Goutianos et al.21 model the stress-strain response of cellulose nanopaper 

3D fibrous mats with breakable bonds and elastic-plastic fiber constitutive behavior. The response 

observed was brittle and it was found that, for the values of bond strength considered21, fibers do 

not undergo yielding before mat fracture.  Liu and Dzenis22 explored the mechanics of sparse 

electrospun mats with straight, non-bonded fibers running boundary-to-boundary, with Coulombic 

inter-fiber friction. This configuration leads to affine behavior, independent of the fiber properties, 
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and, as expected, it was found that the mat-scale plasticity is associated with the plastic 

deformation of fibers.   

The effect of excluded volume interactions (contacts between fibers) in non-crosslinked networks 

has been studied. A theoretical treatment of the compression of non-crosslinked elastic fiber 

networks without inter-fiber friction or adhesion is reported in 23–25. It is found that the compressive 

stress increases rapidly, as a power function of the fiber volume fraction, due to the increase of the 

number density of contacts. Experimental results support this observation 26,27. Numerical analyses 

using the bead-spring model28,29, and FE representations of the fibers30 also indicate rapid 

stiffening in compression. Hysteresis during compression cycles is observed when inter-fiber 

friction is present, or if fibers re-arrange during the cyclic loading. 

Adhesion in fiber networks governs both network morphology and mechanics. Adhesion may 

drive fibers to self-organize into bundles, which form a network of bundles on larger scales. Such 

structural changes have been observed in carbon nanotubes (CNT) networks31, collagen32, and 

actin filaments33. Numerical studies of self-assembly of nonbonded fibers in 34 reveal that when 

the strength of adhesion is high enough to overcome the strain energy penalty of fiber self-

assembly, cellular networks of bundles, with bundle branching and merging, are formed. In the 

case of cross-linked networks, adhesive interactions leads to network shrinkage.35 In such cases, 

adhesion stabilizes the structure of pre-stressed, highly bent fibers. Their mechanical behavior is 

quite different from that of cross-linked networks without adhesion.  

Structural self-organization is inhibited by inter-fiber friction.36 In such cases, adhesion stabilizes 

the fiber-fiber contacts and may act as a compacting force. Kulachenko and Uesaka30 performed a 

3D beam-to-beam contact FE-based numerical study to investigate the small strain response and 

failure behavior of finite-length fiber planar mats with excluded volume, adhesion, and friction 

interactions. Deformation localizes at small strains (1-2%) leading to strain softening, but a 

friction-stabilized post-localization response which extends to larger strains is observed. The effect 

of fiber crimp was found to be negligible at modest crimp values. 

Crimp, also known as fiber tortuosity, is an important structural feature of random fiber networks. 

It is known to exist in collagen in-vivo,37,38 while most nonwoven fibrous materials made through 

processes like electrospinning have tortuous fibers.3,5 The effect of crimp on the mechanics of 

cross-linked fiber networks has been studied numerically in 39,40 and experimentally in 39. In cross-
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linked networks, crimp decreases the small-strain elastic modulus, while the functional form of the 

large strain response is independent of crimp.40 Chao et al.5 synthesized and mechanically tested 

electrospun mats with crimped Poly-L-Lactic acid (PLLA) fibers. They report a decrease of the 

yield stress with increasing levels of fiber crimp. However, the post-yield strain-hardening 

modulus is found to increase with increasing crimp.5

These studies show that the physics of non-woven and non-bonded fibrous mats is governed by 

interactions such as excluded volume, adhesion, and friction. In these systems, crimp (fiber 

waviness) and the fiber bending stiffness play an important role. However, a comprehensive 

description relating the fundamental interactions and geometrical features to the macroscale stress-

strain behavior in non-woven and non-bonded mats is still lacking. 

In this work, we perform a detailed study of the effect of fiber crimp and contact properties 

(adhesion and friction) on the mechanics of non-crosslinked fibrous mats stabilized by adhesion. 

We show that the mechanics of nanofibrous mats of this type is dominated by frictional energy 

dissipation. The relationship between the yield stress and post-yield strain hardening, and the 

geometric and adhesion/friction parameters of the system is defined. Networks with infinite and 

finite length fibers are studied, and it is observed that their mechanics is identical, except at large 

strains, when networks of infinite fibers strain stiffen, while those of finite length fibers become 

unstable. Given the prevalence of such fibrous materials in many soft materials, both biological 

and artificial, we expect that the present results will prove useful in design as well as general 

system evaluation. 

2. Models and methodology

2.1 Network generation

We consider linear elastic athermal fibers of elastic modulus , fiber diameter , and contour 𝐸 𝑑

length . The fiber diameter  is used here as the unit of length and  is considered the unit of 𝐿𝑓 𝑑 𝐸𝑑2

force. Fibers form a quasi-2D network in the form of a mat, such as that shown in Fig. 1(a). The 

structure is three-dimensional, as fibers are not allowed to cross. The plane of the mat is X-Y and 

the mat thickness is measured in the Z direction. 

Fibers are allowed to be wavy in their undeformed state and the degree of waviness is characterized 

by the persistence length, . The directional auto-correlation  of the fiber tangent vector can be 𝐿𝑃
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characterized by computing  , where  is the angle between the tangent versors at two cos 𝜃′(𝑙) 𝜃′(𝑙)

points along a given fiber separated by the contour length , and an overbar indicates averaging 𝑙

over multiple fibers and reference points. The directional auto-correlation function is 

approximated as , from where the persistence length parameter, , is cos 𝜃′(𝑙) ≈ exp( ― 𝑙/𝐿𝑃) 𝐿𝑃

obtained. This parameter characterizes the magnitude of fiber waviness. 

Although, in general, fibers may show waviness in 3D, we allow fibers to be wavy only in the X-

Y plane, which is adequate for mats produced by additive processes such as electrospinning. 
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Fig. 1 (a) Representation of a quasi-2D network of wavy fibers. The red dashed arrows show 

the compaction force used in the network generation step.  and  are the model in-plane and  𝐿𝐷 𝐻

thickness dimensions. (b) A realization of compacted, adhesion stabilized quasi-2D fiber 

network resulting from (a). The mat thickness after compaction is h. The figure also shows a 

schematic of the boundary conditions applied when probing the mechanical behavior of the mat.

Each fiber is created as a series of coplanar equal-sized rectilinear segments of length . We use 𝑙𝑠

angularly-restricted correlated random walk in 2D to generate the wavy fibers. To this end, we 

choose a starting point  and a starting direction  for the random walk, which is then generated 𝐩𝟎 𝐧𝟎

with step length . The angular deviation between consecutive steps  and , i.e. 𝑙𝑠 𝑖 𝑖 + 1

, where , which denotes the direction of the walk at step i, is sampled from a cos ―1 (𝐧𝒊 ∙ 𝐧𝒊 + 𝟏) 𝐧𝑖

Uniform Distribution in the interval ( , ). Similar models have been used to characterize and ―𝛼 𝛼

represent planar fibrous biomaterials.4,19 For this procedure,  is related to  as , 𝐿𝑃 𝛼 𝐿𝑃/𝑙𝑠 = 6/𝛼2

which is accurate for small values of , as discussed in the Appendix. Further, the root mean-𝛼

square end to end distance of the fiber is .41 𝑟𝑟𝑚𝑠 =  〈𝑟2〉 = 𝐿𝑃 2(exp ( ― 𝐿𝑓/𝐿𝑃) ― 1 + 𝐿𝑓/𝐿𝑃)

