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Site-averaged kinetics for catalysts on amorphous supports: an importance learning 
algorithm
Craig A. Vandervelden,a,‡ Salman A. Khan,a,‡ Susannah L. Scott,a,b Baron Petersc

Ab initio calculations have greatly advanced our understanding of homogeneous catalysts and crystalline heterogeneous catalysts. In contrast, amorphous 
heterogeneous catalysts remain poorly understood. The principal difficulties include (i) the nature of the disorder is quenched and unknown; (ii) each active site 
has a different local environment and activity; (iii) active sites are rare, often less than ~20% of potential sites, depending on the catalyst and its preparation method. 
Few (if any) studies of amorphous heterogeneous catalysts have ever attempted to compute site-averaged kinetics, because the exponential dependence on 
variable activation energy requires an intractable number of ab initio calculations to converge. We present a new algorithm using machine learning techniques 
(metric learning kernel regression) and importance sampling to efficiently learn the distribution of activation energies. We demonstrate the algorithm by computing 
the site-averaged activity for a model amorphous catalyst with quenched disorder.

Introduction 
    A recent surge of interest in atomically-dispersed “single 
atom” catalysts is driven by their unique and potentially selective 
reactivity,1-3 and by sustainability efforts that seek to minimize 
use of scarce elements and maximize atom economy.4-6 Among 
single atom catalysts, those which are chemically bonded to a 
thermally robust oxide support like silica are especially resistant 
to deactivation by sintering.7, 8  Moreover, grafting strategies 
that promote selective reaction of the catalyst precursor at 
specific surface sites may help to minimize differences between 
grafted metal sites.  Well-studied catalysts that are comprised of 
single metal atoms grafted onto amorphous silica include 
chromocenes or chromates for olefin polymerization,9-11 
titanium and tantalum complexes for olefin epoxidation,12 
molybdates for methanol dehydration,13 and vanadates for 
partial oxidation of methanol.14      
    Investigators have occasionally drawn comparisons between 
the metal atoms present in the active sites in enzymes, and 
metal atoms grafted onto silica surfaces.12 There are similarities, 
but there are also important differences.  Each enzyme molecule 
of a given type is the same, while each metal atom on 
amorphous silica resides in a unique ligand environment.  These 
non-uniform environments can result in metal atoms with non-
uniform catalytic properties, including a range of activities, 
selectivities, adsorption constants, and even different 
spectroscopic features.  When the sites have variable activities, 

a minority of the sites may contribute most of the overall catalyst 
activity. Indeed, active site counting experiments confirm that 
only a small fraction of sites in a heterogeneous catalyst is 
typically active.15-18 This poses an extraordinary difficulty in 
experimental as well as theoretical studies of these catalysts. 
Powerful characterization tools (NMR, EXAFS, IR, Raman, etc.) 
generally provide the strongest signals for the most common 
sites, and these are likely inactive.11 
    If we could understand the mechanisms of these catalysts, we 
might systematically work to improve them.19  In some 
applications like olefin polymerization, where the catalysts are 
not recovered from the polymer product, one might even use 
mechanistic understanding to design catalysts with a desired 
activity distribution capable of generating polymer with a 
desired molecular weight distribution.  
    Our first paper introduced a method to predict the distribution 
of sites that emerges from grafting a precursor onto an 
amorphous support.20 The simple model system consisted of a 
quenched-disordered lattice (to represent the amorphous silica 
support), surface functional groups (representing pairs or nests 
of hydroxyl groups) to which a metal complex can be grafted, 
and a microkinetic model for each grafted site with rate 
parameters that depend on the site characteristics. Much like in 
an ab initio study, computing activation barriers for the model 
system requires geometry optimizations of intermediates.  Our 
realistic but simple model allowed us to focus on developing the 
importance sampling and machine learning tools, without being 
distracted by controversies about the mechanisms about the 
mechanisms of these catalysts.   
    Starting from the simple model and the grafted site population 
described in our first paper,20 this second paper aims to compute 
an average over sites to predict the overall kinetics.  Since the 
turnover frequencies at individual sites vary exponentially with 
the activation energy, even a small variance in the activation 
energy leads to an enormous variance in site-specific activities.  
Such exponential averages are notoriously difficult to converge 
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with standard sampling tools,21-23 but importance sampling 
methods can dramatically accelerate convergence.  The ideal 
importance sampling algorithm24 requires activation energies for 
each site, but these activation energies are not known a priori.  
Each activation energy must be obtained through costly ab initio 
calculations. Because of this limitation, typical approaches 
calculate just one25, 26 or a small handful of sites27-34 – far too few 
to converge site-averaged predictions of kinetic properties.35  
Kernel regression tools can use a modest set of ab initio 
calculations to predict activation energies that have not actually 
been computed.  This paper shows how importance sampling 
and machine learning can be combined to generate site-
averaged predictions efficiently.  
    In the remainder of this paper, we discuss model elementary 
steps and a rate law for a catalytic reaction with our simple 
model system. We briefly review the kernel regression tools 
(from our first paper) that predict activation energies.  We 
combine the importance sampling and kernel regression tools 
into an “importance learning algorithm”.  We then use the new 
algorithm to identify characteristics of highly active sites and to 
estimate site-averaged activation energies.  Finally, we compare 
the efficiency of importance sampling estimates to 
straightforward sampling.  

