
High-throughput Sequential Excitation for Nanoscale 
Mapping of Electrochemical Strain in Granular Ceria

Journal: Nanoscale

Manuscript ID NR-ART-08-2019-007438.R1

Article Type: Paper

Date Submitted by the 
Author: 11-Nov-2019

Complete List of Authors: Huang, Boyuan; University of Washington Seattle Campus
Esfahani, Ehsan; University of Washington Seattle Campus
Yu, Junxi; Shenzhen Institutes of Advanced Technology Chinese 
Academy of Sciences
Gerwe, Brian; University of Washington Seattle Campus
Adler, Stuart; University of Washington Seattle Campus
Li, Jiangyu; Univ. of Washington, 

 

Nanoscale



1

High-throughput Sequential Excitation for Nanoscale Mapping of Electrochemical Strain 

in Granular Ceria

Boyuan Huang,1,2 Ehsan Nasr Esfahani,1 Junxi Yu,2,3 Brian S Gerwe,4 Stuart B. Adler,4 and 

Jiangyu Li1,2,*

1. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA

2. Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, 

Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.

3. Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of 

Education, and School of Materials Science and Engineering, Xiangtan University, Xiangtan, 

Hunan, 411105, China 

4. Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.

Abstract

Dynamic strain based atomic force microscopy (AFM) modes often fail at the interfaces where 

the most interesting physics occurs because of its incapability of tracking contact resonance 

accurately under rough topography. To overcome this difficulty, we develop high-throughput 

sequential excitation AFM that captures contact dynamics of probe-sample interaction with high 

fidelity and efficiency, acquiring the spectrum of data on each pixel over a range of frequencies 

that are excited in a sequential manner. Using electrochemically active granular ceria as an 

example, we map both linear and quadratic electrochemical strain accurately across grain 

boundaries with high spatial resolution where the conventional approach fails. The enhanced 

electrochemical responses point to the accumulation of small polarons in the space charge region 

at grain boundaries, thought to be responsible for the enhanced electronic conductivity in 

nanocrystalline ceria. The spectrum of data can be processed very efficiently by physics-

informed principal component analysis (PCA), speeding data processing by orders of magnitude. 

The approach can be applied to a variety of AFM modes for studying a wide range of materials 

and structures at the nanoscale. 

* Author to whom the correspondence should be addressed to: jjli@uw.edu.
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INTRODUCTION

Atomic force microscopy (AFM) was invented in 1986,1 and has since emerged as a powerful 

tool to probe a wide range of materials, structures, and systems with nanometer resolution.2–6 

Underlying the working principle of AFM is the dynamics of its cantilever, which is very 

sensitive to the sample-tip interactions, making it possible to probe a wide variety of functional 

properties.7–13 Central to this operation is the resonance of the cantilever, tracking of which is 

essential to accurately capturing the material characteristics of interest, or substantial crosstalk 

and artifacts will be resulted.14 This is particularly important for AFM operating in contact mode, 

such as piezoresponse force microscopy (PFM) 7,15–17 and electrochemical strain microscopy 

(ESM) 11,18–21, wherein contact resonance is greatly affected by not only material heterogeneity 

but also surface topography. For samples with rough surfaces, for example granular materials 

that are widely used in electrochemical conversion21–23, accurate contact resonance tracking is 

rather challenging, and the spatial resolution is often compromised as a result.

A number of techniques have been developed to address this issue. For example, dual amplitude 

resonance tracking (DART) excites the cantilever using two frequencies across the resonance, 

and utilizes the difference in their amplitudes as the error signal for tracking.24,25 This works 

reasonably well for smooth surface, but tracking often fails under rough topography.13,14,26 Band 

excitation (BE) has also been developed by synthesizing a signal summing all harmonic 

excitation within a frequency band,27 so that resonance is covered within the band and thus 

tracking becomes unnecessary. Nevertheless, the excitation power of BE is distributed among the 

band of frequencies, resulting in much reduced strength and signal-to-noise ratio (S/N) at each 

individual frequency.27 Alternatively, a series of excitation signals of varying frequencies can be 

applied to the cantilever in sequential instead of concurrent manner, one frequency at a time, so 

that the signal strength and S/N are not compromised.26 Such sequential excitation (SE) turns out 

to be very effective in capturing cantilever dynamics,26 though it requires multiple scans that is 

not only slow and inefficient but also tend to induce drifting, probe wearing and surface damage 

that complicates the analysis. For sensitive electrochemical materials that are not very stable, 

such as halide perovskites,28,29 we may not even have time to complete all the necessary scans.

