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The ironome of budding yeast (circa 2019) consists of approximately 139 proteins and 5 nonproteinaceous species. These

DOI: 10.1039/x0xx00000x

proteins were grouped according to location in the cell, type of iron center(s), and cellular function. The resulting 27 groups

were used, along with an additional 13 nonprotein components, to develop a mesoscale mechanistic model that describes

the import, trafficking, metallation, and regulation of iron within growing yeast cells. The model was designed to be

simulatenously mutually autocatalytic and mutually autoinhibitory —a property called autocatinhibitory that should be most

realistic for simulating cellular biochemical processes. The model was assessed at the systems’ level. General conclusions

are presented, including a new perspective on understanding regulatory mechanisms in cellular systems. Some unsettled

issues are described. This model has the potential to mimic the phenotype (at a coarse-grain level) of all iron-related genetic

mutations in this simple and well-studied eukaryote.

Introduction

Anyone who has contemplated developing a biochemical
model describing the mechanism of virtually any process in a
cell soon realizes the practical impossibility of the task. Cellular
processes are enormously complicated and modeling them at
the biochemical level requires huge amounts of kinetic and
is unavailable. |

mechanistic information much of which

discovered this when considering how to model iron
metabolism in budding yeast, S. cerevisicge. A popular
alternative is to collect and organize existing

metabolic/stoichiometric data into genome-scale bioinformatic
models.2 A recent stoichiometric model of the yeast metabolic
network, including iron metabolism, involves 963 genes.3 Using
bioinformatics methods, the ironome in human cells was found
to involve 398 genes; 48% encode heme proteins, 35% encode
mononuclear Fe and Fe-O-Fe proteins, and 17% encode iron-
sulfur clusters (ISCs).# Such models are related to those | seek,
but my objective goes beyond a statistical analysis; it is to obtain
mechanistic insight at the systems’ level analogous to that
gained by viewing a busy metropolis from an altitude of 30,000
ft.

Here | develop a model using published data relevant to iron
metabolism in yeast. | focused on iron because of my
background in this area, as well as the critical importance of this
transition metal ion for all eukaryotic cells. Iron is found in the
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mitochondrial respiratory complexes used to generate cellular
energy, as well as in enzymes that replicate and repair DNA,
synthesize lipids, proteins, amino acids, and nucleotides.

By manually searching the literature, | identified 139
proteins and 5 nonprotein iron species in S. cerevisiae that are
intimately involved in iron metabolism — the ironome circa 2019
(Table S1). For each species, gathered information included the
type of iron center, cellular location, and physiological role. |
then organized the proteins into 27 groups and constructed the
model (Table S2). Grouping simplified the ironome and made it
amenable for modeling. Thirteen
components were added to complete the so-called “40-

nonproteinaceous

component” model. The model was designed to be mutually
autocatalytic and autoinhibitory — a combination coined
autocatinhibitory. | expand on this modeling principle below.

Section 1: The Iron Proteome
Cell
conditions, environmental iron is in the Fe'! oxidation state,
whereas in anaerobic environments, it is generally Fe'. Iron is
imported into yeast via three pathways. In the nonreductive Fe'"
pathway, Fe'" ions bind to foreign siderophore chelators in the
environment and are imported into the cell via receptors Arn1l,
Arn2, Arn3 and Arn4.56 Cell-wall mannoproteins Fitl, Fit2, and
Fit3 promote uptake of Arn-associated siderophore-ferric
chelators.51® When exponentially growing yeast cells shift to
stationary phase, the cell wall accumulates iron in a
magnetically-ordered  Fe" Under
conditions, expression of these receptors and mannoproteins is