Model for amorphous support and grafted sites
    Our previous paper described the creation of a disordered, 
functionalized lattice model to approximate the non-uniform 
silanol sites and siloxane environments on the surface of 
amorphous SiO2. That paper also considered a kinetic model for 
grafting of metal atoms onto the silanol sites.  All sites with two 
silanol neighbors and two siloxane neighbors on opposite sides 
were eligible grafting sites in the model.  A schematic of the 
simple model is shown in Fig. 1.

Fig. 1 Quenched disorder lattice model. Sites with a grafted metal center are shown in 
gold.

This paper uses the distribution of non-uniform grafted sites, like 
those shown in Fig. 1, as its starting point.  We assume that 
grafting has occurred at all eligible sites, but one could modify 
the starting distribution (using methods in the previous paper20) 
to investigate lower catalyst loadings.  
    The discussion below invokes bonds between metal atoms and 
adsorbates, as well as the oxygen atoms of the silanol and 
siloxane sites.  However, the local environment of each site 
(before grafting and during catalysis) is described entirely by the 
positions of atoms in the silica support surrounding the metal 
center.  The coordinates used to describe the local environment 
are shown in Fig. 2. They are: (i) the distance between siloxane 
groups, d1, (ii) the distance between silanolate groups, d2, and 
(iii) the angle between the silanolate and siloxane groups, θ.

Fig. 2 Coordinates used to describe the local environment of a grafting site.

    The selected coordinates are nearly orthogonal in the sense 
that their gradients have little or no overlap.  Note, however, 
that the coordinates are incomplete.  For a grafting site on our 
two dimensional surface model, the four nearest neighbors are 
fully described by five internal coordinates (8 – 2×(center of 
mass) – 1×(rotation)).  We use only three coordinates in the 
kernel regression model, and the results below will show that 
just two of these coordinates are sufficient to predict site-
averaged kinetics.  We also emphasize that some calculations 
below involve other coordinates at intermediate stages, but that 
the overall kinetics and the kinetics of individual sites ultimately 
depends only on the coordinates in Fig. 2.  

Model for catalysis at grafted sites
    We consider a simple model of a catalyst site, M*, comprised 
of a metal center M and its surrounding support environment, *.  
We will consider the case in which the catalytic reaction at each 
site has the same rate-limiting step and the same most abundant 
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surface intermediate (MASI). We further assume that the site 
does not deactivate. The model reaction has a simple Langmuir-
Hinshelwood mechanism:

      .
2

 * * ( )
* *

K
k


 

A M AM x
AM B M

ƒ

We further assume that
     (i) the equilibrium constant K for adsorption of reactant A
 depends on the local environment of site i, xi, 
    (ii) the adsorbed molecule A (AM*) is irreversibly converted    
            into the gas phase product B and a bare site M*,
    (iii) K(x)cA << 1 for all sites, so that the bare site M* is the 

MASI.
The bond strengths chosen in this work, described below, ensure 
that these three assumptions are true for all sites.  Fig. 3 depicts 
the Langmuir-Hinshelwood mechanism and the three simplifying 
assumptions for the simple model system in this work.  

Fig. 3 The equilibrated adsorption step and irreversible chemical reaction steps for the 
model reaction A → B, and the M* sites described in this work.  

    The Langmuir-Hinshelwood mechanism leads to a rate law of 
form

      (1)2 .( )
1 ( )  
k K c

K c



A

A

x
x

r

Because of assumption (iii), the rate law simplifies to a power 
law rate expression of the form 

(2)( )  k c Axr

where the pseudo-first-order rate constant is: 

.  (3)2( ) ( )k k Kx x

Note that we have also assumed that the rate constant k2 for the 
second step in the Langmuir-Hinshelwood mechanism is the 

same for all sites.  In principal, k2 could also depend on x, but a 
model for k2(x) would require additional parameters to create a 
model for the saddle region on the potential energy surface. The 
more elaborate model system with x-dependence in k2 would 
still lead to an apparent rate constant k2K that is one function of 
x.
    The apparent rate constant k(x) depends on the local site 
geometry through K(x).  The adsorption constant is