Here we develop a high-throughput SE that is capable of accurately capturing cantilever 

dynamics, and thus underlying physical interactions, in just one instead of multiple scans. It has 
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scanning speed comparable to conventional DART, yet with much enhanced spatial resolution as 

well as quantitative accuracy, especially in the interface where steep steps locate. The approach 

can be applied to any AFM modes that rely on cantilever resonance for imaging, and we 

demonstrate it here using ESM to probe defect-induced Vegard strain near grain boundaries in 

polycrystalline ceria. These defects (small polarons) are thought to accumulate near grain 

boundaries, leading to enhanced electronic conductivity in nanoscrystalline ceria.30,31 Using SE, 

we have mapped both the linear and quadratic electrochemical strains in ceria near grain 

boundaries at much higher resolution and fidelity than afforded by DART.

RESULTS

Failure of resonance tracking

Atomic force microscopy (AFM) works by probing its cantilever dynamics as affected by 

sample-tip interactions, which can be accurately described by damped harmonic oscillator model 

(DHO),32

2
10 0 0

02 2
2 2 2 2 00
0

( ) ,                 ( ) tan [ ]+ ,      (1)
( )

( ) ( )

AA
Q

Q

     
   

 


 

where , , ,  are intrinsic amplitude, phase, quality factor and resonance frequency of 0A 0 Q 0

the system, respectively, that are of interests to us, while A() and () are measured amplitude 

and phase at excitation frequency . In order to track shifting resonance during scan, which is 

essential to accurately capture the sample-tip interactions, DART measures two pairs of 

amplitude and phase as  and  at two excitation frequencies 1 1 1 1[ ( ), ( )]A    2 2 2 2[ ( ), ( )]A   

 and  utilizing the difference between A() and A() as error signal for feedback control. 

One set of A() mappings carefully acquired during trace and retrace scanning using DART on 

granular ceria overlaid on its 3D topography are shown in Fig. 1a, which covers one grain and a 

number of grain boundaries, with more data presented in Fig. S1 of Supporting Information (SI). 

The scale of colorbar is set for the best image contrast, so values on the colorbar of Fig. 1a do not 

mean the real range [1.3, 3.5]. While the trace and retract mappings resemble each other well in 

most part of the scans, closer examination reveals that they differ substantially at grain 
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boundaries. This is made clearer by the comparison of line scans shown in Fig. 1b, where it is 

evident that during trace the amplitude is reduced at the grain boundaries while under the retrace, 

it is enhanced. As such, the trends are completely opposite between trace and retrace at grain 

boundaries, while away from grain boundaries they agree with each other well. This difference 

highlights the failure of resonance tracking when there is significant topography variation often 

encountered in materials, even though the scan is carried out slowly with careful adjusted 

parameters to ensure the reliable tracking. For more casual scans, the problem will be more 

serious, as seen in Fig. 1c with more data in Fig. S2, where there are noticeable wavelet scratch-

like patterns in the mapping of frequency  that extends along the scanning direction of the 

probe, especially at grain boundaries. Such artifact clearly indicates the failure of resonance 

tracking, even within a grain where topography variation is insignificant, and such mappings are 

not reliable even for qualitative analysis.

Fig. 1 The difficulty and failure of resonance tracking; (a) amplitude mappings from trace and 

retrace acquired under DART; (b) comparison of corresponding line scans between trace and 

retrace; (c) artifacts in the mapping of excitation frequency. 

