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A novel approach to finding mechanical properties of

nanocrystal layers

Mayank Sinha‡, Alborz Izadi‡, Rebecca Anthony∗, and Sara Roccabianca

Flexible, bendable, stretchable devices represent the future of electronics for a wide range of real-

world applications. Due to the fact that these technologies deviate significantly from traditional

wafer technologies there is a need to understand and engineer material systems that allow large

elastic deformations present in such devices, which requires knowledge about the mechanical

properties of these material systems. Here we evaluate the mechanical properties of a bilayer

polydimethylsiloxane (PDMS)/silicon nanocrystal system. By observing the formation of insta-

bilities due to finite bending deformation and applying theoretical modeling, we estimated the

neo-Hookean coefficient (analogous to shear modulus at low stress/strain) of the SiNC film to

be 345± 23 kPa. The method used here represents a novel approach to evaluating these prop-

erties and is widely applicable to many different combinations of systems of nanocrystals and

elastomers.

1 Introduction

As flexible devices become more prevalent, it is increasingly im-
portant to measure and predict the mechanical properties of ac-
tive device layers, including thin films1–3. Nanoscale compo-
nents, such as nanocrystals, can be incorporated into mechan-
ically flexible devices1,4. Silicon in its nanocrystal form has
semiconducting and photoluminescence properties which make
it a promising material for technologies like microelectronics5–7,
photonics7,8, solar-photovoltaics9,10, memory devices11, biosen-
sors, and light emitting devices12,13, as well as other applica-
tions involving polymer matrices14,15. Using silicon nanocrys-
tals in these applications is particularly attractive considering the
natural abundance and non-toxicity of silicon. In most of the
aforementioned applications, silicon nanocrystals (SiNCs) are de-
posited on rigid substrates. Depositing a SiNC film onto stretch-
able or flexible substrates opens up possibilities for new device
development and modifications16. While the opportunity of de-
signing these devices is exciting, it also highlights the need for an
innovative way to estimate mechanical properties for these sys-
tems.

Substantial work has been done by various groups on study-
ing the mechanical properties of nanocrystalline materials, both
in the elastic17,18 and plastic19–23 regimes. Some works also
discuss the significant differences in mechanical properties of
nanocrystalline material from their bulk counterparts17–20,22–25.
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These testing techniques, while powerful in estimating the ma-
terial properties for a large variety of nanocrystalline materials,
inherently require the destruction of the samples or the plastic
deformation of the material. This is in conflict with the scope of
this work, which is focusing on non-destructive techniques to esti-
mate elastic behavior of thin layers of nanocrystals on deformable
substrates. These combined systems limit in-situ measurement of
the layers’ mechanical properties such as elastic modulus. This
necessitates finding an appropriate method to understand and
predict the response of not just the nanocrystal layers during de-
formation, but of the whole elastomer-nanocrystal layer system.
Indeed, in-situ evaluation of mechanical behavior is crucial for
thin layers, for which interactions between the substrate and the
thin film can be as important as the properties of the thin film it-
self. To our knowledge, such in-situ evaluation of the mechanical
properties of SiNC layers on elastomers has not been previously
reported.

Prior in-situ studies on nanoscale materials have employed mi-
croscopy during uniaxial tensile testing to observe deformation
under applied loads22,23,26. Barring the specialty equipment nec-
essary for these experiments, a promising option that has been
used in the last two decades to estimate material properties of
thin films is to measure the onset of instability patterns on the
surface of the thin film due to different loading conditions27.
This technique has the advantage of being simple, inexpensive,
and non-destructive; furthermore it can be applied to any type
of thin layer deposited on a deformable substrate. Because of its
flexibility, this method has been employed to estimate mechani-
cal properties of several isolated thin films28–30 or multi-layered
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was measured using analysis of photographs of the side view of
the sample. Each measurement was performed three times to en-
sure accurate and reproducible readings.