An alternate, equivalent measure of crimp used in the literature is the relative fiber slack 

represented by 42 or alternateivly as .5,30,40𝐿𝑓/𝑟𝑟𝑚𝑠 ― 1, 〈𝐿𝑓/𝑟 〉 ―1

Fibers are generated in a box of size  and parallel to the X-Y plane, Fig. 1(a). Each 𝐿𝐷 × 𝐿𝐷 × 𝐻

such planar fiber is given a random offset in the Z direction between  and + . We study ―𝐻/2 𝐻/2

two types of networks with ‘infinite’ fibers (which percolate across the simulation domain), and 

with fibers of finite length. To generate an infinite fiber, we randomly chose a point on one of the 

four side boundaries and a random inward pointing direction to initiate the random walk. In the 

finite length fiber case, we follow the Mikado network generation process.43,44 We randomly select 

a point  inside the X-Y plane and a random direction . Assuming  to be the mid-point of a 𝐩𝟎 𝐧𝟎 𝐩𝟎

wavy fiber, we start two random walks of length  in the  and  directions. A walk 𝐿𝑓/2 𝐧𝟎 ― 𝐧𝟎

always stops at the domain boundary. In order to limit size effects in the computed effective 

properties of the network, the characteristic lengths of fibers,  and (in the infinite and finite 𝐿𝑃 𝐿𝑓 

length cases, respectively) are taken 2 to 3 times smaller than the model size,  .𝐿𝐷
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This process creates an aperiodic assembly of planar wavy fibers. The actual structure of the quasi-

2D network is obtained by applying a temporary compacting (body) force-field in the Z direction, 

as shown by the dashed arrows in Fig. 1(a). The compaction process is simulated with inter-fiber 

interactions such as excluded volume, friction, and adhesion activated (section 2.2). This enables 

adhesion to stabilize the network. The body force is removed after the compaction process. 

2.2 Inter-fiber interactions

The types of interactions between fibers considered here are of non-bonded type: excluded volume, 

adhesion, and friction. Unlike bonded type interactions such as permanent crosslinks, which act at 

pre-determined sites, non-bonded interactions act only at inter-fiber contacts during the duration 

of the contact. Contacts can be of line or point type. The line contacts prevail in networks in which 

fibers bundle. Such structures were studied in Negi and Picu35 and Sengab and Picu,36 where it is 

shown that adhesion-driven self-organization is prevented once inter-fiber friction is accounted 

for. Point contacts prevail in the presence of friction and adhesion. This motivates the exclusive 

consideration of point contacts in this work.

Fig. 2 Schematic representation of a point contact between two fibers. Note that the contact 

normal  shown in the figure is with respect to fiber . The contact normal for fiber  is .𝐍 𝑓2 𝑓1 ― 𝐍

Fig. 2 shows a schematic of a point contact between two fibers,  and . A point contact is 𝑓1 𝑓2

established when the minimum separation distance,  , between the centerlines of two fibers 𝑔𝑚𝑖𝑛

becomes less than . The local normal direction of the contact, , is defined by the cross-product 𝑑 𝐍
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of the tangent versors to the two fibers at the contact point. It is noted that  is a unit vector 𝐍

(versor). 

The excluded volume interaction, , where  is the Macaulay bracket, leads 𝐅𝐸𝑉
𝑁 = 𝐾𝑝〈𝑑 ―  𝑔𝑚𝑖𝑛〉𝐍 〈〉

to a repulsive force acting on the fibers forming the contact in the direction of  of each of the 𝐍

fibers in contact.   is a constant penalty stiffness for inter-fiber penetration which ensures 𝐾𝑝

numerical convergence and accuracy of the simulation procedure.30

In this work, we implement adhesion by applying a normal attractive force of magnitude  at 𝐹𝐴𝑑ℎ
𝑁

each established contact, when , in addition to the excluded volume interaction. 𝑑 ―  𝑔𝑚𝑖𝑛 > 0

Hence, the net normal contact force is  , where  𝐅𝑁 = [𝐾𝑝〈𝑑 ―  𝑔𝑚𝑖𝑛〉 ― 𝐹𝐴𝑑ℎ
𝑁 𝐻(𝑑 ―  𝑔𝑚𝑖𝑛) ]𝐍 𝐻( )

is the unit step function. This renders the equilibrium  slightly negative at all contacts in 𝑑 ―  𝑔𝑚𝑖𝑛

absence of any external load. In general, adhesion at a contact point is specified using a force-

separation relationship between the normal force at a contact  and contact-penetration 𝐹𝑁

. There are various force-separation relationships proposed in the literature for different (𝑑 ―  𝑔𝑚𝑖𝑛)

strengths of adhesion and stiffness of contacting fibers, such as the Derjaguin-Muller-Toporov 

(DMT)45 and the Johnson-Kendall-Roberts (JKR)46 models. Experimental studies show that 

contacts between polymeric fibers follow the JKR model.47,48 In the present simulations we do not 

represent explicitly the dynamics of contact opening and closing on time scales defined by the 

local elasticity at each individual fiber contact. Instead, we use a threshold condition defined in 

terms of the separation force: the contact opens when the force is larger than a critical value. We 

observe (section 3.3) that very few contacts (less than 5%) open during deformation up to 5% 

strain.

The tangential force required for sliding of contacts between fibers is denoted as . This 𝐹𝐹𝑟𝑖𝑐
𝑇

frictional force can be either of Coulomb type, i.e. proportional to the normal external load applied 

to the contact, or proportional to the contact area. In the case of nanofibers, it is more likely that 

this force is of the second type. This case is described by Bowden and Tabor49 theory of adhesive 

friction where  , with  being the contact area and  the ‘frictional shear stress’. is 𝐹𝐹𝑟𝑖𝑐
𝑇 =  𝐴𝜏0 𝐴 𝜏0 𝜏0 

considered constant for given contacting surfaces in given environment. Experimental studies by 

Homola et al.50 and Carpick et al.51 provide support to this description. In the present models, we 

adopt this physical view. The contact is considered circular in most models. In section 3.5, we 
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discuss the more realistic case in which the contact area is allowed to be non-circular and 

dependent of the angle  between fibers. 𝜃

Therefore, the inter-fiber point contact is defined by two parameters,  and . These forces 𝐹𝐴𝑑ℎ
𝑁 𝐹𝐹𝑟𝑖𝑐

𝑇

can be non-dimensionalized using , which gives the non-dimensional force parameters 𝐸𝑑2 Ψ𝐴𝑑ℎ
𝑁

 and .=  𝐹𝐴𝑑ℎ
𝑁 /𝐸𝑑2 Ψ𝐹𝑟𝑖𝑐

𝑇 =  𝐹𝐹𝑟𝑖𝑐
𝑇 /𝐸𝑑2

2.3 Numerical modeling 

The fibers are meshed using two-node Timoshenko 3D beam elements with element size  equal 𝑙𝑒

to the segment size  of the geometrical discretization described in section 2.1. The aspect ratio of 𝑙𝑠

the elements, , is taken to be 5 for computational efficiency.𝑙𝑒/𝑑 

The model is solved using the commercial Finite Element package ABAQUS (2017). Excluded 

volume interactions are represented using the penalty stiffness model of beam-to-beam contact in 

ABAQUS. Attractive adhesive force  is applied at each contact during the simulation using a 𝐹𝐴𝑑ℎ
𝑁

user-defined FORTRAN subroutine. In this subroutine, the nodal displacements/positions are 

extracted at every solution increment by defining them as ‘sensor-output’ data in ABAQUS. 