Wall and Plasma Membrane: Under normal aerobic

form.11 iron-deficient
induced by the Aft1/2-dependent iron regulon (see below).
The reductive Fe" import pathway involves proteins Fet3,
Ftrl, and Frel. Environmental Fe'' is reduced to Fe!' by the
NADPH-dependent ferrireductase Frel and is then reoxidized
by the O,-dependent multicopper oxidase Fet3.1215 Ftrl is a
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permease which translocates the resulting Fe'' ions (channelled
from Fet3) into the cytosol where they are reduced to the Fe'
state.>16-19 The characteristics of the resulting cytosolic Fe'"
species have not been established, but the model described
below assumes a low-molecular mass (LMM) species called
Fe''yt. The only iron-containing protein composing the high-
affinity import system is Frel, which contains two interacting
heme b centers.> This “bis-heme” motif is probably also present
in other metalloreductases including Fre2, Fre3, Fre4, Fre5,
Fre7, and Fre8. The Fe' import pathway involves permeases
Fetd and Smfl. Fetd4 expression increases under hypoxic
conditions whereas Smf1 expression is not O,-sensitive.20-22

Cytosol: The Cytosolic Iron-Sulfur Assembly (CIA) proteins in the
cytosol assemble [FesS4] clusters and install them to various
apo-protein targets. The “early” CIA complex is composed of
Cfd1 and Nbp35 both of which are P-loop NTPases in the MinD
family. An [FesS4] cluster assembles at the interface of a Cfd1l
homodimer?! (or Cfd1:Nbp35 heterodimer) analogous to the
[FesSa] cluster that bridges the subunits of the iron protein of
nitrogenase - another MinD family protein.2> Nbp35 also binds
an [FesS4] cluster at its dimer interface. These clusters are labile
and one or both of them transfer to downstream targets. Nbp35
subunits bind an additional permanent [Fe;S,] cluster.24-26

The iron and sulfur substrates used to assemble clusters on
the early CIA complex are also unknown. Lill and coworkers
have suggested a sulfur-only substrate called X-S that is related
to glutathione persulfide.?” Balk and coworkers suggested that
X-S is glutathione polysulfide.2® Both groups propose that X-S is
exported from mitochondria through the inner membrane (IM)
transporter Atm1 (see below). One implication of this is that the
iron substrate used for ISC assembly would originate from the
cytosol — probably from Fe':. In contrast, Li and Cowan
hypothesize that X-S is an [Fe;S;] cluster with four glutathiones
coordinated as exoligands.2® The structure of the binding site on
Atm1 suggests that X-S is related to glutathione, though other
molecules are also possible.28 Pain and coworkers discovered a
500 — 1000 Da sulfur-containing species that is exported from
intact mitochondria in an Atml-dependent fashion.3° They
subsequently reported that mitochondria also export an Fe-S
intermediate through Atm1 and presented evidence that the
iron for the intermediate originates from mitochondria;3! it’s
exciting to consider that this might be Cowan’s [Fe,S;] cluster.

Dre2 binds the early CIA complex and catalyzes the transfer
of electrons from NADPH to the complex during CIA-dependent
[FesSs] assembly. Physically associated with Dre2 is the
flavoprotein Tah18.3234 This complex catalyzes the transfer of
electrons from NADPH (which is bound to Tah18) to an
undetermined substrate during ClA-dependent [FesS4]
assembly. Although the mechanism of [FesS4] cluster assembly
on the CIA complex is unestablished, a popular assumption is
that two [Fe;S;]%* clusters bind to each subunit of Cfd1 (and/or
Nbp35) and are reductively coupled to form a bridging [Fe;S4]%*
cluster; the simplified reaction would be 2[Fe;S,]?* + 2e- —
[FesS4]2*. The required electrons in this reaction would be
delivered by Tah18 and Dre2. Dre2 reportedly contains 1 [Fe;S;]
cluster and 1 [Fe4S4] cluster, though there is some uncertainty.3>

2| J. Name., 2012, 00, 1-3

Dre2 clusters originate from either Grx3 homodimers or
Grx3:Bol2 heterodimers (see below).24 Metallation of Dre2 does
not involve the CIA machinery, which only installs [FesS4]
clusters, implying either that Dre2 exclusively contains [Fe;S;]
clusters or that it contains a CIA-independent [Fe4S4] cluster.