2.6 Modeling bifurcations in elastic layered structures

Roccabianca et al. (2010), formulated a theoretical framework to
study incremental bifrucations due to finite bending of an elastic
incompressible multilayered block.41 This theory was developed
for an N-layered system for Mooney-Rivlin type of material. The
authors also performed some experiments in bilayered structures
that confirmed their theoretical predictions. Here, we employ a
similar theoretical modeling framework for the bilayered system
to estimate the ratio of mechanical properties of SiNC thin film to
that of PDMS.

2.6.1 Finite deformation

The finite bending deformation is prescribed such that the ref-
erence configuration is rectangular and described in a Cartesian
coordinate system, and the deformed configuration is a sector of
ring described in a cylindrical coordinate system (see Fig. 5).

Fig. 5 Reference and deformed configurations for the PDMS-SiNC bi-

layer. The bilayer deforms from the Cartesian coordinate system in the

reference configuration (e1,e2,e3) to a cylindrical coordinate system in

the deformed configuration (er,eθ ,ez). Specifically, a plane at constant x0
1

transforms to a plane at constant r (dashed line), and a plane at constant

x0
2 transforms to a circular arc at constant θ (dashed-dotted line). Since

the out of plane deformation is taken to be zero, we have x0
3 = z.

Briefly, the finite bending deformation can be described, within
both the PDMS and the SiNC layers, by the following deformation
gradient FFF 41

FFF =
l0

2θ̄r
eeer ⊗ eee

0
1 +

2θ̄r

l0
eeeθ ⊗ eee

0
2 + eeez ⊗ eee

0
3, (1)

where l0 is the overall width of the sample and 2θ̄ is the an-
gular deformation of the sample. We consider the volume of the

system to be conserved and the two layers to be perfectly bonded.
Therefore, we can apply the interface condition rNC

o = rP
i
, where

rNC
o and rP

i
are the outer radius of the SiNCs layer and the inner

radius of the PDMS, respectively. This allows us to write,

r
NC
o

(

h
NC
0 ,hNC,α

)

= r
P
i

(

h
P
0 ,h

P,α
)

, (2)

where hm
0 and hm represent the thickness of each layer before

and after bending (m = NC,P), and α = 2θ̄/l0. To predict all geo-
metrical characteristics of the deformed state, we consider all the
layers to be equilibrated. Briefly, we define the Cauchy stress in
each layer as,

TTT =−πIII +FFF
dW

dCCC
FFF

T, (3)

where CCC = FFF
T

FFF and III are the right Cauchy-Green deformation
tensor and the identity tensor, respectively, and W and π are the
strain energy function and the Lagrange multiplier for each layer,
respectively. We have employed the neo-Hookean strain energy
function to describe both layers, defined as W = µ0

2
(trCCC−3). Note

that we are defining two constitutive equations, one for the PDMS
layer as a function of the material parameter µP

0 , and one for the
SiNC layer as a function of the material parameter µNC

0
.

For the layers to be equilibrated, the equilibrium equation in
absence of body forces is required to be satisfied within each layer.
Furthermore, boundary conditions of zero traction are applied
at the innermost and outermost surfaces, as well as an interface
condition of perfect bonding between the two layers.

2.6.2 Bifurcation Analysis

The loss of uniqueness of the plane-strain incremental boundary
value problem has been investigated for multi-layered structures
in previously published work41. Here we have adapted the for-
mulation to fit our application for a bilayered system of PDMS
and SiNCs. Briefly, for each layer, we seek to solve the incremen-
tal counterpart of the equilibrium, div (ΣΣΣ) = 000, where ΣΣΣ = ṠSSFFF

T

is the incremental first Piola-Kirchhoff stress tensor, and the first
Piola-Kirchhoff stress and the Cauchy stress tensors are related by
SSS = TTT FFF

-T for incompressible materials. Here, and in the follow-
ing, we use a superimposed dot to represent incremental quanti-
ties. The linearized constitutive equation for each layer is given
by

ΣΣΣ =−π̇III +CLLL (4)

where C is the fourth-order tensor of instantaneous elastic
moduli and LLL = grad uuu is the gradient of incremental displace-
ment uuu(xxx). We consider bifurcations to be represented within
each layer by an incremental displacement field in a separable-
variables form, as described by Roccabianca et al. (2010). For
incompressible isotropic elastic materials, one can write C as a
function of two incremental moduli, namely µ and µ∗. For neo-
Hookean materials subject to finite bending in plane strain condi-
tion, the elastic moduli can be written as52