Further, at each solution increment the contacting elements are determined from the nodal 

positions using a global contact detection algorithm inspired by the Cell Linked-List (CLL) 

algorithm  in molecular dynamics 52. Specifically, a fixed simulation box is created encompassing 

the elements. This simulation box is divided into cubic cells with edge length larger than, or equal 

to . The elements are associated to their respective cells based on their centroid position and 𝑙𝑒

stored as a linked-list data structure. The detection of contacting elements for each element 

involves searching over its own cell’s elements as well as elements in the neighboring 26 (in 3D) 

cells. This algorithm offers an advantage of having O(n) time complexity, with n being the number 

of elements in the simulation.

 is defined by using the VFRICTION subroutine in ABAQUS. Further, contact damping is 𝐹𝐹𝑟𝑖𝑐
𝑇

also applied for numerical stability. The simulations are carried out using the explicit time 

integration scheme at sufficiently low loading rates to represent quasi-static conditions.
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2.4 Solution procedure

After the initial fiber layout process described in section 2.1, the network is compacted by applying 

a temporary body (line) force on fibers in the Z-direction, , such that , where 𝐹𝑍 𝐹𝑍 =  ― 𝑃0𝜍(𝑡)𝑧

 is proportional to the maximum magnitude of the force and  describes the variation of the 𝑃0 𝜍(𝑡)

force-field with time.  smoothly increases from 0 to 1 and returns to 0 during the compaction 𝜍(𝑡)

process. This procedure enables the formation of contacts which remain stable even after the 

removal of  due to the adhesive forces. The value of  is selected as the minimum value above 𝐹𝑍 𝑃0

which the number of contacts at the end of mat compaction is independent of this parameter. A 

realization of the compacted quasi-2D network is shown in Fig. 1(b).

Similar approaches of fiber deposition have been used in the literature 19,21,22,30.  The compacting 

force is taken to be either a model parameter or equal to the gravitational force19,21. In these cases, 

the compaction force is permanent and determines the final structure of the mat, i.e. the density of 

contacts, the mat porosity, etc. Liu and Dzenis22 compact the network by forcing the ends of  long 

fibers to belong to a common plane. Kulachenko and Uesaka30 successively deposit straight, 

flexible fibers such that every newly deposited fiber bends at contacts and conforms to the 

underlying fibers up to the level where the slope of the resulting fiber undulations in the direction 

perpendicular to the mat plane does not exceed 30. 

To probe the mechanics of these networks, the mats (Fig. 1(b)) are loaded in uniaxial tension by 

imposing displacements along the two model boundaries perpendicular to the X direction. Traction 

free conditions are applied along the model boundaries perpendicular to the Y and Z directions. 

We report the work conjugate second Piola-Kirchhoff stress  and the Green-Lagrange strain Π𝑥𝑥 ε𝑥𝑥

.  is computed as the force per unit length of the boundary and is non-dimensionalized as Π𝑥𝑥 Π𝑥𝑥 =  

.Π𝑥𝑥/𝐸𝑑

 

3. Results

3.1 System parameters

In order to develop a broad physical picture of the structure-properties relation for these networks, 

the system parameters described above, , , and , are varied in a range relevant for Ψ𝐴𝑑ℎ
𝑁 Ψ𝐹𝑟𝑖𝑐

𝑇 𝐿𝑃
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applications.  and  vary in the range .  For a polymeric fiber Ψ𝐴𝑑ℎ
𝑁 Ψ𝐹𝑟𝑖𝑐

𝑇 2.5 × 10 ―6 ― 2.5 × 10 ―4

of elastic modulus , diameter , and surface energy (J/m2) ,  of a point contact between 𝐸 𝑑 𝛾 Ψ𝐴𝑑ℎ
𝑁

two perpendicular fibers calculated as per JKR theory 46 is . For a polyacrylonitrile 1.5𝜋𝛾/𝐸𝑑

(PAN) nanofiber with surface energy   0.050 J/m2 53,   3 GPa,   results  𝛾 𝐸 Ψ𝐴𝑑ℎ
𝑁 ~2.62 × 10 ―4

for  300nm and  for 30μm. Likewise, for polystyrene (PS) with E  3 GPa, 𝑑 = ~2.62 × 10 ―6 𝑑 =  

  0.041 J/m2 53,  = 300 nm and 30μm  and  respectively. 𝛾 𝑑 Ψ𝐴𝑑ℎ
𝑁 ~2.15 × 10 ―4 ~2.15 × 10 ―6

These values are typical for various polymeric nanofibers.  is also taken to be in the same Ψ𝐹𝑟𝑖𝑐
𝑇

range as . While,  and  may not vary significantly from one polymeric material to another, Ψ𝐴𝑑ℎ
𝑁 𝛾 𝐸

it is by adjusting the fiber diameter, , that  and  acquire a broad range of variation.  𝑑 Ψ𝐴𝑑ℎ
𝑁 Ψ𝐹𝑟𝑖𝑐

𝑇 𝐿𝑃

is taken to be , , , , and  in separate simulations. The network density, ∞ 500𝑑 250𝑑 167𝑑 100𝑑

denoted by , is measured as the total fiber length per unit projected area of the mat in the X-Y 𝜌

plane.  is the nondimensional network density, which is taken here to be in the range 0.48 to 𝜌𝑑

1.92. 

Table 1 presents specific cases considered in this work. Three realizations are considered for each 

of these cases and the average response of these realizations is presented. Cases I and II represent 

networks of straight infinite fibers of two densities,  = 0.96 and 1.92 respectively. Case III to 𝜌𝑑

VI represent networks of infinite wavy fibers of same density but increasing persistence length, 

. Cases VII and VIII correspond to networks of finite length fibers which are wavy and straight, 𝐿𝑃

respectively, but having the same network density.

Case 
No.

𝑳𝑷/𝒅 𝑳𝒇/𝒅 𝚿𝑨𝒅𝒉
𝑵 𝚿𝑭𝒓𝒊𝒄

𝑻 𝝆𝒅 𝝉

I ∞ ∞ various Ψ𝐴𝑑ℎ
𝑁 /10 0.96 0

II ∞ ∞ various Ψ𝐴𝑑ℎ
𝑁 /10 1.92 0

III 250 ∞ various various 0.48 1.24

IV 100 ∞ 2.5 × 10 ―5 2.5 × 10 ―5 0.48 2.91

V 167 ∞ 2.5 × 10 ―5 2.5 × 10 ―5 0.48 1.85

VI 500 ∞ 2.5 × 10 ―5 2.5 × 10 ―5 0.48 0.39

VII 250 250 2.5 × 10 ―4 2.5 × 10 ―5 0.48 0.15

VIII ∞ 250 2.5 × 10 ―4 various 0.48 0
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Table 1. Parameters of networks considered in this work.  indicates ‘infinite’ fibers and 𝐿𝑓/𝑑 = ∞

 indicates straight fibers.  is the nondimensional density.  is the tortuosity, defined 𝐿𝑃/𝑑 = ∞ 𝜌𝑑 𝜏

as , where  is end-to-end distance of a fiber and the overbar indicates averaging 𝜏 = 𝐿𝑓/𝑟 ―1 𝑟

over the entire fiber set.

