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Despite the known sensitivity to sequence mutations of biological
polymers, little is known about the effects of errors in sequenced
synthetic copolymers. The degradation behaviors of copolyesters,
for example, are known to depend on monomer-by-monomer
order, yet the contribution of isolated monomer substitutions on
hydrolysis behaviors has not been studied. We have developed a
synthetic method in which precise quantities of a critical sequence
error are doped into a sequenced polyester and studied how
hydrolysis behaviors are affected by this distinct and potent
sequence-error. The degradation rate proved tolerant to
substitutions up to 1% of the monomers but accelerated
significantly when the error population was larger.

Although single monomer substitution errors in natural
biomacromolecules are known to affect function, the
challenges inherent in the synthesis of sequence-controlled
polymers (SCPs) have inhibited the development of a parallel
understanding of how small populations of monomer sequence
errors affect the properties and performance in non-biological
polymers.12 In addition to characterizing the negative
consequences of error introduction, such studies could also
broaden the range of function for polymers prepared from a
given library of monomers through deliberate error doping with
a property-dominating monomer or segment.

Although uncommon, there have been some relevant
reports of small populations of a sequence alteration affecting
properties. The most prevalent studies typically involve
solution-phase properties, particularly polymer folding,3®
aggregation,”?* and molecular recognition.’>18 |In the bulk
phase, this phenomenon is even less well studied but there are
some notable examples including the work of Winey and co-
workers who determined that small alterations in sidechain

o Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania,
15260, USA

b-McGowan Institute for Regenerative Medicine, University of Pittsburgh,
Pittsburgh, Pennsylvania, 15219, USA

tElectronic Supplementary Information

DOI: 10.1039/x0xx00000x

(ESI) available: See

Jamie A. Nowalk,? Jordan H. Swisher,2and Tara Y. Meyer @b*

13
2
OO0 COO000CCOCOCOCOCO0 I
e 8
OO0 CO0C0OCOCOO SO0
Base 5
Sequence  QOOOOG0000 000000000 000000 ag;
(7]
00000 0000000000 00000 @
(@) B =
00 000 00 0 000000 00000 &
Sequence o0 3
Error o
0000080 00000000000 0000 E
B @8C0000000000000000 0000
-::—\ ______ -——_ Error
- A S - S Tolerant
~ ~
t N So - ~ N
o N SS ~
Q < ~So N
(=) ~ ~ N
r Error ~ =~ S
o or — "~ S AN
Sensitive S~ o S< B
- ~
—————— -

Sequence Error Population

Figure 1. Sequence tolerance pathways as a function of errors in a sequence-
controlled polymer.

spacing can affect morphological order in ionomers,19-22
Jannasch and co-workers who described the sensitivity of
proton conductivity to small deviations in monomer spacing,?3
and Segalman and co-workers who described the dependence
of surface structure and hydration of polypeptoids on the

positioning of discrete sequences within a chain.?*

Please do not adjust margins




Polymer.Chemistry

0. o~ 0, o~ LGLGL x=1.00 y=0.00
> o o 7 o ] LGGGL-25 x=0975 y=0.025
o o’}ﬁ' [*] 0’5\ LGGGL-5 x=0.950 y=0.050
OOy 0g® OOy 0.0 LGGGL-10 x=090 y=0.10
3’ b LGGGL-20 x=080 y=020
o o
0”0 o ~*=o 0”09 o o
0
oy R Sequence Error
Grubbs 2 Insertion
0.7M
o o o o
0 o Y&
o /x o
[¢] = [¢] Y|
04~ j,o £00- j,c»
o o

Figure 2. Polymerization of mixtures of macrocycles to prepare a sequenced polyester
with varying errormer dopant.

Our group, which has been active in the synthesis and
characterization of SCPs, has established that a wide range of
hydrolysis behaviors of poly(lactic-co-glycolic acid)s (PLGAs) are
highly sequence-dependent, including degradation rates, guest
molecule release, internal pH, and water uptake of devices
made from this material.?5>-?? We have not, however, probed the
effects of isolated and cumulating errors on the behavior of
these materials. It is important to note that in bioengineering,
bioresorbable polyesters such as PLGAs are rich in application,
serving as drug delivery vehicles, cell scaffolds, degradable
sutures, and osteofixation devices. The wide range of potential
applications for this class of polymer inspires our interest in
using sequence to tune properties.?834