    (4)  )Δ ( Δexp   
B

H T SK
k T

 
  

 

xx

where ΔH(x) is a site-dependent adsorption enthalpy.  TΔS is 
assumed to be constant because its main contributions are the 
loss of translational and rotational freedom upon adsorption.  
The rate constant, according to transition state theory, will be of 
the form

       (5)
‡ ‡

2
Δ Δexp expB

B B

k T S Hk
h k k T

   
    
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Here, the entropy and enthalpy of activation for the reaction 
step are assumed to be the same for all sites.  
    The site-dependent enthalpy of adsorption, ΔH(x), is modeled 
by

             (6)  * *) ( )  ( BH V V k T   AM M Ax x x

where x is the position of M, VAM*(x) is the energy with A 
chemisorbed to the metal site, VM*(x) is the energy of the bare 
metal site, εA is the gas phase energy of A, and kBT is the PV 
contribution to the gas phase enthalpy of A.  The same Morse 
potentials that we used to model grafting20 are now used to 
describe the M-OSi≡ bond energies and M···(OSi≡)2 bond 
energies.  Specifically, the individual interaction energies are 

          (7) 2
,1 ex  ( ) ( )pi i i i eq ir D a r r D       

where  is the bond type, Di is the bond dissociation energy, ai is 𝑖
inversely related to the vibrational well width, r is the bond 
length, and req,i is its equilibrium bond length. The energy of the 
bare metal site is

        (8)* 1 2

1 2

( ) ( )
( ( )

( )
)

O O

O O
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where εM-O(ri) is the energy of the M-OSi≡ bonds,  is the metal-𝑟𝑖
oxygen bond distance, εM∙∙∙O(ri’) is the energy of the M···(OSi≡)2 
metal-siloxane bond, and  is the metal-siloxane bond distance. 𝑟′𝑖
    We model adsorption of A onto the grafted metal center as an 
M-A bond with energy εM-A.  The length of the M-A bond is not 
explicitly optimized.  Instead, we assume that the M-A bond 
displaces the longest and most weakly-coordinated siloxane 
(M···(OSi≡)2) from M.  The displaced siloxane can still exert a 
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repulsive interaction on M.  We model the close-range repulsion 
with a Weeks-Chandler-Andersen potential:36

      (9) ,
21 exp  ( ) ( )WCA

eqr D a r r    AM O AM O AM O AM OL L L L

for r ≤ rAM∙∙∙O,eq and  otherwise.  Thus, the energy 0( )WCA r AM OL

of state AM* is
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where r* is the longest M···O bond prior to the adsorption of A.  
With these definitions, eqn. (6) presents a geometry 
optimization problem much like that encountered in ab initio 
calculations.  The interior atoms must be optimized subject to 
constraints on peripheral atoms around the metal center.   The 
equilibrium configurations of M* and AM* are found by 
changing the M atom position with fixed silanolate and siloxane 
group positions to minimize (8) and (10), respectively.  This 
procedure creates a collection of model sites with quenched 
disorder and limited local flexibility, somewhat like a real 
amorphous catalyst. 

Parameter selection

    The quenched disordered lattice was created by starting with 
a square lattice with spacing 1.  Random displacements of the 
lattice sites were drawn from an isotropic 2D Gaussian 
distribution with σ2

lattice=0.00022 in the x and y directions. We 
used the same fractions of silanol, siloxane, and empty sites 
(fsilanol = 0.3, fsiloxane= 0.3, and fempty = 0.4) as our previous paper.20 
All rate calculations in this work were performed for a 
temperature of 300 K and a reactant pressure of 1 atm.  The 
metal-adsorbate bond dissociation energy was modeled as the 
Cr-C bond dissociation energy for a (≡SiO)2CrIII alkyl site – the 
widely accepted active site for Cr/SiO2 olefin polymerization 
catalysts.11, 37 Based on DFT calculations (Section S1) and 
reported values for the Cr-C bond,38 we set εM-A = 160 kJ/mol. A 
list of the parameters and their values are summarized in Table 
1.

Table 1: Parameter values for the quenched disorder lattice, Langmuir-Hinshelwood 
mechanism, and model chemistry

Parameter Value
T 300K
PA 1 atm
ΔH‡ 65 kJ/mol
σ2

lattice 0.00022
fSilanol 0.3
fSiloxane 0.3
fEmpty 0.4
DM∙∙∙O 120 kJ/mol
aM∙∙∙O 1.3
r̂M∙∙∙O,eq 1.16
DM–O 500 kJ/mol
aM–O 1.7
r̂M–O,eq 1.0
εA 0
εM-A 160 kJ/mol