Fig. 3(a) shows the parametric space of these systems. The space is defined by the fiber material 

property , the geometric parameter, , and the contact properties . The figure 𝐸𝑑2 𝐿𝑃 F𝐴𝑑ℎ
𝑁 ,F𝐹𝑟𝑖𝑐

𝑇

highlights the region of the parametric space considered in this work. The region where Ψ𝐴𝑑ℎ
𝑁 ,Ψ𝐹𝑟𝑖𝑐

𝑇

(the slopes indicated in Fig. 3(a) and 3(b) represent  corresponds to ≪   2.5 × 10 ―6 Ψ𝐴𝑑ℎ
𝑁 ,Ψ𝐹𝑟𝑖𝑐

𝑇 ) 

the trivial case of negligible inter-fiber interactions, in which the response of the mat is simply the 

average of the response of individual wavy fibers loaded by the far field (no fiber-fiber interactions 

and “infinite” fibers). When , adhesion is strong and it is expected that Ψ𝐴𝑑ℎ
𝑁 ,Ψ𝐹𝑟𝑖𝑐

𝑇 ≫  2.5 × 10 ―4

it drives fiber alignment and bundling leading to non-crosslinked networks such as those discussed 

in Ref. 34. Further, straight fibers ( ) running across the problem domain are too stiff to be 𝐿𝑃→∞

affected by contact forces. In such networks, the mechanics is governed largely by the constitutive 

behavior of the fibers22. Likewise, the regime of very small  is not realistic. Therefore, the scope 𝐿𝑃

of this work is limited to the shaded range in Fig. 3. Fig. 3(b) shows a projection of the parametric 

space in Fig. 3(a) along with the locus corresponding to a broad range of polymeric mats of nano- 

and micro-fibers. Most of this locus is covered by the range of parameters considered in here 

(shaded region). 
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Fig. 3 (a) Parametric space of the present problem, with the region considered in this study 

shown shaded (in red). (b) Projection of the space shown in (a) showing regimes discussed in 

text and the locus corresponding to polymeric nano and microfiber mats (curved dashed arrow). 

The slopes indicated in (a) and (b) represent .Ψ𝐴𝑑ℎ
𝑁 ,Ψ𝐹𝑟𝑖𝑐

𝑇

3.2 Structure of fiber mats

The structure of the mat is characterized by the mean fiber contour length between contacts, , 𝑙𝑐

and the mat thickness, . These result from the collective organization of the fibers for given set ℎ

of network parameters , and . The objective of this section is to define this relationship. 𝜌, 𝑑 Ψ𝐴𝑑ℎ
𝑁

Parameter  depends on the degree of mat compaction under the action of adhesion and hence is 𝑙𝑐

controlled by . Note that  is significantly larger than the Kallmes-Corte54 prediction for a set Ψ𝐴𝑑ℎ
𝑁 𝑙𝑐

of straight lines placed at random on a plane (2D Mikado network), , because in the 3D  𝜋/2𝜌

structure fibers do not make contacts at all points at which they cross in the X-Y projection.  

Similarly, the thickness of the mat, h, is also an outcome of the model. h is evaluated as twice the 

standard deviation of the mass distribution in the Z direction after compaction (Fig. 1(a)).

 

Fig. 4 (a) Variation of  with  for systems listed in Table 1. (b) Relation between the mat 𝑙𝑐 Ψ𝐴𝑑ℎ
𝑁

thickness , the density, , and the mean segment contour length . The bars represent the ℎ 𝜌 𝑙𝑐

standard error of 3 realizations.
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Fig. 4(a) shows the relation between  and . The curves correspond to three densities (Table 𝑙𝑐 Ψ𝐴𝑑ℎ
𝑁

1). It is seen that  and  have essentially no effect on , while a power law is established between 𝜌 𝐿𝑃 𝑙𝑐

 and :𝑙𝑐 Ψ𝐴𝑑ℎ
𝑁

𝑙𝑐~Ψ𝐴𝑑ℎ
𝑁

―0.29 (1)

This indicates that, as opposed to the purely geometric analysis leading to the Kallmes-Corte 

relation where  is an extensive quantity related to , the segment length  in this problem is 𝑙𝑐 𝜌 𝑙𝑐

defined by mechanics and it is intensive in nature, i.e. independent of . 𝜌

Fig. 4(b) shows that  is proportional to . As  increases, the network thickness increases at 𝑙𝑐 ℎ 𝜌

constant internal structure and , Fig. 4(a). Therefore, the thickness of the networks  must be 𝑙𝑐 ℎ

proportional to . We report  as a normalized (intensive) measure of height. The overlap of 𝜌 ℎ/𝜌𝑑2

the  vs  curves for networks of various  in Fig. 4(b) confirms the intensive nature of ℎ/𝜌𝑑2 𝑙𝑐/𝑑 𝜌

this parameter. Combining the results in Fig. 4(a) – (b), it results that . Note that, ℎ ~ 𝜌𝑑2Ψ𝐴𝑑ℎ
𝑁

―0.29

as stated above, all these results correspond to the state of the mat after removing the compaction 

force. 

Since the effective volume of the mat is  and  is essentially independent of , the ℎ𝐿2
𝐷 𝐿𝐷 Ψ𝐴𝑑ℎ

𝑁

proportionality relation in Fig. 4(b) implies:

𝑙𝑐 ∝
ℎ𝑑𝐿2

𝐷

𝜌𝑑2𝐿2
𝐷

∝
𝑑


(2)

where  is the volume fraction of fibers in the network.

Forced packing of slender fibers under compression without inter-fiber adhesion or friction was 

studied analytically in 24,25 for 3D networks, and in 23 for quasi 2D networks. A general expression 

derived for  in 25,55 is , where  depends on fiber orientation (  is  and   for 𝑙𝑐 𝑙𝑐 =  𝜋𝑑/8𝑓 𝑓 𝑓 𝜋/4 2/𝜋

3D and 2D random orientations respectively). Eqn (2) is in agreement with this analytic result. 

These analyses also indicate that the pressure required to compact the network to achieve fiber 

volume fraction  is , where  is the volume fraction of the as-deposited packing,  𝑝 ∝ 𝐸𝐼(𝑛 ―  𝑛
0) 0

and  is  and  for 3D 24 and 2D 23 networks respectively. The networks considered in the present 𝑛 3 5

work are held together by the inter-fiber adhesion, with no external pressure being applied. To 
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understand the scaling relations in Fig. 4 in the context of the previous results on pressure-driven 

compaction, we consider that the adhesion forces act as an equivalent pressure of magnitude: 

𝑝𝑒𝑓𝑓~𝜌
𝐹𝐴𝑑ℎ

𝑁

𝑙𝑐
(3)

Using  in the pressure-density relation for quasi-2D mats,  23, and assuming 𝑝𝑒𝑓𝑓 𝑝 ∝ 𝐸𝐼(5 ―  5
0) 0

, it results:≪ 

𝑝𝑒𝑓𝑓~𝜌
𝐹𝐴𝑑ℎ

𝑁

𝑙𝑐
~𝐸𝐼5~𝐸𝐼(𝑑

𝑙𝑐)5

(4)

which implies that

𝐹𝐴𝑑ℎ
𝑁 ∝ 𝑙 ―4

𝑐 (5)

Eqn (5) implies which is in good agreement with the result in Fig 4(a) and eqn (1).𝑙𝑐 ~ Ψ𝐴𝑑ℎ
𝑁

―0.25

The deviation from power-law scaling for  seen in Fig. 4(a) is attributed to the  Ψ𝐴𝑑ℎ
𝑁 < 2.5 × 10 ―6

size-effect which comes into play when  approaches the simulation domain size . On the other 𝑙𝑐 𝐿𝐷

hand, the deviation observed when  is a result of  approaching the 2D lower Ψ𝐴𝑑ℎ
𝑁 > 2.5 × 10 ―4 𝑙𝑐

bound predicted by the Kallmes-Corte relations ( ), a situation in which the present concepts 𝜋/2𝜌

do not apply. This is supported by the observation that the deviation increases with decreasing  𝜌