The “late” CIA complex consists of proteins Cial, Cia2, and
Mms19; none contains an iron center. This complex transfers
[FesS4] clusters from the early CIA complex to the apo forms of
various target proteins in the cytosol. Narl links the early CIA
complex to the late complex; it contains a permanent [Fe;S,]
cluster and a second cluster which is surface-exposed and
unstable.32-34

Cytosolic proteins Ltol and Yael adapt the late CIA complex
such that it can install [FesS4] clusters into Rlil1, a multifunctional
protein that helps export ribosomes from the nucleus and is
essential for other processes related to protein biosynthesis.3>

Like Rli1, Dph1, Dph2, Dph3, and Dph4 are also involved in
protein biosynthesis, albeit indirectly. Dphl and Dph2 are
radical-SAM enzymes that contain [FesS4] clusters. They form a
heterodimeric complex that modifies a histidine residue on
Translation Elongation Factor 2.3¢ Dph3 coordinates an Fe' ion
and use it to donate electrons to SAM clusters in the Dph1:Dph2
complex.3638 Dph3 functions with Cbrl, a cytochrome b5
reductase that helps link the metabolic state of the cell to
protein translation. Dph4 is a J-protein cochaperone that
reversibly binds an Fe' ion at a cysteine-rich site. 3° Dph4
associates with the large ribosomal subunit and also functions
in ribosome biogenesis.*® The [Fe;S4] clusters in these proteins
are likely metallated by the CIA.

Elp3 is the catalytic subunit (histone acetyl-transferase) of
the elongator complex of RNA polymerase Il which helps the
enzyme switch from initiation to elongation mode; it also
contains a radical-SAM [Fe;S4] cluster.*%7 The elongator
complex also modifies wobble uridines in tRNAs without which
mRNA translation would be inefficient.

The CIA also installs [FesS4] clusters into alLeul, aGltl, and
aMet5 (the prefix a refers to apo- forms), cytosolic proteins
involved in amino acid biosynthesis. Leul (isopropylmalate
isomerase) catalyzes the synthesis of branched-chain amino
acids leucine, isoleucine, and valine.*® Gltl catalyzes the
synthesis of glutamate.*®50 Met5 (the B subunit of sulfite
reductase) catalyzes the reduction of sulfite to hydrogen sulfide
thereby allowing synthesis of cysteine and methionine.51-53
Met5 contains an [FesS4] cluster linked through a bridging
cysteinate to a siroheme ring. Sirohemes are like hemes but
require an enzyme (Met8) other than ferrocheletase to install
Fe!.5455 The source of the installed Fe' ion is unknown but the
model below assumes it to be Fe'l.

Other cytosolic iron proteins are involved in nucleic acid
biochemistry. The [FesSs]-containing Ade4 (glutamine
phosphoribosylpyrophosphate amidotransferase) is involved in
purine biosynthesis.56:57 The O,-dependent Fe'-containing Bnal
(3-hydroxyanthranilate 3,4-dioxygenase) helps synthesize
pyrimidine nucleotides.>® Tyw1 is a radical-SAM [Fe4S4] protein
that helps synthesize wybutosine-modified tRNA, a
modification that increases the accuracy of protein synthesis.

This journal is © The Royal Society of Chemistry 20xx
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Tywl expression is stimulated by Yap5 under high-iron
conditions (see below).59.60

Rnr2 is the small R, subunit of ribonucleotide reductase. It
helps convert ribonucleotides into their deoxy counterparts;
each subunit contains an [Fe-O-Fe] center.61-63 The iron-free Ry
subunit resides in the cytosol whereas R, toggles between the
cytosol and the nucleus to control activity - which is an exclusive
property of the (Ri)2(Rz)2 heterotetrameric complex. Under
healthy iron-replete conditions, R, is mainly in the nucleus
whereas under iron-deficiency or other forms of stress, it shifts
to the cytosol and stimulates activity. This behavior reveals the
critical need for the cell to express this iron-containing enzyme
under iron-deficient conditions when so many other iron-
containing proteins are degraded so as to economize cellular
iron. Assembly of the R, [Fe-O-Fe] centers does not involve the
CIA5465 but the assembled center is probably reduced by NADPH
via Dre2 and Tah18.! Ribonucleotide reductase and other [Fe-
O-Fe] proteins are thought to be metallated by Grx3/4
proteins;®5-7 however, in our model they are metallated by
Fe'l,t (see below).