High-throughput sequential excitation

One solution to overcome the difficulties of resonance tracking is to eliminate it all together, for 

example by exciting the cantilever over a range of frequencies that cover the resonance. Band 

excitation (BE) implements this concept by applying all the frequencies concurrently,27 while 

sequential excitation (SE) carries this out in a sequential manner.26,33 The difference between 

these two approaches seems subtle, yet the implication is significant. The excitation power under 

SE is concentrated in each individual frequency, while for BE it is distributed over the entire 

band, and thus SE has much stronger signal strength and S/N. Original SE requires multiple 
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scans each with a distinct excitation frequency, which can be implemented on any standard AFM. 

Yet it is time consuming and prone to shifting during different scans, and it tends to induce probe 

wearing and sample damage. Here, we develop an advanced implementation for high-throughput 

SE that requires just one scan, as schematically shown in Fig. 2.

Fig. 2 Schematic of high-throughput SE-ESM.

Central to our approach is a high-resolution waveform designated as Drive in Fig. 2 drawn in 

time domain, where it is seen that the frequency increases over the time. This drive signal 

consists of m jointed sinusoidal waves with discrete frequencies, which can be produced by 

Arbitrary Waveform Generator (AWG) for each pixel during scan, as detailed in Fig. S3. The 

resulting deflection signal of cantilever at each pixel is recorded in time domain, and then 

Fourier transformed into frequency domain using the corresponding drive as a reference. This is 

equivalent to a digital lock-in, from which m pairs of amplitude and phase are obtained at each 

pixel over the frequency range of interest. As a demonstration, actual excitation and response in 

one of our experiments are presented in Fig. 3. The drive consists of 15 sinusoidal waveforms 

with distinct frequencies ranging from 347 to 390 kHz connected in sequential manner over a 

time span of 2.14 ms, as seen in Fig. 3a, with 3 such waveforms zoomed in in Fig. 3b. Each 

waveform lasts 50 cycles, leaving sufficient time to acquire response data accurately, 

corresponding to a line scan rate of 0.8 Hz that is comparable to a typical DART - it takes just 5 

min to complete a 256×256 pixels scan. The response is recorded in time domain, as shown in 

Fig. 3cd, which contains large volume of data and is quite noisy. Yet after Fourier transformed 
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into frequency domain, a clear resonant peak emerges in amplitude, upon which phase jumps by 

180o, as shown in Fig. 3ef along with drive signal. Such dynamics is expected from DHO 

governed by Eq. (1), and this illustrates how high-throughput SE works on signal generation as 

well as data acquisition and processing. 

Fig. 3 Excitation and response of SE in time- and frequency-domains; (ab) drive in time domain; 

(cd) response in time domain; (ef) drive and response in frequency domain.

Linear and quadratic electrochemical strains

We now apply high throughput SE to probe linear and quadratic electrochemical strains of 

granular ceria via first and second harmonic ESM measurements,34,35 for which high fidelity 

mappings at grain boundaries are essential to examine the proposed accumulation of space 

charges in its interfacial regions. Since a sequence of A(i) and (i) are acquired under SE at 

each pixel, which can be fitted by Eq. (1) of DHO as shown by Fig. S4, we can obtain 

parameters intrinsic to the probed system, including intrinsic amplitude, phase, quality factor, 

and resonant frequency. Note that both amplitude and phase equations can be used, yielding 

consistent mappings as shown in Fig. S4. 
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Fig. 4 Linear and quadratic strains in granular ceria; amplitude mappings of first (a) and second 

(b) harmonic responses, and their histogram distribution (c); quality factor mappings of first (d) 

and second harmonic measurement (e), and their histogram distribution (f); mappings of R2 of 

first (g) and second (h) harmonic responses indicating DHO fitting fidelity; and (i) point-wise 

first and second harmonic response at grain boundaries and with a grain. 