(compare case III ( ) with cases I ( ) and II ( )).𝜌𝑑 = 0.48 𝜌𝑑 = 0.96 𝜌𝑑 = 1.92

3.3  Tensile response of mats with infinite wavy fibers

In this section we discuss the dependence of the tensile response of the mats of infinite wavy fibers 

on system parameters describing friction and adhesion,  and , and on fiber tortuosity, Ψ𝐹𝑟𝑖𝑐
𝑇 Ψ𝐴𝑑ℎ

𝑁

. Fig. 5(a) shows stress-strain curves obtained with mats belonging to case III (Table 1), having 𝐿𝑃

same  ( ) and  ( ), and different . The curves exhibit two Ψ𝐴𝑑ℎ
𝑁 Ψ𝐴𝑑ℎ

𝑁 =  2.5 × 10 ―5 𝐿𝑃  𝐿𝑃 = 250𝑑 Ψ𝐹𝑟𝑖𝑐
𝑇

regimes. The first regime (OA) is linear elastic and is observed at very small strains. In this regime, 

the contacts are not loaded enough for sliding to occur, and hence they behave similar to permanent 

bonds. Once the tangential load exceeds  at some contacts, slippage begins. In regime II, Ψ𝐹𝑟𝑖𝑐
𝑇

(AB) a moving phase percolating across the model forms, thereby producing global plastic flow. 

The curves are described by two parameters: the effective yield stress, , and the strain hardening Π𝑦
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modulus observed in regime II, . The yield stress is defined conventionally as the intercept of  K𝑇

the tangent to the regime II branch of the curve with the vertical axis.

Fig. 5(b) shows the stress-strain response of cases III, IV, V, and VI, i.e. networks with Ψ𝐴𝑑ℎ
𝑁 =  

 and various . These curves exhibit the two regimes described above, and a Ψ𝐹𝑟𝑖𝑐
𝑇 =  2.5 × 10 ―5 𝐿𝑃

third regime of rapid strain stiffening at larger strains (BC in Fig. 5(b)). This regime is observed 

only in the case of infinite fibers when some of the wavy fibers straighten out and are loaded 

axially forming stress-paths. This phenomenon is also observed in cross-linked networks subjected 

to tension at large strains.42,56 The onset of regime III depends on  and moves to larger strains 𝐿𝑃

as  decreases. 𝐿𝑃

     

Fig. 5 Stress-strain curves for networks with (a) different  and same , and (b) different Ψ𝐹𝑟𝑖𝑐
𝑇 𝐿𝑃

 and same .  in all cases. The bars represent the standard error of the 3 𝐿𝑃 Ψ𝐹𝑟𝑖𝑐
𝑇 Ψ𝐴𝑑ℎ

𝑁 = 2.5 × 10 ―5

realizations.

In order to understand the behavior shown in Fig. 5, it is useful to discuss the nature of stress in 

these networks. We show here that mechanics is associated with frictional dissipation at contacts, 

which contrasts with the usual situation in cross-linked networks, where stress is associated with 

the variation of the strain energy during deformation. 

To this end, consider a fiber of the mat, having elastic modulus E, diameter , bending stiffness 𝑑

EI, persistence length , contour length , and end-to-end distance . The effective small-strain 𝐿𝑃 𝐿𝑓 𝑟
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stiffness of the wavy fiber measured by stretching in the direction of the end-to-end vector can be 

estimated as .42 If a small strain  is applied, the strain energy is . 45𝐿𝑃𝐸𝐼/𝐿4
𝑓 𝜀 (45𝐿𝑃𝐸𝐼/𝐿4

𝑓)𝑟2𝜀2/2

On the other hand, energy is dissipated at sliding contacts with other fibers. Assuming affine 

deformation of the fiber, the expected frictional work performed during sliding is estimated to be 

approximately . The mechanics is dominated by frictional dissipation if F𝐹𝑟𝑖𝑐
𝑇 𝑟𝜀𝐿𝑓/2𝑙𝑐 F𝐹𝑟𝑖𝑐

𝑇 𝑟𝜀𝐿𝑓/2

. This simplifies to . For parameters such as 𝑙𝑐 ≫ (45𝐿𝑃𝐸𝐼/𝐿4
𝑓)𝑟2𝜀2/2 Ψ𝐹𝑟𝑖𝑐

𝑇 > 2.2𝜀(𝑙𝑐𝐿𝑃𝑟𝑑2/𝐿5
𝑓)

those considered here (specifically, , , , and ) this 𝑙𝑐 = 15𝑑 𝑟 ≈ 𝐿𝑓 ≈ 𝐿𝐷 = 500𝑑 𝜀 = 0.05 𝐿𝑃 = 250𝑑

inequality can be written . Since  in the Ψ𝐹𝑟𝑖𝑐
𝑇 > 6.5 × 10 ―9 Ψ𝐹𝑟𝑖𝑐

𝑇 ∈ (2.5 × 10 ―6, 2.5 × 10 ―5)

current models, mechanics is dissipation-dominated (non-conservative) rather than strain energy-

dominated (conservative). This is also observed by directly comparing the strain energy variation 

during deformation, which is the energetic component of stress, with the work performed by the 

tractions applied at the boundary of the model. The strain energy represents only ~15% of the total 

work, which supports the conclusion that the mechanics in these systems is associated with 

frictional dissipation. 

Page 18 of 33Soft Matter



19

Fig. 6 Variation during deformation of ((a) and (c)) the total number of contacts, , and of the 𝑁𝑐

number of actively sliding contacts, , and of ((b) and (d)) the mean slip rate at actively sliding 𝑁𝑎

contacts, .  and  are normalized by the total number of contacts in the strain-𝑠 = 〈𝑑𝑠/𝑑ε𝑥𝑥〉 𝑁𝑐 𝑁𝑎

free state, .  Figures (a) and (b) correspond to mats of different  and same   𝑁0 Ψ𝐹𝑟𝑖𝑐
𝑇 𝐿𝑃 = 250𝑑

(case III in Table 1), while (c) and (d) correspond to mats of different  and same 𝐿𝑃 Ψ𝐹𝑟𝑖𝑐
𝑇 =

 (cases III to VI in Table 1) . The stress-strain curves for these networks are shown in 2.5 × 10 ―5

Fig. 5(a) and Fig. 5(b), respectively. The bars indicate the standard error of three realizations.

With this understanding of the origin of stress, we discuss now the kinematics. To this end, we 

consider case III networks whose stress-strain curves are shown in Fig. 5(a). These have same  𝐿𝑃

and different . Three parameters are monitored: the total number of contacts, , the number Ψ𝐹𝑟𝑖𝑐
𝑇 𝑁𝑐

of actively sliding contacts in each strain increment, , and the rate of slip in the active contacts. 𝑁𝑎

The mean rate of slip is defined as , where  is the magnitude of slip occurring at a 𝑠 = 〈𝑑𝑠/𝑑ε𝑥𝑥〉 𝑠

contact,  is the rate of slip at given contact versus the applied far-field strain, and the 𝑑𝑠/𝑑ε𝑥𝑥

angular bracket indicates averaging over all contacts in the model. The variation with strain of 

these three parameters is shown in Fig. 6. Fig. 6(a) shows  and  normalized by the total 𝑁𝑐 𝑁𝑎

number of contacts in the initial configuration, at zero strain, . The total number of contacts 𝑁0

remains constant during deformation, up to the maximum strain applied (5%). The number of 

actively sliding contacts, , increases fast during regime I of the stress-strain curve and remains 𝑁𝑎

