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Phase diagram for two-dimensional layer of soft particles 

Xilan Zhu,a Thomas M. Truskett a,b and Roger T. Bonnecaze, a 

The phase diagram of a monolayer of soft particles described by the Daoud-Cotton model for star polymers is presented.  

Ground state calculations and Grand Canonical Monte Carlo simulations are used to determine the phase behavior as a 

function of the number of arms on the star and the areal coverage of the soft particles.  The phase diagram exhibits rich 

behavior including reentrant melting and freezing and solid-solid transitions with triangular, stripe, honeycomb and kagome 

phases.  These structures in 2D are analogous to the structures observed in 3D.  The evolution of the structure factor with 

density is qualitatively similar to that measured in experiments for polymer grafted nanocrystals [Chen et al., 

Macromolecules, 2017, 50, 9636]. 

Introduction 

Underlying structure is the foundation to material properties.  

The prediction and control of structures at different length 

scales allows the engineering of properties and the design of 

functional materials.  While structures with feature sizes on the 

order of 20 nm can be fabricated via top-down techniques such 

as photolithography1-4 and imprint lithography5,6, self-assembly 

of polymers and particles offers a path to make sub-20 nm or 

smaller structures7-10.  Phase diagrams of these equilibrium self-

assembled structures are important tools for the design of the 

components and processes to make the desired nanostructured 

materials.  Here we are concerned with the phase diagram of 

three-dimensional (3D) soft particles confined to two-

dimensions (2D), where the softness of the particles referred to 

here is determined by their pairwise interaction.  Such particles 

suitably ordered on a surface can be used as a mask for 

patterning or directly as a functional component for the nano-

enabled surface.  

 

Because soft particles are deformable, their centers can be 

much closer than rigid particles of similar size.  This leads to 

structures that cannot be achieved by equilibrium self-assembly 

of more rigid particles.  Besides the commonly observed crystal 

structures of body-centered-cubic (BCC), face-centered-cubic 

(FCC), and hexagonal close packing (HCP)11,12, novel crystals of 

diamond13, body-centered orthorhombic (BCO)13,14, body-

centered-tetragonal (BCT)13,15, trigonal16, ellipsoidal phases 

(due to particle deformation)17 and polymorphic cluster 

phases18 have been identified for concentrated suspensions of 

soft particles.  Hertzian spheres have been shown to cycle 

among distinct crystal phases infinitely with increasing 

concentration14.  Soft-particle interactions can also show 

unusual phase behaviours such as re-entrant melting13,14,18,19.  

Phase diagrams of soft particles with external fields20,21 and 

shape anisotropy (e.g. patchy particles)22-24 have also been 

explored.   

 

With the potential application of 2D crystals in electronic 

devices25,26 and optical devices27, phase behaviour of soft 

particles in 2D is of interest.  However, excluded volume effects 

and short ranged repulsion can cause jamming28 of such 

particles and the self-assembly to dense, highly ordered 

monolayers can be problematic.  Ultra-soft particle interactions 

can help achieve higher surface coverages and faster kinetics. 

Chen et al.29 used ultra-soft polymer grafted nanocrystals 

(PGNCs) and showed self-assembled monolayer ordering in 2D 

via solvent annealing.  The PGNCs—with their relatively small 

hard cores—can be modelled as star polymers, and their 

experimental phase behaviour exhibits similarities to that of the 

3D phase diagram for star polymers13.  Theoretical work has 

shown that the phase behaviour of soft particles in 2D is 

expected to be similarly complex30,31, including a recent study 

using Hertzian spheres32.  

 

Here we characterize the phase behaviour of ultra-soft 3D 

particles in a 2D monolayer.  The Daoud-Cotton model for star 

polymers is used to describe the pairwise particle interactions.  

This interaction potential is simple and useful for understanding 

the self-assembly of nanoparticles that are grafted with 

polymers to impart stability in solution.  It also allows direct 

comparison to experiments of Chen et al.29.  The resulting 

phases are set by the number of arms around each particle 𝑓 

and the areal density of the particles on the surface.  

 

The remainder of the paper is organized as follows.  Section 2 

presents the pairwise interaction potential for the PGNCs, the 
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numerical method used for the ground state calculation and the 

details for the Monte Carlo simulation.  In section 3, we show 

the observed crystal structures and present a 2D phase 

diagram.  In section 4, we compare the phase behaviour for the 

Daoud-Cotton model in 3D to 2D results.  We then compare our 

predictions of structures to those experimentally observed by 

Chen et al.  Finally, we summarize our findings in section 5. 