Also are Grx3 and Grx4, monothiol
glutaredoxins that form dimers with bridging [Fe,S,] clusters.58

in the cytosol

Clusters are bound to each subunit through a single cysteine
residue; the other external coordinating ligand is the sulfur of
glutathione. Grx3/4 are involved in a signaling pathway that
leads from mitochondria to the nucleus. This pathway controls
expression of the iron regulon genes (see below). Bol2 forms a
heterodimer with Grx3 or Grx4 which also contains a bridging
[Fe,S,] cluster with glutathione coordination. In fact, most Grx3
in the cell is bound to Bol2 as a heterodimer.56.67 Eventually, the
bridging [Fe,S,] cluster is passed to Aft1/2, transcription factors
that control expression of the iron regulon. Grx4 binds to Aft1/2
promoting dissociation from promotors and repressing
expression of the iron regulon. The [Fe;S;] cluster on Grx3/4 is
likely transferred to Dre26667 whereas the cluster on Bol2 may
transfer to the CIA for reductive coupling.67-62

The cytosol also contains heme proteins, many of which are
involved in diminishing reactive oxygen species (ROS). Cttl is a
heme-b-containing catalase that catalyzes the
disproportionation reaction 2H,0, — 0O, + 2H,0.7071 Ctal is
another heme-b-containing catalase (but located in
peroxisomes) that catalyzes the same reaction, degrading H,0,
that has been generated during fatty acid B-oxidation.”2 Yhb1 is
flavohemoglobin, also called NO dioxygenase. This heme-b-
containing enzyme is located in the cytosol (and mitochondrial
IMS) when cells grow aerobically, but is located in the
mitochondrial matrix under anoxic conditions. It catalyzes the
0,-dependent oxidation reaction NO + O, + e — NOs and is part
of the cell’s detoxification system.”3 Yhb1 works with catalase
to maintain low levels of NO and peroxynitrite, both of which
can be toxic.”477 The last heme-containing protein that helps
diminish ROS is Ccpl, cytochrome c¢ peroxidase. This
mitochondrial IMS enzyme catalyzes the reduction of peroxide
H,0; + 2e" + 2H* — 2H,0, using electrons from cytochrome c.
into numerous

Nucleus: The CIA installs [FesS4] clusters

nuclear proteins, all of which help replicate and repair DNA.

This journal is © The Royal Society of Chemistry 20xx

Ntg2 is an endonuclease Ill and a DNA glycosolase that is
involved in base-excision repair; it excises oxidatively-damaged
pyrimidine bases.3%7885 Dna2 is a nuclease and helicase. It helps
mature Okazaki fragments and maintain telomeres.51.86-8 Rad3
repair
involved in sister

is a helicase involved in DNA excision and
transcription.3>89-92 Chl1l
chromatid cohesion and heterochromatin organization.35 Pri2 is
the large subunit of the heterodimeric DNA primase which
catalyzes the synthesis of short RNA primers that help initiate
DNA replication.?324 |t also helps DNA polymerase a (Poll-a),
another [Fe4S4]-containing nuclear enzyme, transition from RNA
to DNA synthesis.3593.95-103 The catalytic subunit of DNA
polymerase Il € A (Pol2) appears to contain an [FesS4] cluster
(there is some uncertainty).33104105 The catalytic subunit of
[FesS4]-containing DNA polymerase & (Pol3)
synthesis from Poll-a to complete each Okazaki fragment2%6; it
primarily synthesizes the lagging strand.3>100 [Fe,S,]-containing

Rev3, the catalytic subunit of DNA polymerase £,% possesses

is a helicase

takes over

5’—3’polymerase activity'®” and is involved in post-replication
repair of DNA.

Tpal is the only iron-containing DNA-repair enzyme that
does not contain an [FesSs] cluster. This 2-oxoglutarate-
dependent Fe'-containing dioxygenase catalyzes the oxidative
demethylation of DNA during the repair of methyl-base
lesions.1% It also hydroxylates a proline on a ribosomal protein.
Tpal helps terminate translation efficiently by degrading mRNA
and interacting with translation release factors and the poly(A)-
binding protein.