Page 19 of 33 Soft Matter



20

constant in regime II.  decreases with increasing . The mean slip rate at contacts, , 𝑁𝑎 Ψ𝐹𝑟𝑖𝑐
𝑇 𝑠

increases continuously with strain in regime II and is essentially independent of , Fig. 6(b). Ψ𝐹𝑟𝑖𝑐
𝑇

Considering that the external work performed by the applied stress corresponds to frictional 

dissipation at contacts, one may write:

Π𝑥𝑥~𝑑𝑊𝑓𝑟𝑖𝑐/𝑑ε𝑥𝑥~ Ψ𝐹𝑟𝑖𝑐
𝑇 𝑁𝑎𝑠 (6)

Eqn (6) also indicates the dependence of  on ,  and :K𝑇 Ψ𝐹𝑟𝑖𝑐
𝑇 𝑁𝑎 𝑠

K𝑇~𝑑(Ψ𝐹𝑟𝑖𝑐
𝑇 𝑁𝑎𝑠) 𝑑𝜀𝑥𝑥 =  Ψ𝐹𝑟𝑖𝑐

𝑇 𝑁𝑎
𝑑𝑠 𝑑𝜀𝑥𝑥 (7)

Hence, for each of the stress-strain curves in Fig. 5(a) (given ), the strain hardening modulus Ψ𝐹𝑟𝑖𝑐
𝑇

 should be non-zero since  increases continuously with strain, Fig. 6(b). This traces the origin K𝑇 𝑠

of the regime II strain hardening to the gradual increase of the sliding distance per increment of 

the applied far-field strain observed in Fig. 6(b). 

Since  is independent of  and  decreases with increasing , it results that  𝑑𝑠 𝑑𝜀𝑥𝑥 Ψ𝐹𝑟𝑖𝑐
𝑇 𝑁𝑎 Ψ𝐹𝑟𝑖𝑐

𝑇  K𝑇

should increase sub-linearly with . Fig. 7(a) shows the variation of  with  determined Ψ𝐹𝑟𝑖𝑐
𝑇  K𝑇 Ψ𝐹𝑟𝑖𝑐

𝑇

from the curves in Fig. 5(a). It is seen that 

K𝑇~Ψ𝐹𝑟𝑖𝑐
𝑇

3/4 (8)

Fig. 7(b) shows the variation of  with  obtained with Case III type models having same  K𝑇 Ψ𝐴𝑑ℎ
𝑁

. Again, we observe a power-law relation:Ψ𝐹𝑟𝑖𝑐
𝑇

K𝑇~Ψ𝐴𝑑ℎ
𝑁

0.38 (9)

Eqn (1) indicates that  changes the structure of the network. The number of contacts, , is Ψ𝐴𝑑ℎ
𝑁 𝑁𝑐

inversely proportional to  (at given ) and, using eqn (7) one infers that 𝑙𝑐 𝐿𝑝 K𝑇~𝑁𝑎~𝑁𝑐~𝑙 ―1
𝑐 ~

. This is in reasonable agreement with the exponent in eqn (9), which provides support for Ψ𝐴𝑑ℎ
𝑁

0.29

the physical interpretation proposed here. 

The dependence of the yield stress  on system parameters can be also understood based on eqn Π𝑦

(6) and the data in Fig. 6(a) – (b). At yield,  is independent of , while  decreases with 𝑠 Ψ𝐹𝑟𝑖𝑐
𝑇 𝑁𝑎

increasing . Therefore,  increases sub-linearly with , as can be seen in Fig. 5(a). More Ψ𝐹𝑟𝑖𝑐
𝑇 Π𝑦 Ψ𝐹𝑟𝑖𝑐

𝑇

precisely,   which is a relation similar to eqn (8). Π𝑦~Ψ𝐹𝑟𝑖𝑐
𝑇

3/4
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Fig. 7 Dependence of regime II strain hardening, , on (a)  (with K𝑇 Ψ𝐹𝑟𝑖𝑐
𝑇 Ψ𝐴𝑑ℎ

𝑁 =  2.5 × 10 ―5  ), 

and (b)  (with ).Ψ𝐴𝑑ℎ
𝑁 Ψ𝐹𝑟𝑖𝑐

𝑇 =  2.5 × 10 ―5  

The dependence of the stress-strain curve on the fiber persistence length parameter, , shown in 𝐿𝑃

Fig. 5(b) can be understood along the same lines. Fig. 6(c) – (d) show the variation of  and of  𝑁𝑎 𝑠

during the deformation of networks with various  and same  and . We observe that  𝐿𝑃 Ψ𝐴𝑑ℎ
𝑁 Ψ𝐹𝑟𝑖𝑐

𝑇 𝑁𝑎

is independent of  (Fig. 6(c)), while  increases continuously with increasing  (Fig. 𝐿𝑃
𝑑𝑠 𝑑𝜀𝑥𝑥 𝐿𝑃

6(d)) – a situation opposite to that observed when  is varied at constant . This indicates Ψ𝐹𝑟𝑖𝑐
𝑇 𝐿𝑃

that, based on eqn (7),  should increase with . This function is shown in Fig. 8. Furthermore, K𝑇 𝐿𝑃

 at yield increases with increasing  (Fig. 6(d)), while  is independent of  (Fig. 6(c)). It 𝑠 𝐿𝑃 𝑁𝑎 𝐿𝑃

results, based on eqn (6), that the yield stress should increase with increasing , which justifies 𝐿𝑃

the trend observed in Fig. 5(b). 
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Fig. 8 Variation of the strain hardening modulus  in regime II with the fiber persistence K𝑇

length, . Note that this increase of  as fibers become less tortuous is not a result of gradual 𝐿𝑃 K𝑇

pulling out of crimp, which become dominant only in regime III and in networks of infinite 

fibers.

3.4 Contacts with stochastic properties in mats of infinite wavy fibers

In the previous section it is assumed that all contacts in a given model have identical  and Ψ𝐴𝑑ℎ
𝑁

. Since this is not the case in realistic mats, it is of interest to investigate the effect of Ψ𝐹𝑟𝑖𝑐
𝑇

stochasticity of contact properties on the stress-strain response. For this purpose,  for each Ψ𝐹𝑟𝑖𝑐
𝑇

contact in the model is sampled from a Gamma distribution with a specified mean, , and Ψ𝐹𝑟𝑖𝑐
𝑇

coefficient of variation,  (also characterized by shape parameter ( ) and scale parameter ( )). cΨ 𝑆𝑠𝑝 𝑆𝑠𝑐

 was taken to be identical at all contacts. Case III type networks are chosen for this analysis, Ψ𝐴𝑑ℎ
𝑁

with  . The coefficient of variation of ,   is varied in the interval  Ψ𝐴𝑑ℎ
𝑁 = Ψ𝐹𝑟𝑖𝑐

𝑇 = 2.5 × 10 ―5 Ψ𝐹𝑟𝑖𝑐
𝑇 cΨ

(0, 1.6). Alternatively,  is in the range (0.39, ) and  is in the range (0, 2.56) 𝑆𝑠𝑝 𝑆𝑠𝑐/Ψ𝐹𝑟𝑖𝑐
𝑇

respectively.

Fig. 9(a) shows the stress-strain responses for various  values. The yield stress  decreases as cΨ Π𝑦

 increases, while  is unaffected. Fig. 9(b) shows the variation of  with  indicating that cΨ K𝑇 Π𝑦 cΨ Π𝑦

. In various other systems with stochastic microstructure, it is observed that system-~1 ― 0.4cΨ

scale properties decrease with increasing magnitude of fluctuations of local material properties. 