Model and simulation details 

Daoud-Cotton model  

The PGNCs used by Chen et al. are composed of Fe3O4 

nanocrystals grafted with polystyrene ligands.   The PGNCs have 

a hard core surrounded by a soft region of polymers.  The 

interparticle potential is chosen to be the Daoud-Cotton 

model29,33 for short-ranged interactions plus the addition by 

Likos and co-workers34 of a Yukawa potential at longer 

distances. In the Daoud-Cotton model, each arm of a star 

polymer is described as a succession of spherical "blobs" whose 

size depends on 𝑟, where 𝑟 is the distance from the center of 

the star.  As described in Daoud-Cotton model, there are three 

distinct regions for each star polymer: the core (modelling the 

NC of PGNCs), and the unswollen and the swollen regions 

(modelling the grafted polymer strands emanating from the 

NC).  The effective pair potential between star polymers is a 

combination of a stiffer logarithmic dependence inside the core 

(𝑟 < 𝜎) and a softer Yukawa potential outside the core34:  
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where the corona diameter 𝜎 describes the spatial extension of 

the monomer density around a single star and is defined as 

twice the distance from the center of the star to the center of 

the outermost blob.  The pair potential in eqn. (1) is considered 

appropriate to represent PGNCs when those grafted polymer 

chains form a coating that effectively screens the core.   It has 

also been used successfully for star-like micelles.35-38 

 

As the pair potential given in Eq. (1) scales linearly with the 

thermal energy 𝑘𝐵𝑇 =  1/𝛽, temperature T is not an interesting 

thermodynamic parameter for the phase diagram of this model.  

The two-dimensional phase behaviour of this colloidal system 

depends only on the areal packing fraction 𝜂 = 𝜋𝜎2𝑁/(4𝐴) , 

and the number of arms 𝑓 grafted to a particle.  In some key 

respects, the effect of 𝑓 on the thermodynamic properties of 

this model is qualitatively similar to that of inverse temperature 

in atomic fluids.   

 

Ground state calculation 

For the Daoud-Cotton model in two dimensions, we carry out 

conventional ground-state calculations (described below) that 

determine the lowest energy states within a predetermined 

competitive pool of possible structures. We also carry out 

supplementary ground-state calculations using a genetic 

algorithm to test whether the lowest energy ground-state 

structures have indeed been included in the original 

competitive pool. 
 

Optimization over competing structures 

We carry out conventional ground state calculations that 

consider a finite number of competing crystal structures 

described in the Supplementary Information (SI).  The average 

potential energy per particle 𝑢  for particle crystals can be 

expressed as: 

𝑢 =
1

2𝑛
∑ ∑ 𝛷(𝑟𝑖𝑗)𝑗=1,2,…𝑛
𝑟𝑖𝑗<𝑟𝑐𝑢𝑡
𝑖≠𝑗

                                                           (2)               

Typical values of 𝑓 = 50, 68  and 150 are used for the 

calculations.  Here the potential energy is averaged over all 

particles within a single unit cell, equivalent to the average 

potential energy per particle over the entire system.  𝑛 is the 

number of particles within a unit cell.  𝑟𝑐𝑢𝑡  is the cut-off 

distance.  𝑟𝑖𝑗  is the distance between the 𝑗th particle in the unit 

cell and the 𝑖th particle in the system.  At zero-temperature, the 

chemical potential μ is equivalent to the enthalpy ℎ and is given 

by: 

ℎ = 𝑢 + 𝑝𝐴                                                                                                   (3) 

where 𝐴 is the specific area and the system pressure 𝑝 is given 

by the virial expression39: 

𝑝𝐴 = −
1

4𝑛
∑ ∑ 𝑟𝑖𝑗𝛷

′(𝑟𝑖𝑗)𝑗=1,2,…𝑛
𝑟𝑖𝑗<𝑟𝑐𝑢𝑡
𝑖≠𝑗

                                              (4) 

A search for the minimum ℎ  is performed using the interior 

point algorithm.  To avoid being trapped in local minima and to 

ensure the globally optimal solution is obtained, the 

calculations are repeated with several initial conditions.  The ℎ-

𝑝  curves for each competitor are used to identify the phase 

transition points and coexisting phases.  We do not explore 

structures other than the ones mentioned in SI, since the 

ground state calculations reveal the same phases as the ones 

identified by a genetic algorithm and the Grand Canonical 

Monte Carlo simulations described below, indicating the initial 

pool of potential structures is adequate.  
 