The remaining iron-associated proteins in the nucleus are all
involved in regulation. Aftl and Aft2 are transcription factors
that regulate expression of the iron regulon. They toggle
between the nucleus and cytosol according to whether an
[Fe,S;] cluster is bound. This depends, in turn, on the ISC activity
in mitochondria. When that activity is high, Aft1/2 are
metallated (by Grx3/4, Bol2 complexes) which promotes their
translocation to the cytosol and halts expression of iron regulon
genes. When mitochondrial ISC activity is low, Aft1/2 are in their
apo-forms which shifts them into the nucleus and stimulates
iron regulon expression.6:109-114 Aft1/2 controls expression of
genes encoding Fet3, Fet4, Fet5, Hmx1, Ftrl, Fthl, Frel, Fre2,
Fre3, Fre4d, Fre5, Fre6, Arnl, Arn2, Arn3, Arn4, Fitl, Fit2, Fit3,
Isul, Smf3, Mrs4, Grx4, Cth1l, and Cth2.112115

Although the last two proteins on this list, paralogs Cth1 and
Cth2, do not bind iron, they are intimately involved in iron
metabolism. Cth1/2 promote decay of mRNA transcripts that
encode nonessential iron-containing proteins associated with
the TCA cycle (Sdh4), the mitochondrial electron transport chain
(ETC), heme biogenesis (Hem1l5),
(Ccp1).1%6 The decay of these targets during iron deficiency
allows the cell to economize iron by shifting to fermentation
which does not require iron. Cth1/2 bind mRNA transcripts in
the nucleus and shuttle them to the cytosol for degradation.?
Cth2 also promotes decay of an inhibitor of ribonucleotide
reductase, which stimulates ribonucleotide reductase
activity.116:118,63 Cth2 also promotes decay of its own mRNA; this
autoinhibition allows respiration to recover quickly if and when
iron-sufficiency is reestablished.

and heme utilization

J. Name., 2013, 00, 1-3 | 3
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Yap5 promotes transcription of Cccl, Grx4, and Tywl
genes.5%119120 Cccl is an iron-importer on the vacuolar
membrane (see below), Grx4 is involved in the Aft1/2 signal-
transduction pathway (see above), and Tywl increases the
efficiency of protein synthesis. Under iron-replete conditions,
Yap5 binds two [Fe,S;] clusters and undergoes a conformational
change that activates transcription.121 Activation involves two
Yap5 monomers forming a dimer that opens and closes like a
clam in response to changing intracellular iron levels.59.119-123

When cells switch from fermentation to respiration, heme
levels rise, and this stimulates Hap1 expression (and expression
of the Hap2/3/4/5 complex). Hapl is a nuclear transcription
factor that binds heme b; this stimulates expression of heme-
associated genes!?* including those involved in respiration
(Cycl, Cyc7, Cytl, and Cyb2), the synthesis of ergosterol, and
the expression of superoxide dismutase.l2> One Hapl-
dependent genes encodes Roxl which represses heme
synthesis. There is a correlation between heme and O, levels.
This is partially but not entirely explained by the requirement of
0, for multiple heme synthesis steps. The heme-activated
Hap2/3/4/5 complex promotes respiration.

Mitochondrial Matrix: The epicenter of iron metabolism in the
cell is the mitochondrial ISU machinery that is used to
synthesize [Fe,S;] clusters. Cysteine desulfurase (Nfsl) uses a
sulfur atom from cysteine to generate a persulfide group at an
active-site cysteine residue on the protein.126 |ron-free Isd11
and Acpl (the acyl-carrier protein involved in fatty acid
biosynthesis) bind and stabilize Nfs1. Scaffold proteins Isul and
Isu2 bind the {Nfsl:lsd11:Acpl} complex independently and
receive the terminal sulfur via a mobile loop that swings the
persulfide into position. [Fe;S;] clusters are assembled on
Isul/2 using Nfsl-derived sulfur and a mitochondrial Fe' pool
called Fe'yit. Yeast frataxin homolog 1 (Yfhl) also binds the
{Nfs1:lsd11:Acpl:lsul/2} complex and stimulates the sulfur-
transfer activity from Nfsl to Isul/2.127 Yfh1l may also donate
Fe' ions to Isul/2.2282 Under Yfhil-deficient conditions,
mitochondria accumulate large quantities of iron in the form of
Fe'' nanoparticles (NP) while generating large amounts of
ROS.129’130