Forthe current studies, which are designed to probe the role
of sequence errors, we have employed entropy-driven ring-
(ED-ROMP) for the
synthesis of the sequenced materials. ED-ROMP, which involves

opening metathesis polymerization
the ring-opening of an unstrained macromonomer thatincludes
a sequenced segment, offers key advantages over our usual
approach of coupling preformed linear segments using a step-
These

reproducibility,

growth polymerization.3> 36 advantages include

molecular  weight control, dispersity
minimization, and scalability.3? Although ED-ROMP polymers
necessarily include linker segments in addition to the section
bearing the degradable ester sequence, we judge the trade-off
to be warranted as molecular weight control is crucial to
characterizing often subtle property changes connected with
introduction of errors.

We focus in this study on the introduction of G-G linkage
errors into an otherwise alternating segment of L and G units
because in our prior studies on PLGAs, the most dramatic
deviation in behaviors were observed when the hydrolysis of
the random-sequence PLGA and the alternating sequence, Poly
LG, were compared. Additionally, a more recent degradation
study, which compared copolymers prepared via ED-ROMP,
suggested that only a small degree of short-range monomer
scrambling of an alternating LG sequence was enough to affect
hydrolysis behaviors.3® It became apparent that glycolic-glycolic
(G-G) linkages were a key factor in determining the hydrolytic
profile of sequenced PLGAs and similar copolymers. With these
results, we endeavour to further quantify this sequence
dependence by preparing polymers with varying degrees of

precise glycolic acid monomer substitution errors and tracking
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Figure 3. (Top} Molecular weight data of the five copolymers prepared from entropy-
driven ring-opening metathesis polymerization. (Bottom} Sequence characterization
of the five copolymers, including H NMR spectral region of the diastereotopic G
methylene protons and MALDI-TOF spectra.

hydrolysis. We address this question by preparing copolymers
that consist of a repeating unit bearing a metathesis-active unit
(M), a syringic acid unit (Sy), and a PLGA pentamer. Without the
incorporation of Sy, the M unit significantly lowers the Tg of
these to fall
temperature (37 °C) for future applications.3” 32 To introduce

materials below the biologically-dictated
errors, we vary the proportion of macromonomers that include
a perfectly sequenced LGLGL segment and ones that include the
dopant LGGGL segment, i.e., the errormer.

The macrocyclic monomers (Figure 2) were prepared using
previously reported methods that include sequential ester
couplings, orthogonal protections, and deprotections (Schemes
$1-3).3> 36 Benzyl (Bn) protected oligomer, Bn-SyLM, was
coupled to either silyl-protected LGLGL-Si or LGGGL-Si (Si =
TBDPS). Sequential benzyl and silyl deprotections gave the
respective open-chain hydroxy-acid oligomers. These linear
dilute
lactonization conditions to yield the cyclic macromonomers.

oligomers were subsequently ring-closed under
Prior to polymerization, the cyclic macromonomers were
combined in dichloromethane to prepare mixtures containing
0, 2.5, 5, 10, and 20 mol% of LGGGL segments. The mixtures
were subjected to ED-ROMP with 1.5 mol% Grubbs second
catalyst. The percentages

correspond to an average of 0, 3.2, 6.3, 12.6, 25.2 substitution

generation errormer mole

errors per chain, where the average degree of polymerization is
530 (50 kDa). The five copolymers are named by their error

This journal is © The Royal Society of Chemistry 20xx
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Figure 4. (Top} Molecular weight loss during hydrolysis. (Bottom} Photographs of films
at given time points during hydrolysis. X denotes particles too small to photograph.

content, e.g.,, LGLGL contains only the base alternating
sequence and LGGGL-5 contains 5 mol% errormer. Due to the
the

resulting copolymers contain statistical head-tail disorder at

unsymmetric design of the macrocyclic monomers,

each olefin connection as evidenced by the olefin region in the
1H NMR spectra. Importantly, however, the NMR data confirm
that none of the other monomer linkages were affected by the
polymerization which means that there are no errors outside of
those deliberately introduced.3”