Site-averaged kinetics

    Each metal site has a unique environment, and the different 
environments lead to a distribution of kinetic properties.  For 
example, the sites will exhibit a distribution of turnover 
frequencies and activation energies.  In contrast, a conventional 
experiment measures just one site-averaged value for each 
kinetic property.  In this paper, we focus on the site-averaged 
activation energy. From eqns. (2)-(5), the activation energy for 
site i is

(11)‡
i

ln (   ( ) ) 2i
i

Ba
dE H H k T
d

     xx r

where β = 1/kBT.  A derivation of eqn. (11) can be found in 
section S2 of the supplemental information.  In this calculation, 
we assume that Ea, ΔS, ΔS‡, and ΔH‡ are not functions of 
temperature.39 For ΔH, the temperature dependence from kBT 
(eqn. 6) is considered, but other temperature-dependent terms 
such as partition functions are ignored. (In practice, all of these 
properties will probably exhibit some temperature 
dependence.)  
    Naively, one might estimate Ea(x) for a large sample of sites 
and then average them to obtain the site-averaged activation 
energy. This straightforward average does not give the correct 
value, even in the limit of large sample sizes.  The correct site-
averaged activation energy,40 ⟨Ea⟩k is obtained from a derivative 
of the site-averaged rate:    
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(12)
In this work, we ignore the temperature dependence of Ea.  In 
practice, the rates at individual sites cannot be probed, nor are 
the temperature intervals in which the rates are measured wide 
enough to see definitive curvature in the Arrhenius plot.  We also 
expect the correction to be small. Using Ea from eqn. (11),  β ∂ln 
Ea / ∂β = 2β-1, which will be relatively small compared to a typical 
Ea(x).  Moreover, we anticipate that β ∂ln Ea / ∂β term will be 
similar across different sites, so that conclusions about 
characteristics of highly active and abundant sites will be 
unaffected.  Using eqns. (2)-(5), the derivatives and integrations 
yield:

(13)
‡(  .) 2

ka Bk
E H H k T   x

The subscript k indicates that the average is computed with 
probability weights ρ(x)k(x), instead of ρ(x).  In practice, this 
average can be computed in two different ways.  
    The first strategy is to randomly choose sites from (x) and 
reweight each of them by k(x) when computing the average:  

    (14)
1

( ) ( ) ( ).n
i a i iia i

EE k k


  x x x%

The numerator and denominator are both exponential averages.  
As shown in previous work,35 this strategy usually requires an 
enormous sample size to converge.
    The second strategy is to directly sample sites according to 
probability weight ρ(x)k(x).  This is difficult, because we do not 
know k(x) precisely prior to performing ab initio calculations at 
x.  However, if such a sampling algorithm could be devised (see 
below), the site-averaged activation energy would become a 
simple arithmetic average:

                  

     (15)
1

1 ( ).n
aa ii

E E
n 

  x

This second strategy enables fast convergence to the site-
averaged activation energy according to the central limit 
theorem.  Confidence intervals on the precision of Ea follow from 
the usual statistical formulae 

          (16),
1 ˆ

Ea X na ak
S t

n
E E 

where tX,n is the student-t statistic for an X % confidence interval 
with sample size n, and where the standard error is: 
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Of course, these estimates and error formulas do not account for 
systematic errors in the ab initio predictions.  Moreover, to 
sample the distribution ρ(x)k(x), we use a kernel regression 
model to predict k(x) at sites that have not yet been 
investigated.  The error formulas above also do not account for 
errors in the kernel regression estimates.  In our calculations, the 
kernel regression errors are much smaller than the intrinsic 
width of the Ea-distribution, so they can probably be ignored. 
However, section S3 of the supplemental information shows 
how the typical kernel regression errors could be included in 
cases where they are large enough to be important.  

Kernel regression 

    To sample the distribution ρ(x)k(x) starting from a large 
collection of sites, i.e., from ρ(x), we require preliminary 
estimates for k(x) at each site.  Given accurate calculations as 
training data at a modest collection of sites, kernel regression 
can estimate Ea(x) at all the remaining sites.41, 42  The estimated 
activation energy at site with environment xi is a weighted 
average of the training data, eqn. (18): 

   (18) 
 

( ) ( )ˆ ( ) .
,(

,

)
a j ij i jj

a i
ij i jj

E
E

d

w d

w





x x x
x

x x

Here Êa(xi) is the predicted activation energy, and the Ea(xj) are 
computed activation energies.  The wij are Gaussian kernels

         (19)
2 exp[ ( , ])ij i jw d  x x

that depend on a Mahalanobis distance,43 d:

(20)2 ( , ( )  )() .T
i j i j i jd   x x x x S x x

Here, S is a dim(x) × dim(x) dimensional, positive definite, and 
symmetric matrix. The kernel regression model is trained by 
finding the elements of S which minimizes the leave-one-out loss 
to best fit the training data. We use Python library tools to 
implement the kernel regression.44  Further details about the 
kernel regression procedures can be found in the companion 
paper and its supplemental information.20  

Importance learning algorithm
    The sections above described rate calculations at individual 
sites, an importance sampling procedure, and a kernel 
regression (machine learning) procedure.  This section integrates 
all of these components into one “importance learning” 
algorithm.  Importance learning simultaneously accumulates 
training data, builds the kernel regression model, and focuses 
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computational effort on kinetically important sites with low 
activation barriers.  The algorithm is shown in Fig. 4.  