The bridging sulfide ions of [Fe;S;] clusters are two-
electrons more reduced than the sulfur atoms that are
transferred onto the scaffold from the persulfide arriving on the
mobile loop. The needed electrons are donated by NADPH via
the [Fe,;S;]-containing ferredoxin Yah1 and its flavin-containing
partner ferredoxin reductase Arh1.131 Installing the cluster on
Yah1 involves an autocatalytic reaction in which Yah1 catalyzes
the ISU-dependent metallation of aYahl, forming Yahl as the
product. Assembled [Fe,S;] clusters are transferred from Isul/2
to apo-glutaredoxin 5 (aGrx5) in a reaction involving the Dnal-
type chaperone Jacl, HSP70-class chaperone Ssql, and
nucleotide exchange factor Mge1.132 Cluster-containing Isul/2
bind Jacl and ATP-bound Ssq1,133 whereas Mgel swaps ADP on
Ssql with fresh ATP in preparation for the next transfer. As with
other monothiol glutaredoxins, dimeric Grx5 coordinates a
[Fe,S;] cluster between its two subunits.67 Grx5-bound clusters

4| J. Name., 2012, 00, 1-3

are probably transferred to mitochondrial matrix proteins
aYah1, aBol1, aBol3, aSdh2, and aBio2.

Isal, Isa2, and Iba57 form a complex that helps build [FesS4]
clusters in the mitochondrial matrix.134 These clusters are likely
generated by the reductive coupling of two [Fe;S;] clusters
donated by holo Grx5 dimers. The reaction probably occurs at
the Isal:lsa2 heterodimer interface. Iba57 doesn’t bind clusters;
rather it recruits apo-target proteins to the complex and helps
transfer assembled [FesS4] clusters onto them. Target proteins
include aAcol, alip5, aSdh2, aBio2, and alsal/2. This last
metallation reaction is again autocatalytic. Isal/2 contain
permanent [FesS4] clusters, and fully metallated Isal/2 is
probably used to metallate apo-Isal/2. The absence of Isal, Isa2
or Iba57 causes defects in respiratory complex assembly and
lipoic acid biosynthesis indicating that proteins involved in these
processes are Isal/2 targets.134-138

Boll, Bol3, and Nful help the ISA complex transfer [Fe;S4]
clusters to target proteins.134-138 Boll and Bol3 each contain
[FesS,] clusters bridged between two subunits and coordinated
by glutathione, similar to the arrangement in holo-dimeric
glutaredoxins.67.13% These clusters are donated by Grx5. Nful
homodimers contain a permanent bridging [FesS4] cluster which
is donated by ISA.67.13%9 Boll, Bol3 and Nful help transfer
transient [FesS4] clusters (also donated by ISA) onto aSdh2 and
alip5. Nful helps ISA transfer a cluster to aAcol, alip5, and
alSA. Nful works somewhat independently of Bol1/3, but all act
late in cluster assembly.

The mitochondrial matrix houses two [Fe;S4]-containing
enzymes that are involved in amino acid biosynthesis, namely
homoaconitase Lys4!40-142 and dihydroxyacid dehydratase
1lv3.48.143,144 ||ly3 js involved in valine biosynthesis. Lys4 converts
homocitrate to homoisocitrate in the lysine biosynthetic
pathway. The Lys4 gene is expressed only under iron-sufficient
conditions.