Typically, the degree of sequence fidelity of PLGA-like
copolymers can be quantified in the 4.5-5.0 ppm region in 1H
NMR spectra, where the signal of the incredibly sensitive,
diastereotopic G-methylene protons (Figure 3).
Additionally, the 13C spectra showed a gradual decrease in the

appears

sharpness and intensity of the central L carbonyl carbon in the
LGLGL segment (Figure S4). MALDI-TOF mass spectra of the
copolymers were consistent with the degree of error
incorporation targeted. The fact that the lower molecular
weight dimers showed a clear statistical distribution of errors
supports this conclusion. Although it is challenging to use mass
spectrometry for quantification, in this case the dimeric species
are sufficiently similar in composition that their representation
in the spectrum should correlate well with the representation
in the original sample. Extrapolation of these mass data, paired
with the H NMR spectra, indicated that the error dopant was
the
statistical

and quantitatively incorporated during
polymerizations. It is worth noting that the
distribution of head-to-tail, head-to-head,

couplings of the macromonomers are presentin all samples and

randomly

and tail-to-tail

are not considered “errors” for the purposes of this study.

This journal is © The Royal Society of Chemistry 20xx
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Figure 5. Scanning electron microscopy images of thick films at varying time points in
hydrolysis.

For the degradation studies, thick polymer films of 7.5 mm
diameter were prepared by solution casting 28 uL of a 100
mg/mL solution onto a circular aluminium base. The solution
was air dried for three hours followed by further drying in a
vacuum chamber for 72 hrs. Each film was easily removed from
the base prior to hydrolysis. In our prior work involving the
determination of bulk phase sequence/property relationships
with limited sample mass, we found that solution casting of
thick polymer films was both efficient and reproducible.?®

Each film, 70 um thick and weighing ~3 mg, was placed in a
dram vial with 2 mL of 10x phosphate buffer solution (PBS, pH =
7.4) and placed in an incubator at 37 °C on a rotating platform
(8 rpm). Each week for ten weeks, three films of each sample
were removed for SEC analysis and the reported molecular
weights are an average of these three samples. The copolymers
degraded uniformly with extremely little variation in molecular
weights in a given set of three (range of values less than 0.04,
smaller than symbols used in Figure 4). Over time, the
copolymers LGLGL, LGGGL-2.5, and LGGGL-5 behave similarly.
LGGGL-10 degraded identically to the others until week 7;
thereafter, a more rapid degradation was observed. LGGGL-20
degraded more rapidly beginning after week 2.

When significant degradation occurred, the films became
brittle and fractured into pieces (Figure 4). It became difficult to
remove the films from vials without damaging them. The extent
of this fracturing seemed to depend on error content. For
LGGGL-10 and LGGGL-20, the film masses and particle size
decreased quickly after initial fracturing. Fractures were also
observed in the SEM images of each film. Additionally, high
magnification images (1,000x) showed an increase in surface
roughness as more error was introduced (Figure 5, Figures S2-
3). It should be noted that the week 8 samples for LGGGL-20
were essentially powder. They did not photograph well
macroscopically, and SEM data could only be acquired at high
magnification.

To interpret these results, we take into consideration that
the pattern of polyester chain cleavage can dramatically affect
the rate of molecular weight loss. If significant intrachain
scission occurs, molecular weight drops rapidly. When the
primary cleavage mechanism is end-chain scission, however,
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molecular weight decreases gradually as short segments near
chain ends are cleaved and eliminated. We previously observed
that the alternating LG sequence is resistant to significant
amounts of intrachain scission.?® Consistently, we found that G-
G linkages increased the prevalence of intrachain scission
events that lead to an accelerated molecular weight loss.*%42 In
the current samples we must, therefore, hypothesize that each
G-G linkage error increases the chance of MW-decreasing
intrachain scission.

In conclusion, we have embedded varying quantities of a
glycolic acid monomer sequence error to disrupt a primarily
alternating base sequence within degradable polyesters and
subjected the polymers to hydrolysis. Hydrolysis rates and
surface features were monitored over time. Molecular weight
loss was largely unaffected up to the incorporation of 10 mol%
cyclic macromonomer error, which translates to an average of
6.3 monomer sequence errors per chain of ¥~530 monomers or
approximately 1%. Above 10 mol%, the degradation
accelerates, indicating that the errors are becoming more
dominant in controlling hydrolysis patterns.

We anticipate that the knowledge gained from the current
study can aid in the engineering of PLGA-type polymers with
specific properties. One approach would be to exploit potent
error dopants to tune one property with a minimal impact on
another. We could, for example, tune degradation times by
adding a small number of G-G linkage errors without
dramatically affecting other properties like swelling or loading
capacities. We are continuing our investigations into semi-
sequencing techniques to manipulate behaviors.
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