Fig. 4 The combination of efficient sampling techniques and a machine learning 
model leads to the “importance learning” algorithm. A set of sites trains a model 
to learn characteristics of highly active (i.e., important) sites. Efficient sampling 
techniques select active sites to improve the model and to efficiently predict 
average kinetic properties.  A test for convergence terminates the algorithm when 
the confidence interval on the site-averaged activation energy shrinks to a 
prescribed narrow size.  In our calculations, the threshold confidence interval was 
set to 0.75 kJ/mol.  
  
Note that the importance sampling and kernel regression 
procedures mutually depend on each other. The kernel 
regression model guides the importance sampling to kinetically 
important sites.  Meanwhile, the accumulated sample of sites 
and rate calculations teach kernel regression to make accurate 
preliminary rate predictions.  
    To compute kinetic properties, precise rate calculations for 
less active sites are not important, but we need their populations 
to predict kinetic properties like the overall rate and the fraction 
of active sites.  Therefore, the kernel regression model should 
also learn to make approximate predictions for inactive sites.  
For this reason, the importance learning algorithm begins with 
rate calculations at a collection of randomly sampled sites.  We 
verified that an initial training set of 20-50 randomly chosen sites 
is adequate (section S4 in the supplemental information).    

Results
     Because the model system is extremely simple, an accurate 
site-averaged activation energy can be directly calculated 
without importance learning.  Using results for ~20,000 sites, we 
computed the activation energy distribution: 

 (21)( ) ( ) [ ( ) ].a a aE d E E    x x x%

and the k(x)-weighted activation energy distribution:

     (22)
( ) ( ) [ ( ) ]

( ) .
( ) ( )

a a
k a

d k E E
E

d k

 





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
x x x x

x x x
%

Fig. 5 shows the essentially exact distributions ρ̃(Ea) and ρk̃(Ea).  
The activation energy distribution has support45 over a range of 
about 40 kJ/mol.  The site-averaged activation energy is 40.4 
kJ/mol, about 13 kJ/mol below the (incorrect) average without 
k-weighting.  These results serve as benchmarks for testing the 
importance learning algorithm.  

Fig. 5 Distribution of activation energies (blue) and the rate-weighted activation energy 
distribution (orange). The solid line shows the site-averaged activation energy.

    To start the importance learning algorithm, we began with an 
initial training set of fifty randomly chosen sites.  The initial 
kernel regression model was optimized to minimize the leave-
one-out errors.  Within this initial training set, the kernel 
regression model predicts activation energies with a standard 
error σ ≈ 0.8 kJ/mol.  Fig. 6 shows how the predicted activation 
energies compare to the true (precisely computed via eqn. 11) 
activation energies for individual sites.  
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Fig. 6 Parity plot of predicted activation barriers vs true activation barriers at 
individual sites.  Predictions are from leave-one-out optimization of kernel 
regression models based on the initial training set of 50 sites. The residuals for all 
~20,000 sites are approximately Gaussian distributed, with a standard deviation of 
approximately 0.7 kJ/mol (Fig S3).

    At each iteration of the importance learning algorithm, the 
activation energy distributions ρ̃(Ea) and ρk̃(Ea) can be predicted 
using the kernel regression model.  After each iteration, the new 
calculations are appended to the training set.  As more training 
data is accumulated (primarily at low activation energies), the 
estimated Ea distributions should become more like the true 
distribution in the kinetically important range of activation 
energies.  As a corollary, the site-averaged activation energy 
should also converge to the correct value.  Fig. 7 shows the 
predicted distributions at the 0th and 28th iterations of 
importance learning (the latter being the iteration at which the 
standard error decreases below 0.75 kJ/mol).  A rug shows that 
the activation energies of the importance sampled sites are 
indeed centered over the main support of ρk̃(Êa).   

Fig. 7 Model-predicted activation energy distribution for the unweighted (top) and 
k-weighted (bottom) distributions at iteration 0 (grey, hatched) and 28 (red) of the 
importance learning algorithm. Apparent activation energies of importance 
sampled sites are shown as a rug at the top of each plot. The ▼ symbol shows the 
correct site averaged Ea.