 

 

Figure 1 - Left: Sketch of a polymer grafted nanoparticle. Right: The Daoud-Cotton 

model pair potential as a function of the center-to-center separation 𝑟 between two 

star polymers with various number of arms, 𝑓 = 30, 50, 68, 100 and 150. 
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Genetic algorithms 

Gottwald et al.40,41 has demonstrated the application of genetic 

algorithms (GAs) to successfully predict crystal structures at T = 

0 in three dimensions40. Here, we adapt their approach as a 

means to verify the ordered ground states predicted for the 2D 

Daoud-Cotton model by the aforementioned conventional 

method.  Details of the implementation of the genetic algorithm 

are provided in the Supplementary Information.   

 

The technique applied here finds the lattice structure that gives 

the lowest ground state energy 𝑢. The unit cell is represented 

by the primitive vector {𝒙𝒊} = {𝒙𝟏,𝒙𝟐}. 

𝒙𝟏 = 𝑎(1,0) 

𝒙𝟐 = 𝑎(𝑥 cos 𝜃 , 𝑥 sin 𝜃)                                                                 (5) 

where  𝑎  is determined by the areal packing fraction of the 

system.  

 

A large number of potential a’s are initially considered.  Based 

on their fitness or lowest energy, the fitter structures survive 

and replicate.  In the end, the fittest (or lowest energy) structure 

is identified.   

Ground state calculations were initiated with 1000 random 
individual structures; crossover possibility 𝑃𝑐 = 0.1  and 
mutation possibility 𝑃𝑚 = 0.05 were adoped. All trials with 𝑓 =
50, 68, 150  and packing fraction from 0.1 to 2.4 converged 
within 1000 generations. 

Monte Carlo Simulation 

We perform Grand Canonical Monte Carlo (GCMC) simulations 

to mimic the deposition process of particles in solution 

adsorbed onto a neutral substrate. Various packing fractions 

(0.25 ≤  η  ≤2.35) and number of arms per particle (30 ≤  f 

≤150) are simulated to provide information about the possible 

complex 2D phase behaviour of PGNCs.  For each simulation, 

the chemical potential μ is specified, representing the fixed 

particle concentration from the reservoir.  Similar to the 

method described in Ref. 28, the acceptance possibility P of 

each MC move (particle insertions, deletions, or translation) is 

determined by the change of potential ∆E.42 

𝑃 =  

{
 
 

 
 min (1,

A

N+1
e−β∆E+βµ) ,    insertions

min(1, e−β∆E) ,                    moves       

min (1,
N

A
e−β∆E−βµ) ,         deletions  

                             (6) 

A square simulation box with periodic boundaries is used.  The 

simulation box is fixed in area A so that the number of particles 

N varies between 500 and 1000.  The average number of 

particles and hence the packing fraction is dependent on μ.  The 

corona radius 𝜎/2  is considered to be the unit length.  

Approximately 5x107 Monte Carlo steps were used in each 

simulation.  The system is expected to undergo two successive 

continuous transitions upon freezing (liquid to hexatic to 

triangular ordered phase) as predicted by Kosterlitz-Thouless-

Halperin-Nelson-Young (KTHNY) theory. However, previous 

work with similar soft particle models have shown that the 

hexatic region on the phase diagram can be extremely 

narrow32,40 and large-scale simulations are necessary for its 

characterization43,44. Since our interests lie in exploring the 

various ordered 2D arrays that this model can assemble, we do 

not attempt to systematically probe the melting/freezing 

mechanism or to determine the boundaries of the hexatic 

phase.    

Results 

Figure 2 summarizes the predicted ground state phase diagram 

and gives a comparison between ground state structure and the 

equilibrium lattice structure by GCMC.  At low 𝜂, the particles 

on the surface form a triangular phase.  Within the triangular 

phase, all six neighbouring particles are separated by the same 

distance somewhere 𝑟 ≥  𝜎. Phase behaviour at higher packing 

fraction becomes richer as the particles interact more strongly, 

when 𝑟 <  𝜎.  We identify four other crystal phases for 0.90 <

𝜂 < 2.4 . A “stripe” phase arises at 𝜂~1.0 .  This phase is an 

affinely-stretched triangular crystal.  The first coordination shell 

lies inside σ and contains two particles.  The second 

coordination shell sits at 𝑟 =  𝜎 and contains four particles.  As 

the packing fraction increases further, more particles penetrate 

the corona and three more configurations are found to be 

ground state structures: the honeycomb phase, the kagome 

phase, and a second triangular phase.  These phases give lattice 

structures with three, four and six particles within the first shell. 