The effective yield stress of a continuum with spatially fluctuating local yield stress values 

decreases with increasing the amplitude of these fluctuations.57,58 The stiffness of crosslinked 

networks of fibers of non-identical elastic properties also decreases as the variability of fiber 

properties increases.40 This applies to various types of continua, as discussed in 59. Likewise, the 

strength of crosslinked networks in which the crosslink strength is sampled from a distribution 

decreases as the coefficient of variation of the distribution increases, while its mean is kept 

constant.60 
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Fig. 9 (a) Stress-strain curves for networks with stochastic , for increasing coefficient of Ψ𝐹𝑟𝑖𝑐
𝑇

variation of , , and at constant mean of the respective distribution, . (b) Variation of Ψ𝐹𝑟𝑖𝑐
𝑇 cΨ Ψ𝐹𝑟𝑖𝑐

𝑇

the yield stress of the curves in (a) with .cΨ

We also considered networks in which  is stochastic, while  is identical at all contacts. Ψ𝐴𝑑ℎ
𝑁 Ψ𝐹𝑟𝑖𝑐

𝑇

We observe that fluctuations of  have no effect on the stress-strain curve, which is identical Ψ𝐴𝑑ℎ
𝑁

to that of a system of homogeneous friction and adhesion with  being equal to the mean of Ψ𝐴𝑑ℎ
𝑁

the distribution of  values of the stochastic case. Ψ𝐴𝑑ℎ
𝑁

3.5 Effect of elliptical contacts in mats of infinite wavy fibers

A key assumption of the analysis presented in the previous sections is that contacts are circular. 

This implies that  and  are independent of the inter-fiber angle ( ) (see inset to Fig. 10). Ψ𝐴𝑑ℎ
𝑁 Ψ𝐹𝑟𝑖𝑐

𝑇 𝜃

Since two cylinders establish elliptical contacts of area dependent on the angle between the 

cylinder axes, it is important to evaluate the error introduced in the present models by ignoring this 

geometric feature. To this end, we allow contacts to be elliptical if . The elliptical contact 𝜃 < 90°

model used is informed by the approximation of JKR contacts described in 61,62. The curvatures of 

the contact surface at the major and minor semi-axes is  and 𝑅′ = 0.5𝑑/(1 ―  cos 𝜃) 𝑅′′

. We combine  and  to calculate an equivalent radius of curvature = 0.5𝑑/(1 +  cos 𝜃) 𝑅′ 𝑅′′ 𝑅𝑒 =

, which is assigned to an equivalent circular contact 61,62. Using this radius in 𝑅′𝑅′′ = 0.5𝑑/sin 𝜃

the standard JKR model of circular contact area, we obtain the normal separation force (scales 

linear with ) and the area of the contact (scales as ) 46. According to the friction model used 𝑅𝑒 𝑅4/3
𝑒
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in this work, the friction force is proportional to the contact area. Hence, the -dependent  𝜃 Ψ𝐴𝑑ℎ
𝑁

and  become: Ψ𝐹𝑟𝑖𝑐
𝑇

Ψ𝐴𝑑ℎ
𝑁 (𝜃) =  Ψ𝐴𝑑ℎ

𝑁 /sin 𝜃 (10a)

Ψ𝐹𝑟𝑖𝑐
𝑇 (𝜃) =  Ψ𝐹𝑟𝑖𝑐

𝑇 /(sin 𝜃)4/3 (10b)

where  and  are normalized normal and tangential separation forces at . The Ψ𝐴𝑑ℎ
𝑁 Ψ𝐹𝑟𝑖𝑐

𝑇 𝜃 = 90°

analysis in 61,62, indicates that this method leads to errors in the contact separation force on the 

order of 20% to 30% for  as high as 25. Further, in order to prevent the unphysical divergence 𝑅′′/𝑅′

of expressions (10) when  is small, we assign the values corresponding to  to all contacts 𝜃 𝜃 = 10°

formed by fibers crossing at angles smaller than  . The analysis was performed using Case III 10°

type networks with  .Ψ𝐴𝑑ℎ
𝑁 =  Ψ𝐹𝑟𝑖𝑐

𝑇 =  2.5 × 10 ―5

We observe that the structure of mats (defined by  and , Fig. 4(b)) with elliptical contacts 𝑙𝑐 ℎ/𝜌𝑑2

of variable  (eqn (10a)) is identical to that of mats of circular contacts and identical  Ψ𝐴𝑑ℎ
𝑁 (𝜃) Ψ𝐴𝑑ℎ

𝑁

set equal to the mean of the  distribution. This result is identical to that noted in section Ψ𝐴𝑑ℎ
𝑁 (𝜃)

3.4. 

Further, we compare the stress-strain curves of mats with elliptical contacts of parameters 

described by eqn (10), with that of geometrically identical mats with circular contacts and with 

either: (case i)  set equal to the mean of , and  set equal to the mean of  Ψ𝐴𝑑ℎ
𝑁 Ψ𝐴𝑑ℎ

𝑁 (𝜃) Ψ𝐹𝑟𝑖𝑐
𝑇 Ψ𝐹𝑟𝑖𝑐

𝑇 (𝜃)

(circular contacts of identical properties), and (case ii)  set equal to the mean of , and Ψ𝐴𝑑ℎ
𝑁 Ψ𝐴𝑑ℎ

𝑁 (𝜃)

 rendered stochastic and -independent, with its mean and coefficient of variation  equal Ψ𝐹𝑟𝑖𝑐
𝑇 𝜃 cΨ

to the mean and the coefficient of variation of . Fig. 10 shows the stress-strain curves for Ψ𝐹𝑟𝑖𝑐
𝑇 (𝜃)

these three cases. It is seen that the model with elliptical contacts behaves identical to (case ii) in 

which contacts are circular, but of stochastic properties. In agreement with the results presented in 

section 3.4, neglecting the stochasticity of contact properties leads to an increase of the yield stress, 

but to no variation of regime II strain hardening, .K𝑇
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Fig. 10 Stress-strain curves for networks with elliptical contacts and for cases (i) and (ii) 

described in the text. 

3.6 Tensile response of mats with finite length wavy fibers

In this section, we consider networks of finite length wavy fibers corresponding to types VII and 

VIII, Table 1. The contour fiber length is set at . To limit size effects, the domain size 𝐿𝑓 = 250𝑑

is taken three times larger than  ( ).  in all cases and  is varied. 𝐿𝑓 𝐿𝐷 =  3𝐿𝑓 Ψ𝐴𝑑ℎ
𝑁 =  2.5 × 10 ―4 Ψ𝐹𝑟𝑖𝑐

𝑇

As in the case of infinite fibers (section 3.3), the circular contact model with no variability is 

selected for this study. In models corresponding to type VII networks, , while in 𝐿𝑃 = 𝐿𝑓 = 250𝑑

type VIII networks, fibers are straight, with .𝐿𝑃 =  ∞

Page 25 of 33 Soft Matter



26

Fig. 11 (a) Stress-strain curves for networks of finite length, straight fibers with different values 

of . In all cases,  and . Arrows indicate the peak stress.  Ψ𝐹𝑟𝑖𝑐
𝑇 Ψ𝐴𝑑ℎ

𝑁 =  2.5 × 10 ―4 𝐿𝑃 = 𝐿𝑓 = 250𝑑

(b) Variation of the peak stress with . The bars represent the standard error of 3  Ψ𝐹𝑟𝑖𝑐
𝑇

realizations.