µ = µ∗ =
µ0

2

[

(αr)2 +(αr)−2
]

. (5)

Finally, the incremental boundary value problem is completed
by a set of boundary and interface conditions. Specifically, zero
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normal and shear incremental stresses at the innermost and out-
ermost layer, zero incremental shear stress and incremental radial
displacement at the boundary θ = ±θ̄ , and continuity of incre-
mental stresses and displacements across the interface. To cal-
culate the angle that satisfies the bifurcation condition, θcr, we
employed the compound matrix method, as described in a previ-
ously published study42.

Fig. 6 Critical angles of bifurcation evaluated as a function of ratio of ma-

terial properties for a PDMS-SiNC bilayer sample. The ratio of the neo-

Hookean material parameters is defined as µ̄0 = µNC
0 /µP

0 . All curves have

been calculated for a thickness ratio H included in the range 0.0013–

0.0018. Each line represent a different value of slenderness ratio, Λ = 2,

black solid line; Λ = 3, black dashed line; Λ = 4, dark gray solid line; Λ =

5, dark gray dashed line; Λ = 6, light gray solid line. The insert represents

a schematic of the bilayer and defines the slenderness ratio.

3 Results and Discussion

Experimentally, the critical angles of bifurcation were measured
for nine samples by performing the finite bending experiment de-
scribed in Sec. 2.5. The values, reported in Table 1, have been
obtained for three experimental groups, characterized by a slen-
derness ratio Λ = 2, 3 and 5, each group formed by a total of
three samples (see Fig. 6a).

Table 1 Critical angles of bifurcation for different slenderness ratios, ex-

pressed in degrees. Angles are reported for Λ = 2, 3 and 5.

Slenderness ratio, Λ Critical angle, θcr Material parameters ratio, µ̄0

2 47.33±3.21 1.90±0.13

3 71.33±1.53 1.85±0.05

5 130.67±3.21 1.68±0.04

Employing the model described in Sec. 2.6, we evaluated the
critical angle of bifurcation for the bilayered structure, shown in
Fig. 6 and Fig. 7. Specifically, after fixing the overall geometry
of the sample, namely the thickness ratio H and the slenderness
ratio Λ, we calculated the value of the angle representing the
onset of bifurcation for each value of the neo-Hookean material
parameters ratio, defined as µ̄0 = µNC

0
/µP

0 . In both Figures, we
considered µ̄0 to be included between 0 and 100, however a pi-
lot study showed that the value of the critical angles plateaus for
values of µ̄0 included between 100 and 105 (data not shown).
Furthermore, the same pilot study showed that the critical an-

Fig. 7 Plotting points from the experiments on graph obtained by numer-

ical calculations. The ratio of the neo-Hookean material parameters is

defined as µ̄0 = µNC
0 /µP

0 . Shown here are points obtained for Λ = 2, 3

and 5. Insert shows an instability on the surface of a sample with Λ = 2.

gle of bifurcation is independent of the thickness ratio H, if H is
included in the range 0.0013 – 0.0018. The experimental value
measured in this study is included within that range, specifically
H = 0.0017 on average for the nine samples.

Fig. 6 shows the variation of the critical angle of bifurcation for
varying values of the slenderness ratio, specifically for Λ included
in the range 2 to 6. For a fixed value of µ̄0, which is represented
by a vertical line in the graph, an increase in the slenderness ratio
results in a later appearance of the bifurcation, namely a higher
value for the critical angle. This trend is consistent with previ-
ously published results41,42.