Conventional ground-state calculations as well as GAs predict 

the same lattice structures. The coexisting regions have been 

identified between neighbouring phases.  The ground state 

structures predicted by both methods and lattice parameters 

predicted by conventional calculation are given in SI. The 

ground state phases agree with the equilibrium phases 

simulated by GCMC.  

Figure 3 shows the complete 2D phase diagram of particles with 

the star polymer potential constructed using the GCMC 

simulations.  A fluid and several crystal phases are observed.   

The fluid phase is observed for 𝑓 < 𝑓𝑐 ≈ 33  at all packing 

fractions.  At least one stable crystal phase can be found above 

Figure 2 – Potential crystal structures determined by ground state calculation and 

GCMC.  (a) 𝑓 = 50, (b) 𝑓 = 68  and (c) 𝑓 = 150. Red: triangular; Yellow: stripe; Green: 

honeycomb; Blue: kagome; Grey: coexisting region (by conventional calculation) / fluid 

phase (by GCMC). 
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𝑓𝑐 .  Reentrant melting and freezing are observed depending on 

the value of f for increasing packing fraction.  For intermediate 

number of arms (33 ≤ 𝑓 < 40), reentrant melting occurs from 

the triangular phase to the liquid phase.  Both reentrant melting 

and freezing can occur for 40 ≤ 𝑓 < 90 with increasing packing 

fraction.  For example, at f = 50, the structures transform from 

triangular to liquid to honeycomb to liquid to triangular as the 

packing fraction increases.  For large 𝑓, as the system becomes 

more densely packed, it goes through several solid-solid phase 

transitions.  The solid phases observed in GCMC are consistent 

with the ground state calculation results, which progress from a 

triangular phase to stripe, honeycomb, kagome and a second 

triangular phase as the packing fraction increases.   They are 

also analogous to structures reported for star polymers in 3D13. 

 

To support the assignment of structures in the phase diagram, 

Figure 4 shows the radial distribution functions for each solid 

phase from the GCMC simulation and the radial distribution 

functions of structures assuming perfect lattices at the same 

packing fraction.  For the first triangular phase, all peaks are 

located outside 𝑟 =  𝜎, showing no neighboring particles within 

the corona. For all other phases, we can see the first peak at 𝑟 =

0.65𝜎 − 0.75𝜎 and the second peak at 𝑟 = 𝜎 − 1.05𝜎. As the 

system becomes denser, an increase in the first peak intensity 

within the corona diameter can be observed in Figure 4 (b)-(e).   

Because the effective temperature in the GCMC simulations is 

nonzero, we observed some expected spread in the particle 

position compared to the perfect crystal due to thermal 

oscillations, dislocations and grain boundaries. 

Discussion 

Jain et al. have demonstrated that ultrasoft isotropic 

interactions which stabilize a crystal structure in 3D may 

stabilize analogous structures in 2D45. A comparison of our 

results with the 3D phase diagram13 may similarly help to 

understand the complex phase behaviour in 2D.  

 

The transition to an ordered phase for this ultrasoft particle 

systems happens at a much lower 𝜂  compared with hard 

spheres (i.e., 𝑓 → ∞). For hard spheres, the fluid phase is stable 

up to 𝜂 ≈ 0.7  and then the (two-step) transition to the 

triangular phase occurs46. The triangular phase is stable up to 

the maximum packing fraction in 2D, 𝜂 ≈ 0.91 .  It is also 

observed in 3D that the system of ultrasoft particles freezes at 

Figure 3 - Simulated 2D phase diagram for particles with the star polymer potential. (a)-(e) illustrate example structures for each solid phase at f = 120.  

Figure 4 - Radial distribution functions of structures from GCMC simulations (blue) for 

each solid phase assuming perfect lattices at the same packing fraction: (a) triangular 

lattice, η = 0.66; (b) stripe lattice, η = 1.31; (c) honeycomb lattice, η = 1.77; (d) kagome 

lattice, η = 1.98; (e) triangular lattice, η = 2.19.  All with f = 120. Green dashed lines 

indicate r = σ.
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a small 𝜂 compared to hard spheres.  In this work, we did not 

explore extremely high arm numbers as the research in 3D has 

shown that hard sphere behaviour is not found for  𝑓 < 10000. 