Stress-strain curves for type VIII networks of finite length straight fibers with various  values Ψ𝐹𝑟𝑖𝑐
𝑇

but same  are shown in Fig. 11(a). All networks undergo localization immediately after Ψ𝐴𝑑ℎ
𝑁

entering regime II and the load carrying capacity reduces gradually over a prolonged post-

localization regime. This is the stabilizing consequence of inter-fiber friction. Fig. 11(b) shows the 

peak stress of the curves in Fig. 11(a), i.e. the network strength, , function of . A linear Π𝑓 Ψ𝐹𝑟𝑖𝑐
𝑇

relation between these two quantities emerges, which is a result of the frictional nature of stress in 

these networks. It is of interest to observe that in crosslinked networks that fail due to crosslink 

rupture, the strength of the network is also proportional to the strength of the crosslinks, as 

observed in numerical 60,63 and experimental 64 studies .

Fig. 12 Stress-strain curves for networks of straight (case VIII) and wavy (case VII) fibers of 

finite length and same friction and adhesion parameters. 

The effect of the persistence length  is shown in Fig. 12. Case VII and case VIII networks are 𝐿𝑃

considered, having the same contact properties,  and , Ψ𝐴𝑑ℎ
𝑁 =  2.5 × 10 ―4 Ψ𝐹𝑟𝑖𝑐

𝑇 =  2.5 × 10 ―5

same , and same density  (Table 1). The case VII networks have finite , while case 𝐿𝑓 𝜌𝑑 = 0.48 𝐿𝑃

VIII networks have straight fibers. The stress-strain curve of the mat with straight fibers has a well-
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defined peak corresponding to strain localization. The peak moves to larger strains, and it is less 

pronounced (localization is more diffuse) in the case of wavy fibers. Based on the post-localization 

response, it can be stated that the mat of straight fibers is more brittle compared to that with wavy 

fibers, with more energy being dissipated in this second case. Similar stress-strain response for 

finite length straight fiber networks was also observed in 30.

The kinematics of these networks is based on two main mechanisms: straightening of wavy fibers 

and fiber pull-out. The mechanics of straightening of wavy fibers is identical to that discussed for 

mats of infinite wavy fibers. The gradual removal of fiber slack during straining leads to some 

level of strain stiffening (non-zero ). Slip at consecutive contacts along given fiber is largely K𝑇

uncorrelated when waviness is pronounced. As fibers straighten, axial stress develops gradually. 

Since this is an energetically unfavorable mode, fiber pullout and consequently, localization may 

follow. The resistance to fiber pullout depends on the total number of contacts per fiber and . Ψ𝐹𝑟𝑖𝑐
𝑇

Straight chopped fibers have no slack and therefore accommodate strain only through fiber pullout 

which explains the localization at small strains. Thus, fiber waviness delays strain localization 

thereby rendering the network more ductile. 

4. Conclusions

Adhesion in quasi-2D mat-like networks of fibers determines their structure as well as mechanical 

properties. In such adhesion-stabilized networks, the mean contour length between contacts and 

the network thickness are power law related to the strength of adhesion. Fiber tortuosity has little 

effect on the structural parameters such as the mean contour length between contacts and the 

network thickness.

The effect of fiber tortuosity, adhesion, and friction on the tensile mechanical response of these 

networks is discussed. It is shown that mechanics is controlled by frictional dissipation rather than 

by the variation of the strain energy during deformation. The stress-strain response is, in general, 

bi-linear. The post-yielding strain hardening modulus increases with increasing friction sub-

linearly. It is found that the deviation from the expected linear relation is due to decrease in number 

of actively slipping contacts with increasing tangential contact separation force. Normal contact 

separation force affects the tangent stiffness by increasing the total number of contacts in the 
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network. Strain hardening also increases with increasing the persistence length of the fibers. It is 

shown that variability in normal and tangential contact separation forces does not affect the mat 

structure or the degree of strain hardening. However, the yield stress decreases with increasing 

variability of the tangential contact separation force at contacts. 

If fibers are of finite length, strain localization occurs at a critical strain which decreases with 

increasing fiber tortuosity. Finite length straight fibers show no post-yield strain hardening and 

undergo strain localization shortly after yielding. Thus, tortuosity in fibrous mats with adhesion 

and friction renders the network more ductile. 

This work provides guidelines for designing fibrous mats with desired mechanical properties by 

controlling the fiber tortuosity, contact adhesion and friction. These data are expected to be of 

importance for the design of electrospun mats for bioengineered tissue, spun fibrous materials for 

various consumer products and geotextiles, and other applications in biology and engineering. 
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Appendix

Consider an angularly-restricted correlated random walk of step length , as shown in Fig. A1. 𝑙𝑠

The angular deviation between consecutive steps  and , i.e. , where 𝑖 𝑖 + 1 ∆𝜃𝑖 = cos ―1 (𝐧𝒊 ∙ 𝐧𝒊 + 𝟏)

, which denotes the direction of the walk at step i, is sampled from a uniform distribution in the 𝐧𝑖

interval ( , ). The directional spatial auto-correlation, , needs to be found, as a function of ―𝛼 𝛼 𝐶𝜃

the number of steps, , in order to calculate the persistence length, .𝑛 𝐿𝑃

Fig. A1. Schematic showing the angularly-restricted correlated random walk.

𝐶𝜃(𝑛) = 𝚬(cos ( 𝑛

∑
𝑖 = 1

∆𝜃𝑖)) (A1)

where,  is the expectation function, and  is sampled from a uniform distribution in the 𝚬() ∆𝜃𝑖

interval ( , ). The distribution has mean zero and variance .  forms an Irwin-Hall ―𝛼 𝛼 𝛼2/3 ∑𝑛
𝑖 = 1∆𝜃𝑖

distribution. This distribution, however, converges to the normal distribution rapidly with 

increasing . The mean of the normal distribution approximating the Irwin-Hall distribution for 𝑛

large enough n (the approximation is already quite good at n = 10) is zero and its variance is 𝑛𝛼2

./3

The expectation of  for  being sampled from a normal distribution, , where  is cos (𝑋) 𝑋 ℵ(0, 𝜎2) 𝜎2

the variance is:
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𝚬(𝑋) =  𝑒
―

𝜎2

2
(A2)

Substituting  = in eq. A2 provides the desired approximation of A1:𝜎2 𝑛𝛼2/3 

𝐶𝜃(𝑛) = 𝚬(cos ( 𝑛

∑
𝑖 = 1

∆𝜃𝑖)) ≈ 𝑒
―

𝑛

6/𝛼2 (A3)

where,  is number of steps or  (  is the contour length of the path).𝑛 𝑙/𝑙𝑠 𝑙

The persistence length , is approximated by fitting   (or ) to the 𝐿𝑃 exp( ― 𝑙/𝐿𝑃) exp( ― 𝑛/(𝐿𝑃/𝑙𝑠))

directional spatial auto-correlation function, . From, Eqn. A3 it can be concluded that 𝐶𝜃(𝑛)

 . (A4)𝐿𝑃/𝑙𝑠 ≈ 6/𝛼2

Figure A2(a) shows  evaluated numerically for various values of . The data are replotted in 𝐿𝑃/𝑙𝑠 𝛼

Fig. A2(b) as  vs.  (symbols) to demonstrate the level of accuracy of eq. (A4) represented 𝐿𝑃/𝑙𝑠 1/𝛼2

by the line. 

Fig. A2 (a) Numerical evaluation of the normalized persistence length  vs. . (b) Data in (a) 𝐿𝑃/𝑙𝑠 𝛼

replotted vs.  (symbols) along with the prediction of eq. (A4) (line) demonstrating the 1/𝛼2

validity of the results derived in this Appendix for this range of .
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