Linear electrochemical strain obtained as such is shown in Fig. 4a, acquired via first harmonic 

measurement at each of the excitation frequency, while quadratic strain is shown in Fig. 4b, 

acquired via second harmonic measurement at frequencies that doubles each excitation 

frequency. For both mappings, it is evident that the responses are substantially enhanced at the 

grain boundaries, which can be seen more clearly from point-wise comparison of first and 

second harmonic responses at grain boundaries and within a grain in Fig.4i. Furthermore, 

histogram distributions of first and second harmonic responses in Fig. 4c reveals that the 

electrochemical strain is predominantly linear, arising from Vegard strain due to fluctuations in 

small polaron concentration under the AC excitation, while the quadratic strain due to 

electrochemical dipole and thus electrostriction is also present.35 Further insight can be learned 
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from the mappings of quality factors associated with first (Fig. 4d) and second (Fig. 4e) 

harmonic measurements, where it is observed that second harmonic electrostriction has higher 

quality factor (Fig. 4f), and thus smaller dissipation, as Vegard strain from small polarons is an 

energy-dissipative process. These observations are consistent with the proposed accumulation of 

space charges at grain boundaries, resulting in enhanced response at grain boundaries in both 

first and second harmonics.

Fig. 5 Comparison of ESM mappings of ceria acquired by DART (first row) and SE (second 

row), along with their histogram distribution (third row). 

We also examine the mappings of resonant frequencies from first and second harmonic 

measurements presented in Fig. S5, which match with each other well, demonstrating the high 

fidelity of the measurement. More importantly, we can examine the accuracy of the DHO fitting 

at each pixel in terms of R2 coefficient,36 a statistical measure on how close the data points are to 

the fitted regression line. Mappings of R2 coefficients are presented in Fig. 4gh for first and 
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second harmonic measurements, ranging from 0.8 to 1.0 with respective mean values of 0.97 and 

0.96, respectively, demonstrating high fidelity of the fitting. Even at grain boundaries, the fitting 

coefficients are mostly over 0.91. This is another advantage of SE, wherein the sequence of data 

enables us to accurately assess the reliability of DHO fitting for quantitative analysis. Under 

conventional DART, on the other hand, only two data points are available to solve the highly 

nonlinear DHO equations, which is not expected to be very accurate. Indeed, we compare the 

mappings of intrinsic amplitude, quality factor, and resonant frequencies acquired from DART 

and SE in Fig. 5, and it is evident that DART not only fails near the grain boundaries, as marked 

by all the white dots wherein there is no solution found for DHO, but it is also quantitatively 

different from SE, made evident by the comparison of histogram distributions in the amplitude – 

it underestimates the amplitude response substantially. Nevertheless, it is also quite remarkable 

to note that DART appears to be able to track the resonant frequency pretty well for the most part 

of grains, and majority of the issues occur at grain boundaries.

Data-accelerated physical analysis

While DHO is able to fit SE data accurately, it is a relatively slow process not amenable to real 

time control and adjustment, which is necessary for machine learning and artificial intelligence 

AFM that could be enabled by the big data generated under SE.37 On the other hand, large 

volume of spectral information collected by SE is well suited for data analytics such as principal 

component analysis (PCA), which is highly efficient, though such pure statistical analytics often 

lacks a clearly physical insight. By carefully comparing underlying mathematics of both 

approaches, we are able to draw a close connection between PCA modes and DHO expansion,26 

rendering clear physical significance to otherwise purely statistical PCA modes. To this end, we 

first recast the 3D dataset of into a 2D matrix of , where 2D spatial grid is ( , , )x yA ( , )nA

collapsed into 1D. Here each row of A contains spatial data from a mapping scanned at a 

particular frequency, while each column represents spectral responses of a particular grid point 

acquired under various excitation. Principal component analysis (PCA) of  can then be ( , )nA

carried out through singular value decomposition (SVD),38

1

r
T

i i i
i

u w

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Page 9 of 20 Nanoscale



10

where  and are left and right singular vectors of A, corresponding to the principal { }iu { }iw

spectral and spatial modes sorted by their singular values . In other words, any row/column { }i

of A can be represented with a combination of  or , separately. { }iu { }iw

Fig. 6 Comparison of PCA modes and DHO expansion for first harmonic ESM data of granular 

ceria; (a) first three PCA spectral modes in comparison with corresponding DHO spectral basis; 

(b) first three PCA spatial modes; (c) corresponding DHO spatial basis.