Fig. 7 shows how we employed the onset of bifurcation to es-
timate the mechanical properties of the SiNC layer. Briefly, for
each value of slenderness ratio considered in the experiments, we
calculated the correspondent theoretical sets of bifurcation an-
gles. Then, the critical angle measured experimentally was em-
ployed to uniquely identify the corresponding µ̄0. The experimen-
tal value of the critical angle fixed the abscissa of the point in the
θcr – µ̄0 plane, represented in Fig. 7. Then, we imposed that the
experimental point belonged on the bifurcation threshold curve
calculated for the corresponding slenderness ratio, which in turns
fixed the ordinate of the point which is µ̄0. The value estimated
for each experimental group, namely for each value of slender-
ness ratio considered, is reported in Table 1. A vertical dashed
line in Fig. 7 represents the average value of µ̄0 for all the ex-
perimental data, which is 1.81 ± 0.12. We then estimated the
value of µP

0 = 190 kPa by fitting the data collected from the uni-
axial tensile test, as described in Sec. 2.4. This gave us a value
for the neo-Hookean material coefficient for the SiNC layer of
µNC

0
345± 23 kPa. The neo-Hookean material constant is analo-

gous to the shear modulus for low values of applied strain.
This finding is a clear indicator that the mechanical proper-

ties of this materials system are determined by the interactions
between SiNCs within the NC layer and between the NC layer
and the PDMS. Direct measurements of the mechanical properties
of individual silicon nanocrystals via microscope-guided nanoin-
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dentation have yielded elastic moduli around 170 GPa,53 several
orders of magnitude higher than our measurement of the shear
modulus for the SiNC layer on PDMS (assuming incompressible
behavior, shear modulus is ∼1/3 of the elastic modulus). Oth-
ers have produced elastic/Young’s modulus estimates for single
SiNCs between 70-170 GPa.54–56 This range of values (∼20-60
GPa for shear modulus) is also consistent with mechanical mea-
surements of thin ribbons of crystalline silicon on PDMS57. By
contrast, our value of 380 kPa for shear modulus is far lower, and
is consistent with the higher porosity of our nanopowder layer
as compared to bulk silicon. For example, Gross et al. showed
that increasing porosity of powder hydroxyapatite coatings leads
to decreasing elastic modulus - further, regardless of porosity,
the coatings exhibited values of elastic modulus more than 35x
smaller than the modulus of single-crystal hydroxyapatite.58,59

Similarly, the Young’s modulus of aluminum foams is between
10−1 and 10−3 the value of Young’s modulus of solid aluminum,
depending on porosity.60 Finally, previous results have shown
that increased porosity significantly decreases the Young’s modu-
lus of polymer thin films deposited on PDMS, when measured by
employing mechanical instabilities.61 The porosity of our layers
was difficult to ascertain with high accuracy. However, a prelimi-
nary density measurement provided us with a value near the limit
for close-packed randomly oriented rigid spheres (volume frac-
tion 0.64). While we did not probe the effects of porosity in this
proof-of-concept investigation, the porosity of the SiNC layer is
tunable by adjusting reactor properties,49,51 and future work will
be devoted to determining the relationship between layer poros-
ity and mechanical properties. This versatile method is broadly
applicable to extract the mechanical properties of nanoparticle
layers on elastomer substrates regardless of material, layer thick-
ness, and density. Our results also offer a unique opportunity in
the future to investigate how the NC surface functionality (or-
ganic ligand coating, inorganic shell, etc.) influences the mechan-
ical behavior of the NC films.

4 Conclusions

In summary, we have used a novel method based on the onset
of bifurcation to estimate the mechanical properties of thin lay-
ers of nanocrystals on PDMS. In general this method to evalu-
ate mechanical properties of thin films can be extended to any
bilayer system of elastomer and nanoparticle thin film, opening
up new possibilities for understanding, predicting, and control-
ling the mechanical behavior of nanoparticle layers in flexible or
bendable device technologies, leveraging both the unique opto-
electronic properties of nanoparticles together with the mechani-
cal versatility offered by these films.

Additionally, the results obtained from this experiment are ex-
citing because earlier attempts in finding instability formation due
to finite bending in a multilayered structure were limited to struc-
tures with elastomeric layers only. Here we have reliably shown
formation of instabilities in thin SiNC films deposited on PDMS.
This invites opportunities to study and develop constitutive mod-
els which are better suited to such constituents, in addition to
other experimental methods that can perform in situ measure-
ments of such a system.
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