Numerous iron-containing proteins of the matrix are
involved in the TCA (tricarboxylic acid) cycle. Both isoforms of
aconitase (Acol and Aco2) catalyze the conversion of citrate to
isocitrate, and both contain [FesS4] cluster active sites. The Sdh2
subunit of succinate dehydrogenase contains an [Fe;S4], [FesSal,
and [Fe,S;] cluster, whereas the Sdh3 and Sdh4 subunits
together share a heme b center.5” Although not part of the TCA
cycle, biotin synthase (Bio2) participates in a reaction that
impacts this cycle - inserting sulfur into dethiobiotin to form
biotin.145 Bio2 contains 1 [FesS4] and 1 [Fe,S;] cluster, the latter
of which donates the sulfur used in this reaction. As such, Bio2
is a substrate rather than a catalyst; the cluster needs to be
rebuilt after each sulfur transfer. Biotin is a coenzyme of
numerous mitochondrial carboxylases!® which help produce
cellular energy, and in certain cases, feed the TCA cycle.

Lipoic acid synthase Lip5 is a mitochondrial matrix protein
that, like biotin synthase, is a substrate in a biosynthetic reaction,
in this case of lipoic acid.'#¢ Lip5 contains a radical-SAM [Fe4S4]
cluster and a second [FesS4] cluster that donates the sulfide ion
in the reaction. Lipoic acid is a coenzyme for mitochondrial
enzymes that catalyze the oxidative decarboxylation of
pyruvate, a-ketoglutarate, and branched-chain a-keto acids.

This journal is © The Royal Society of Chemistry 20xx
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Mitochondrial Inner Membrane (IM) and Intermembrane
Space (IMS): Mrs3 and Mrs4 are paralogous high-affinity iron
importers on the IM.147 These iron-free proteins contain a
tunnel through which iron passes from the cytosol to the matrix.
A membrane potential is required for iron transport. Rim2 is a
low-affinity iron importer on the IM.148 Cytosolic iron is
transported through Rim2 (as are pyrimidine nucleotides).
Deleting Mrs3/4 and Rim2 causes defects in ISC and heme
biosynthesis.148149

Most iron-related processes in the IM are associated with
respiration. Two iron-containing enzymes help synthesize
Coenzyme Q. Coq6 is a heme-b-containing monooxygenase that
hydroxylates a tyrosine ring?50-153 ysing electrons from NADPH
via Yahl and Arh1.13% The [Fe-O-Fe]-containing 5-
demethoxyubiquinone hydroxylase Coq7 converts 5-
demethoxy Q6 to 5-demethyl Q6. Coq7 expression is inhibited
during fermentation and stimulated during respiration.155156

Three subunits of respiratory complex cytochrome bc;
contain iron centers. Cytl contains cytochrome c;, Cobl
contains two heme b centers called by and b, and Rip1, the
Rieske subunit, contains an unusual [Fe,S;] cluster coordinated
by two histidine residues and two cysteines.>” Cytochrome bc;
catalyzes the oxidation of QH; and reduction of cytochrome c.
The Ripl subunit is exposed to the IMS where it reduces
cytochrome c during catalysis. ROS is generated by one or more
of these respiratory complexes.158

The only subunit of respiratory complex cytochrome c
oxidase that contains iron is Cox1; it contains 1 heme a redox
center and 1 heme as:Cug active site. The enzyme catalyzes the
reduction of O, by cytochrome c. Assembly of cytochrome ¢
oxidase requires three iron-associated proteins. Cox10 (heme o
synthase) binds heme b and converts it to heme o. Cox15 (heme
a synthase), converts heme o into heme a which is then installed
into Cox1.158 Cox15 is a O,-dependent monooxygenase that is
reduced by NADPH via Yahl and Arh1.157.160,161 |t binds two
hemes, including heme b and heme o. Mss51 is a heme b-
containing Cox1 chaperone on the IM which activates Cox1
mRNA for translation. Mss51 is regulated by heme and/or O,
levels and it regulates cytochrome c oxidase assembly.48