The extremely high 𝑓  is also impractical to obtain in 

experiments.  

 

The stable fluid phase within the range of 𝑓 < 𝑓𝑐 ≈ 33 in our 2D 

results agrees with the 3D phase diagram (𝑓𝑐 ≈ 34) reported by 

Watzlawek et al.13. At low packing fraction, all neighbouring 

particles have separations r > σ, and only the Yukawa portion of 

the pair potential comes into the play. In the 3D system, bcc/fcc 

phases were found at low packing fraction, 0.2 < 𝜂3𝐷 < 0.7 . 

This is analogous to the phase behavior for charged colloids, 

whose interparticle interaction can be modelled by the Yukawa 

potential47. The 2D phase transition from liquid to a triangular 

phase shows up as what is expected for a two-dimensional 

Yukawa system48,49. With an increased packing fraction (0.7 <

𝜂3𝐷 < 1.5 ), the reentrant melting and reentrant freezing 

transitions observed here were also reported for the 3D system 

at intermediate 𝑓  (34 < 𝑓 < 60). At higher 𝑓 , two solid-solid 

phase transitions take place in the 3D system, first into a body-

centered-orthogonal (bco) phase and then into a diamond 

phase. Analogous to the bco phase, a stripe phase is identified 

here in 2D. A similar stripe phase was observed by Malescio et 

al.50 with purely repulsive isotropic pair potentials with two 

characteristic length scales. Anisotropy of the stripe/bco phase 

for our system can be explained similarly. For each particle in a 

dense cell, the overlap can happen in two ways: its corona 

overlapping with corona of all nearest neighbours, as opposed 

to being brought close with some neighbouring particles in one 

direction but with no corona overlap with all remaining 

particles.  Given the weak divergence at small r and rapid drop 

at 𝑟 > 𝜎  for the star polymer potential, the second 

configuration yields the lower energy structure.  Particles in 

either stripe or bco phases have two nearest neighbours at 

some distance within the corona. These two phases remain 

stable until the energy penalty of bringing nearest neighbours 

closer become significant and more particles cross over at 𝑟 =

𝜎 .  The next stable structures are two analogous crystals:  a 

diamond phase in 3D and a honeycomb phase in 2D.  The 

kagome/second triangular phases in two-dimensional systems 

at higher packing fraction can be explained by the corona 

overlap with a fourth/sixth neighbouring particle.  The 

increased number of neighbouring particles within the corona 

is characterized by an increased first peak intensity in the radial 

distribution function.  Similar to what has been stated for 3D13, 

many body interactions (ignored here) can be important for the 

actual star polymer systems for 𝜂 > 2𝜂∗ , where 𝜂∗  is the 

overlapping packing fraction 𝜂∗ = 𝜋/4. At 𝜂 > 1.57 , three or 

more particles would be overlapping. Only pairwise interactions 

are considered in the model considered here. Since, for triplets, 

the multibody interaction in explicit star polymers was found to 

be attractive and small compared to the pairwise interaction51, 

we expect our predictions for experiments to be valid for 

packing fractions as high as those consistent with the 

honeycomb phase with three particles in the corona.  

 

We turn now to a comparison of our theoretical predictions to 

the experimental observations made by Chen et al29.  In the 

experiments, two different PGNCs with 𝑓 = 50  and 𝑓 = 68 

were synthesized. The PGNCs have a hard-core diameter of 3.9 

nm (𝑓 = 50) or 4.2 nm (𝑓 = 68).  The thickness of the unswollen 

region for 𝑓 = 68 samples were estimated indirectly through 

the measurements of the solvent intake volume of both the 

polymer film and PGNC film.  The estimation suggested that 

effective screening is achieved by 𝑓 = 68  samples.  No 

experimental data was available for 𝑓 = 50  samples.  The 

synthesized PGNCs were self-assembled to form a monolayer 

using the solvent annealing method.  The circularly averaged 

structure factor S(q) was then measured for the self-assembled 

samples. The phase transition was identified according to the 

Hansen−Verlet rule52 and the ratio, 𝑞2/𝑞1, of the wave vectors 

of the first and second peaks in S(q). 