In a parallel manner, we can also construct a new set of orthonormal modes from Taylor 

expansion series of DHO equation (1) via Gram–Schmidt process,38 with , and  1  0 0β A Qω 2β

and  derived from  and , where operator  3β 2  = ( )0 0 0 0α A Qω ω ωo 2
3  = ( )0 0 0 0α A Qω ω ωo o

denotes the Hadamard product of two vectors, , while overhead bar denotes 0 0 0 0A Qω A Q ωo o
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spatial averaging. It turns out that there is one-to-one correspondence between PCA modes and 

DHO expansion basis,26 which is confirmed by the good agreement are shown in Fig. 6. The 

structural similarity (SSIM) (99.1%, 95.8%, and 94.3%) and Pearson correlation coefficients 

(PCC) (80.4%, 90.7%, and 83.9%) between PCA spatial modes and DHO basis in Fig. 6bc are 

pretty high, validating our analysis numerically. Note that PCA is much more efficient than DHO 

fitting, speeding up the data processing by 4 orders of magnitude, while we show that it provides 

essentially the same physical insight as DHO.

DISCUSSION

With ever-increasing hardware capabilities and computational powers, we are on the brink of a 

big data revolution for physical science 39–41 and AFM provides an ideal playground for the data-

driven nanoscience that promises unprecedented new insight.26,41–43 A good example is the 

recently developed G-mode AFM that relies on brute force big data analytics without pre-

committing to a particular physical processes,41,44 which is capable of uncovering “unknown” 

mechanisms underlying the physical systems. Here we adopt a more targeted approach, taking 

advantage of both physical understanding and data power. In particular, we design our excitation 

signals and data analysis specifically to capture cantilever resonance accurately, without 

acquiring too many redundant data, and ensuring that the data is clean and relevant to our 

physical system under the probe. As a result, our experimentation and analysis are highly 

efficient as well as accurate, which can be further accelerated by DHO-informed PCA analysis. 

Depending on particular systems under investigation, other forms of excitation signals can be 

designed and analyzed in a similar manner, for example by varying excitation amplitude for 

ferroelectric switching, and it is possible to implement a particular form of excitation on the 

demand. In a sense, our approach is well aligned with the movement from big data to deep data, 

i.e., from data mining, correlation analysis, and unsupervised classification to causative data 

analytics that fuse physical understanding into big data.2,40,45–48 For this purpose, innovative 

experimental and/or computational methodologies to acquire high quality (less noisy), efficient 

(less redundant), and physically relevant scientific data is essential, and this work is an attempt 

along this direction.

Page 11 of 20 Nanoscale



12

The power of our approach is best illustrated at the grain boundaries of ceria, wherein enhanced 

electrochemical strain is evident, attributed to their accumulation of space charges. Since SE 

does not depend on resonance tracking, it outperforms conventional approach as expected when 

it comes to large spatial variation. Moreover, SE is able to justify fitting results as well as the 

validity of raw data by taking advantages of multiple datapoints and statistics, while DART lacks 

this ability and is more vulnerable to various measurement errors with only two datapoints. As 

shown in Fig.5, even though maps probed by DART on grain looks relatively smooth, it may still 

underestimate response without awareness. Furthermore, we also conduct SE-ESM on a solid 

electrolytes Li1.3Al0.3Ti1.7(PO4)3 at a high temperature (115℃), which is usually challenging for 

conventional resonance tracking due to continuous deformation of sample originating from 

environmental temperature variation. But the R2 map of SE approach in Fig. S6e is overall 

greater than 0.9, implying it is still very trustworthy in a temperature-controlled environment, 

given that fitting is based on multiple datapoints. Therefore, we believe our high throughput SE 

will provide a powerful tool to resolve spatial variation of such cases with nanometer resolution.