    Prior to importance learning, the initial training set contained 
only one site with an activation energy under 40 kJ/mol.  
Importance learning discovers sites with activation energies 
below 40 kJ/mol, which dominate the overall kinetics.  After 28 
iterations of importance learning, the low activation energy tail 
of the predicted ρ̃(Êa) closely resembles that of the exact ρ̃(Ea).  
More importantly, the main support of the predicted ρk̃(Êa) 
closely resembles that of the exact ρ̃(Ea).  Both distributions are 
inaccurately predicted at high activation energies, but these sites 
make vanishingly small contributions to the observed kinetics.  
They only need to be counted in the normalization of ρ̃(Ea) to 
predict the kinetic properties.  
     Fig. 8 shows the convergence of ⟨Ea⟩k estimates from 
importance sampling using standard errors.  A higher degree of 
confidence could also be computed using eqn. (16).
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Fig. 8 The importance learning algorithm converges to within 0.75 kJ/mol of the correct 
site-averaged Ea̅ in 28 iterations.  By comparison, a reweighted random sample requires 
about 200,000 samples to compute Ẽa with the same level of confidence (section S5).

Identifying characteristics of active sites
    In real applications, optimizing the Mahalonobis matrix is 
inexpensive compared to generating training data from ab initio 
calculations.  Therefore, an importance learning calculation can 
include all potentially important coordinates.  However, a 
central goal of these calculations is to discover those few key 
characteristics that distinguish active from inactive sites.  
Intuition would suggest that the most important coordinates can 
be identified from the largest diagonal elements in the 
Mahalonobis matrix.  The optimized matrix obtained in this 
work, using d1, d2, and , is: 

                                                                                                𝑑1         𝑑2             𝜃

                               𝑆 =  [ 77068 ―56512 ―45
―56512 41440 32

―45 32 0 ]
(23)

Coordinates d1 and d2 have the largest diagonal elements, and 
they indeed have the strongest influence on site activity.  The 
coordinates d1 and d2 correspond to silanolate – silanolate 
distances and siloxane – siloxane distances, respectively.  In 
hindsight, these coordinates should have primary importance 
because the potential energies are defined in terms of these 
coordinates.  
    In general, the diagonal matrix elements are not reliable 
indicators of the most important structural characteristics.  For 
example, the diagonal matrix elements change magnitude 
depending on the units used to represent the coordinates.  In 

addition, diagonal matrix elements indicate sensitivity to local 
structural changes.  They do not account for differences in the 
extent to which sites vary along different structural coordinates 
within the global ensemble of sites.  Off-diagonal matrix 
elements may also be important.  Large off-diagonal matrix 
elements may indicate that special combinations of the 
coordinates are important.  Alternatively, off-diagonal elements 
may compensate for non-orthogonality or redundancy in the set 
of trial coordinates.  The latter complications can be avoided by 
choosing coordinates that are orthogonal, in the sense: 

(24)0ji qq 
 

 x x

More general guidelines are that 
(i) Good coordinates should suffice to predict differences in 
activity over the region with support in distribution (x)k(x).  
(ii) The kernel regression model should predict activation 
energies with errors that are much smaller than the range of 
activation energies in ρk̃(Ea).  
These two guidelines suggest ranking models according to the 
fraction of the actual Ea variance that is explained by the model.  
In linear regression, this is the familiar R2 statistic.  Models that 
include more input coordinates will generally give larger R2 
values, but small models are preferred, as long as they give 
accurate site-averaged rate predictions. The fit quality of the 
kernel regression models trained on different sets of coordinates 
are shown in Fig 9.

Page 8 of 12Reaction Chemistry & Engineering



This journal is © The Royal Society of Chemistry 20xx React. Chem. Eng., 2019, 00, 1-11 | 9

Fig. 9 Parity plot of model trained with d1, d2 (top) and d1, θ (bottom) at iteration 30 
of the importance learning algorithm.  As shown in Table 2, d1 and d2 are sufficient 
(without the extra variable ) to allow kernel regression to predict activation 
energies across the range of values.  

Table 2: R2 values of trained model with different combination of local coordinates at 
iteration 30 of the importance learning algorithm.

Coordinates R2

d1 0.80
d2 0.16
θ -0.03

d1, d2 0.99
d1, θ 0.82
d2, θ 0.34

d1, d2, θ 0.99

The R2 values identify θ as a kinetically unimportant structural 
characteristic.  The kernel regression model trained only on θ 
completely fails to make predictions based on the local 
environment. Models based only on d1 or d2 begin to predict 
coarse trends in the activation energies.  The model trained using 
d1 and d2 together makes extremely accurate predictions across 
the whole range of activation energies.  Note that d1 and d2 are 
just two of the five total coordinates that define the local site 
environment.   The model-predicted Ea is plotted as a function 

of d1 and d2 in Fig. 10.   This plot reveals that d1 and d2 
compensate for each other in active sites.  Among sites with the 
same activation energy, one length increases while the other 
decreases.   Fig. 10 also illustrates that the most active sites have 
shorter d1 (silanolate-silanolate) distances and longer d2 (O-O 
distance of the siloxane ligands) distances relative to the 
unperturbed distance of 2.00. 