A good estimation of 𝜎  is critical for the direct comparison 

between simulation and experimental results. As no direct 

measurements are available, it is difficult to assign an 

unambiguous value for 𝜎. The best estimation of the radius of 

PGNCs with 𝑓 = 68 is R ≈ 4.9 nm in toluene.  Details can be 

found in the Supplementary Information (SI).  We plot the 

structure factor for both experimental and simulation results in 

Figure 5 to help estimate 𝜎. The large S(q) value and oscillations 

near q = 0 before the first peak for the simulated structures 

(Figure 5 (a) (c)) are due to the finite box size and periodic 

boundary conditions and are not seen in the experimental 

results. The structure factor plots of the simulated 𝑓 = 68 cases 

are rescaled assuming σ/2 = 4.9 nm and given in Figure 5(c).  The 

first peaks of S(q) sit roughly at the same values of q with the 

experimental measurements (Figure 5(d)), which confirms our 

estimation of σ.  A slightly smaller R is expected for 𝑓 = 50 as 

the core size is smaller and the ligand density is lower.  A 

Figure 5 - Evolution of structure factor S(q) for PGNCs with f = 50 (left column) or f = 68 

(right column) from simulated structures (top row) and experimental results (bottom 

row). For the simulated results, the plots are rescaled assuming: (a) σ/2 = 3.0 nm; (c) 

σ/2 = 4.9 nm. (b), (d) experimental measurements reprinted from ref. 29 with 

permission. Number density (ρ) increases from bottom to top: (a) 5.04x10-3 nm−2 to 

15.57x10-3 nm−2; (b) ρ = 4.13x10-3 nm−2 to 17.56x10-3 nm−2; (c) 4.95x10-3 nm−2 to 

12.86x10-3 nm−2; (d) ρ = 4.90x10-3 nm−2 to 12.40x10-3 nm−2.
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reasonable range would be 2.0 nm < R < 4.9 nm.  We rescaled 

the structure factor plots for the simulated 𝑓 = 50 cases with 

several guesses of σ. The scattering vectors of peaks in S(q) plot 

(Figure 5(a)) agree best with experimental measurements 

(Figure 5(b)) at σ/2 = 3.0 nm.   

 

For 𝑓 = 50 , no monolayer ordering was observed 

experimentally for ρ ≈ 4.1x10-3 nm−2 to 17.6x10-3 nm−2 (𝜂 ≈

0.12 − 0.50).  However, the simulated data showed a split of 

the second peak in S(q) (Figure 5(a)) at ρ ≈ 15.6x10-3 nm−2 (𝜂 ≈

0.44 ), and the ratio  𝑞2/𝑞1  drops to √3 .  This indicates the 

appearance of triangular structure.  For 𝑓 = 68, the S(q) plot of 

experimental data (Figure 5(d)) showed a split of the second 

peak and  𝑞2/𝑞1 ≈ √3 starting at ρ ≈ 10.1x10-3 nm−2 (𝜂 ≈ 0.76).  

The simulation predicted the same transition at a lower density 

(ρ ≈  5.0x10-3 nm−2 or 𝜂 ≈ 0.37).  The experimental data are 

overlaid on the theoretical 2D phase diagram in Figure 6.  In 

experiments a phase transition from liquid to hexatic phase is 

observed, which is similar to the first phase transition to 

triangular phase in the phase diagram. The phase diagram 

shows a possibility to achieve triangular ordering at a lower 

packing density than the experiments. No reentrant 

melting/freezing behaviour or transition to crystal phases other 

than triangular phase was observed yet in experiments as the 

packing density is low.  

 