CONCLUSIONS

In conclusion, we have developed a high-throughput AFM that captures electrochemical strain of 

ceria in just one scan, having scanning speed comparable to conventional DART, yet with much 

enhanced spatial resolution and high quantitative fidelity. This enables us to image accumulation 

of space charges across grain boundaries of ceria with nanometer resolution, and DHO-informed 

PCA has also been developed, speeding up the data analysis by orders of magnitude. The ideas 

can be applied to a variety of AFM modes for studying a wide range of materials and structures 

at the nanoscale, especially at the interfaces, and it embodies the spirit of deep data wherein 

targeted data acquisition and physics-informed data analytics prove to be powerful.
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METHODS

DART-ESM

This measurement is performed on a Cypher AFM with an AC amplitude of 4 V applied to a 

Nanosensors PPP-EFM conductive probe. The scan rate is 1.0 Hz. the dynamics of the cantilever 

motion is characterized through built-in lock-in amplifiers, which physically reduces full time-

domain information to limited frequency-domain data in terms of raw amplitudes and phases. 

The mappings of corrected amplitude, phase, resonant frequency, and quality factor were then 

calculated via DHO model.

SE-ESM

Both first and second harmonic resonance SE-ESM scanning were implemented using a UHF-

AWG in combination with a Cypher AFM. Before scanning, the UHF-AWG has synthesized the 

desired waveform associated digital markers ready. Once the digital trigger from AFM is 

received, the AWG begins to convert the waveform into analog signals with 3.5 MHz ADC rate, 

which will then be fed into AFM to excite the probe. At the same time, a data acquisition (DAQ) 

system in UHF is also triggered and start to record the full motion of the probe in time domain 

via deflection channel of the AFM, sampling at 3.5 MHz. The synchronization is well tuned 

beforehand by adjusting the input waveform so that the excitation can work in parallel with the 

AFM XY scanners with delays less than 0.7 ms for each line, which is about a quarter of the 

scanning time for one pixel. The turn-around time between trace/retrace passes is enough for the 

DAQ to transfer the data to a computer for FT on-the-fly. The same sample and probe were used 

as DART-ESM measurement.

The design of SE waveform

The unit waveform used for one pixel usually consists of 15 different segments, each of which 

contains multiple periods of sinusoidal waves with a specific frequency belonging to [300 kHz, 

400 kHz]. The amplitude of all sinusoidal waves is the same as DART-ESM used. Segment are 

sorted by the frequencies and jointed with 20 sampling points of zero amplitude, forming the unit 

waveform. Finally, the unit waveform is first jointed with 100 sampling points of zero amplitude, 

which helps the relaxation of the probe and the post-processing of data, and then repeated 

multiple times for one trace of scanning. Parameters may be slightly changed in real experiment 
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to meet the requirement of synchronization mentioned above. For the first harmonic 

measurement, the input waveform is also used as the reference wave of FT. For the second 

harmonic measurement, the input waveform is repeated once and then half sampled to generate 

the reference wave of FT, considering that the sample response was measured at double 

frequency of the excitation.

Principal components analysis 

PCA is a statistical procedure that converts a set of observations of possibly correlated variables 

into a set of linearly uncorrelated variables called principal components. In this work, PCA is 

computed via SVD function in MATLAB, that is

1

r
T T

i i i
i

u w


  A UΣW

where r is the rank of A. Thus, spectral and spatial modes of dataset A corresponds to the left 

and right singular vectors ( ) of A, which are ranked in the order of their importance { } and { }i iu w

(or say singular values ). According to low rank approximation, A can be perfectly { }i

reconstructed by using first p modes if the last r-p+1 singular values are below the level of noise, 

.
1 1
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 A =

In this sense, PCA is an efficient algorithm for dimension reduction and data compression.

Structural similarity

SSIM is a perceptual metric that quantifies the similarity between two images. It is the average 

of the local SSIM value map:

,

1 2
2 2 2 2

1 2

(2 c )(2 c ) SSIM( , )=
( c )( + c )

a b ab

a b a b

x y   
   

 
  

where  are the average, variance, and covariance of 4×4 windows a and b that , , , , a b a b ab    

are centered in the pixel (x, y) of two images.  are two constants to stabilize the division 1 2c , c

with weak denominator.
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Pearson correlation coefficient

PCC can take range of values from +1 to -1. A value of 0 implies that there is no linear 

correlation between two vectors X and Y that are reshaped from two images respectively, while 

+1 means total positive linear correlation and −1 means total negative linear correlation.

,
XY

X Y
X Y

P 
 



where is the covariance and are the standard deviation of X and Y.XY , X Y 
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