Fig. 10 Activity of sites as function of the local environment. The upper plot shows the 
true barriers and the bottom plot shows the model-predicted barriers at iteration 30 of 
the importance learning loop. Blue points correspond to the initial pool and white points 
are importance sampled sites.

Conclusions
    Several industrially important or promising catalysts are single 
metal atoms grafted onto an amorphous support such as silica.  
These catalysts tend to be poorly understood because the 
amorphous support gives each site a unique local environment.  
Moreover, the distribution of disordered environments around 
each site is quenched, history dependent, and thus largely 
unpredictable.  Each site has a different activation energy, and 
the variance in activation energies is exponentially magnified in 
the distribution of activities.  Accordingly, active sites tend to be 
rare, with less than 20% of sites accounting for most of the 
catalytic activity.  The small fraction of active sites hampers both 
experimental characterization and theoretical modeling efforts.  
    This paper presented an importance learning algorithm to 
overcome the theoretical challenges of modeling the activity of 
such catalysts.  It combines machine learning techniques (kernel 
regression) and importance sampling techniques (to focus effort 
on the most active and abundant sites). To illustrate the 
algorithm, we developed a simple model of a Langmuir-
Hinshelwood reaction at sites on a quenched and disordered 
support.  We used the algorithm to compute the site-averaged 
activation energy.  
The algorithm rapidly converged estimates of the site-averaged 
Ea with uncertainties less than 0.75 kJ/mol, even though the 
individual sites in the model have activation energies that span a 
range of nearly 40 kJ/mol.  Estimating the site-averaged Ea with 
the same level of confidence as importance learning requires 
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through standard sampling methods requires 200,000 samples 
(compared to ~75 samples in the importance learning algorithm) 
for this system.   Furthermore, the kernel regression model 
generated by the algorithm can accurately predict the activation 
energies using just two structural characteristics of the local 
environment.  The new importance learning algorithm, if 
combined with ab initio calculations and realistic models of 
amorphous silica, should enable the first rigorous site-averaged 
computational studies and quantitative predictions for this 
important family of catalysts.   

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
We thank Bryan Goldsmith, Marco Caricato, Ward Thompson, 
Brian Laird and Frederick Tielens for helpful discussions. 
Department of Energy Basic Energy Sciences Catalysis Award DE-
FG02-03ER15467 supported the kernel regression model 
development.  National Science Foundation CBET Award 
1605867 supported the importance learning algorithm 
development.  Department of Energy Computational Chemical 
Sciences Award DE-SC0019488 supported development of 
quench-disordered lattice model system.  Use was made of 
computational facilities purchased with funds from the National 
Science Foundation (CNS-1725797) and administered by the 
Center for Scientific Computing (CSC). The CSC is supported by 
the California NanoSystems Institute and the Materials Research 
Science and Engineering Center (MRSEC; NSF DMR 1720256) at 
UC Santa Barbara. 

Page 10 of 12Reaction Chemistry & Engineering



This journal is © The Royal Society of Chemistry 20xx React. Chem. Eng., 2019, 00, 1-11 | 11

1. X. Zhang, H. Shi and B. Q. Xu, Angew. Chem., Int. Ed., 2005, 44, 7132-7135.
2. S. F. J. Hackett, R. M. Brydson, M. H. Gass, I. Harvey, A. D. Newman, K. Wilson and A. F. Lee, 

Angew. Chem., Int. Ed., 2007, 46, 8593-8596.
3. H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang, S. Miao, J. Liu and T. Zhang, Nat. 

Commun., 2014.
4. J. M. Thomas, R. Raja and D. W. Lewis, Angew. Chem., Int. Ed., 2005, 44, 6456-6482.
5. A. Wang, J. Li and T. Zhang, Nat. Rev. Chem., 2018, 2, 65-81.
6. M. Flytzani-Stephanopoulos and B. C. Gates, Annu. Rev. Chem. Biomol. Eng., 2012.
7. M. P. McDaniel and M. B. Welch, J. Catal., 1983, 82, 98-109.
8. S. Maksasithorn, P. Praserthdam, K. Suriye and D. P. Debecker, Microporous Mesoporous Mater., 

2015, 213, 125-133.
9. L. Carrick Wayne, J. Turbett Robert, J. Karol Frederick, L. Karapinka George, S. Fox Adrian and N. 