The differences between the experimental results and the 

theoretical prediction may arise for several reasons.  The 

particle size comes from indirect measurements, which are 

done with the 𝑓 = 68  sample. No experimental data are 

available for 𝑓 = 50.  The estimation of 𝜎 from the S(q) fitting is 

inaccurate.  The shifting of peaks in S(q) is small when different 

values of σ/2 is used.  Also, the star polymer size is 

concentration dependent53 and can vary during the solvent 

evaporation/annealing process.  A shrinkage in polymer size 

(estimated σ larger than actual) will cause the predicted phase 

to shift to higher η and span over a wider region than the actual 

equilibrium phase. A small deviation of 𝜎  can lead to a 

significant change of the predicted number density ρ where the 

phase transition happens (e.g. for 𝑓 = 68, the phase transition 

happens around ρ ≈  5.0x10-3 nm−2 if σ/2 = 4.9 nm and ρ ≈ 

13.2x10-3 nm−2 if σ/2 = 3.0 nm).  Another possibility is that the 

polydispersity of PGNCs disrupts the ordering.  The 

polydispersity of particles used in experiments is unknown.  It 

been shown that polydispersity can broaden the fluid phase54, 

and the experiments will see less ordering than the theoretical 

prediction for monodispersed particles.  Also, the nucleation of 

the star polymer system into a crystal can be difficult in 

experimental situations. The solvent annealing method pushes 

the system towards thermodynamic equilibrium. However, it is 

still possible that the self-assembly is diffusion limited.  It has 

been found that the diffusion coefficient D in a star polymer 

system has a highly nonmonotonic behavior as a function of 𝑓 

and 𝜂.55  The dynamics of the system can either be slowed down 

or increased with the increase of 𝑓 and 𝜂.  The absence of the 

predicted ordering in experimental results may indicate that the 

system goes into disordered arrested states and the 

thermodynamic equilibrium is not reached.  

 

The phase diagram is determined here for three-dimensional 

soft particles to two dimensions at equilibrium that can be 

described with pairwise potential given by eqn. (1). While this 

model is widely used for predicting the properties of 

symmetrically branched star polymers in 3D, it may not be 

accurate for PGNCs confined to a monolayer. As Che et al.56  and 

Chremos et al.57 have demonstrated, when the particles come 

close to the substrate, polymers interact with the substrate and 

the structural morphology of the soft particle is no longer 

identical to an isolated star polymer.  The soft region of the 

particle deforms from the spherical shell to a polymer canopy. 

Figure 6 - Experimental self-assembly results from Chen et al.29 overlaid on the crystal 

phases predicted by GCMC simulation.  Experimental data rescaled assuming (a) σ/2 

= 3.0 nm for f = 50, (b) σ/2 = 4.9 nm for f = 68.

Page 6 of 8Soft Matter



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name .,  2013, 00 , 1-3 | 7  

Please do not adjust margins 

Please do not adjust margins 

The actual shape of soft particles is dependent on the surface 

energy of the substrate.  Depending on the film thickness, the 

particles can also be confined at the air-liquid interface and 

deform accordingly. The exact calculation of the effective 

particle-particle interactions and particle-substrate interactions 

would require the modelling of polymer conformation under 

specific conditions (substrate surface energy, film thickness 

etc.).  Coarse-grained models58,59 and self-consistent field 

theories58,60 have shown the capability to simulate single 

particle systems in such environments. Extending these 

approaches to develop models that incorporate such effects is 

an important area for future research.  

 

Recently Bos et al.61 examined the effects of three two-

dimensional pairwise potentials of star polymers.  Each 

qualitatively followed the Daoud-Cotton model at short 

interparticle separations. At long distances the potential was 

either Gaussian, following the Yukawa potential, or vanished at 

a cut-off distance.  It was found that the decay according to the 

Yukawa potential produced richer microstructures than the 

other two.  Like the results presented in this paper, they found 

that the Yukawa potential produced triangular and honeycomb 

structures.  Here more concentrated suspensions with greater 

numbers of arms were considered and so the phase diagram is 

broader. It also includes stripe and Kagome structures and re-

entrant triangular lattice at large concentrations.  Bos et al. 

observe the formation of two-dimensional crystals at lower 

values of f than observed here due to the differences between 

using a 2D versus a 3D potential.   

 

Conclusion 

Our calculations help to clarify the 2D phase diagram for ultra-

soft particles as a function of the packing fraction η and the 

number of arms around each particle 𝑓, where the interparticle 

potentials are described by the Daoud-Cotton model with Likos 

correction for long ranged interaction. We identified several 

stable crystal structures at the ground state.  The distinct crystal 

structures correspond to the triangular, stripe, honeycomb and 

kagome phases.  We note some similarities between the phase 

diagrams in 2D and 3D.  The critical value of 𝑓 for the formation 

of stable crystals is 𝑓𝑐 ≈ 33, and a reentrant melting/freezing 

behaviour manifested at elevated 𝑓 for both 2D and 3D cases. 

The crystal structures identified in 2D and 3D are analogous.  

The evolution of the structure factor of the model with particle 

density qualitatively agrees with that of experimentally studied 

polymer grafted nanoparticles.   
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