Johnson Robert, J. Polym. Sci., Part A-1: Polym. Chem., 1972, 10, 2609-2620.
10. K. H. Theopold, Acc. Chem. Res., 1990, 23, 263-270.
11. M. P. McDaniel, Adv. Catal., 2010, 53, 123-606.
12. D. A. Ruddy and T. D. Tilley, J. Am. Chem. Soc., 2008, 130, 11088-11096.
13. I. J. Shannon, T. Maschmeyer, R. D. Oldroyd, G. Sankar, J. M. Thomas, H. Pernot, J. P. Balikdjian 

and M. Che, J. Chem. Soc., Faraday Trans., 1998, 94, 1495-1499.
14. W. C. Vining, J. Strunk and A. T. Bell, J. Catal., 2012, 281, 222-230.
15. K. Amakawa, S. Wrabetz, J. Kröhnert, G. Tzolova-Müller, R. Schlögl and A. Trunschke, J. Am. 

Chem. Soc., 2012, 134, 11473.
16. M. P. McDaniel and S. J. Martin, J. Phys. Chem., 1991, 95, 3289-3293.
17. Y. Chauvin and D. Commereuc, J. Chem. Soc., Chem. Commun., 1992, 462-464.
18. J. G. Howell, Y. P. Li and A. T. Bell, ACS Catal., 2016.
19. N. A. Brunelli and C. W. Jones, J. Catal., 2013.
20. S. Khan, C. Vandervelden, S. L. Scott and B. Peters, In Preparation, 2019.
21. T. Baştuǧ and S. Kuyucak, Chem. Phys. Lett., 2007, 436, 383-387.
22. C. Bustamante, J. Liphardt and F. Ritort, Phys. Today, 2005, 58, 43-48.
23. R. P. Sear, J. Phys.: Condens. Matter, 2012.
24. F. Wang and D. P. Landau, Phys. Rev. Lett., 2001.
25. Ø. Espelid and K. J. Børve, J. Catal., 2000, 195, 125-139.
26. A. Fong, C. Vandervelden, S. L. Scott and B. Peters, ACS Catal., 2018, 1728−1733.
27. A. M. Jystad, A. Biancardi and M. Caricato, J. Phys. Chem. C, 2017, 121, 22258-22267.
28. L. Floryan, A. P. Borosy, F. Núñez-Zarur, A. Comas-Vives and C. Copéret, J. Catal., 2017, 346, 50-

56.
29. J. Handzlik, Surf. Sci., 2007, 601, 2054-2065.
30. H. Guesmi and F. Tielens, J. Phys. Chem. C, 2012.
31. A. Fong, Y. Yuan, S. L. Ivry, S. L. Scott and B. Peters, ACS Catal., 2015, 5, 3360-3374.
32. M. F. Delley, F. Nunez-Zarur, M. P. Conley, A. Comas-Vives, G. Siddiqi, S. Norsic, V. Monteil, O. V. 

Safonova and C. Coperet, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 11624-11629.
33. M. Gierada and J. Handzlik, J. Catal., 2017, 352, 314-328.
34. C. S. Ewing, S. Bhavsar, G. Veser, J. J. McCarthy and J. K. Johnson, Langmuir, 2014.
35. B. R. Goldsmith, B. Peters, J. K. Johnson, B. C. Gates and S. L. Scott, ACS Catal., 2017, 7, 7543-

7757.
36. J. D. Weeks, D. Chandler and H. C. Andersen, J. Chem. Phys., 1971, 54, 5237-5247.
37. D. S. McGuinness, N. W. Davies, J. Horne and I. Ivanov, Organometallics, 2010, 29, 6111-6116.

Page 11 of 12 Reaction Chemistry & Engineering



12 | React. Chem. Eng., 2019, 00, 1-11 This journal is © The Royal Society of Chemistry 20xx

38. Y.-R. Luo, Comprehensive handbook of chemical bond energies, CRC Press, Boca Raton, 2007.
39. B. Peters and S. L. Scott, J. Chem. Phys., 2015, 142, 104708.
40. C. Wu, D. J. Schmidt, C. Wolverton and W. F. Schneider, J. Catal., 2012, 286, 88-94.
41. K. Q. Weinberger and G. Tesauro, J. Mach. Learn. Res., 2007, 8.
42. T. Hofmann, B. Schölkopf and A. J. Smola, Ann. Stat., 2008, 36, 1171-1220.
43. P. C. Mahalanobis, Proc. Natl. Inst. Sci. India, 1936, 2, 49-55.
44. C. Carey and Y. Tang, metric-learn, GitHub, 2019
45. J. D. Logan, Applied mathematics, Wiley-Interscience, Hoboken, N.J., 3rd edn., 2006.

Page 12 of 12Reaction Chemistry & Engineering