Cycl and Cyc7 are isoforms of cytochrome c in the IMS.
Their expression is diminished under heme-deficient conditions
due to Hap1l regulation.1®2 The heme c centers in these proteins
are installed by cytochrome c lyase (Cyc2) which uses heme b as
a substrate. Cytochrome c is a substrate for two other iron-
in the IMS,
peroxidase (Ccpl) and L-lactate cytochrome c oxidoreductase

containing enzymes including cytochrome c
(Cyb2). The former enzyme oxidizes cytochrome c as it reduces
H,0, to water while the latter reduces cytochrome c as it
oxidizes lactate to pyruvate. This allows yeast to respire using
lactate.%3 DId1 is D-lactate ferricytochrome c oxidoreductase, a
heme b-containing enzyme located on the mitochondrial IM. Its
expression is regulated by heme levels ala Hapl. DId1l also
catalyzes the oxidation of lactate to pyruvate using cytochrome
c as the electron acceptor.164

Hem15 (ferrocheletase) is an IM protein that installs Fe'' into
porphyrin rings to generate heme b.1%5 Its Fe' binding site faces
the matrix, implying that Fe'.,; is used as substrate in this

This journal is © The Royal Society of Chemistry 20xx

process. Heme synthesis is inhibited under hypoxic conditions,
as two enzymes in the heme biosynthetic pathway require O, as
SUbStrate.5‘49‘51’52’125'162'165

Atm1 is an ATP-dependent transporter in the IM that may
export the unidentified sulfur-containing X-S species discussed
above from mitochondria to cytosol; however, there is some
uncertainty regarding its function.27.166-170 Mmtl and Mmt2
may also export mitochondrial iron but there is also some
uncertainty here as well.171-173

Vacuoles: These organelles store iron under iron-replete
conditions. Cccl is an iron importer on the vacuolar membrane
the expression of which is controlled by Yap5.5174175 The
multicopper oxidase Fet5, permease Fthl, and ferrireductase
Fre6 together function as an O,-dependent iron exporter on the
vacuolar membrane.176.177 These three proteins are paralogs to
Fet3, Ftrl, and Frel, respectively, on the plasma membrane.
Expression of both groups of proteins are controlled by the
Aftl/2-dependent iron regulon.14178

Vacuoles typically store iron as Fe'' polyphosphates.l”?
Mobilization of Fe'" requires reduction to the Fe' state followed
by export via the {Fet5:Fth1;Fre6} complex. Electrons used for
reduction are provided by NADPH via Fre6, which, like Frel,
contains a bis-Heme b center.1> Fet5 and Fthl do not house
permanent iron centers, but Fe' in the vacuole presumably
binds to Fet5 prior to becoming oxidized to Fe'' and passing
through Fthl. Smf3, another iron exporter on the vacuolar
membrane, is a member of the Nramp family of metal
transporters and is not under the control of Aft1/2.114177 | jke
Fet4, Smf3 expression is stimulated under hypoxia.1&

Endoplasmic Reticulum (ER): Most iron-containing proteins in
the ER are involved in synthesizing membrane components
including ergosterol and sphingolipids. Olel (A° fatty acid
desaturase) is an integral ER membrane enzyme that catalyzes
the synthesis of a monounsaturated fatty acid (oleoyl-CoA)
starting from a saturated fatty acid (stearoyl-CoA). This
reaction, which inserts a double bond into a fatty acyl chain,
requires NADPH and 0O,. Ncpl (NADP-cytochrome P450
reductase) probably transfers reducing equivalents from
NADPH to Olel. Olel contains an [Fe-O-Fe] center and a
cytochrome bs domain which is exposed on the cytosol side of
the ER membrane.181,182,183,184

Sur2 (sphinganine C4-hydroxylase) catalyzes the O,-
dependent oxidation of sphinganine.185-187 | jke Olel, it is an ER
membrane protein containing an [Fe-O-Fe] center. However, it
lacks a fused cytochrome bs domain. Thus, it may use Ncpl and
Cyb5 (cytochrome bs) to receive electrons from NADPH.188189
Cyb5 is bound to the ER membrane but faces the cytosol. It
contains a heme b center with two histidine axial ligands.19°

Scs7 (Sphingolipid a-hydroxylase) is another integral ER
membrane enzyme that houses an [Fe-O-Fe] center as well as a
fused cytochrome bs center.184 Scs7 adds a hydroxyl group to
the a-carbon of a ceramide substrate to generate a
sphingolipid.

Mpol is an Fe'-containing dioxygenase in the ER membrane
that catalyzes the oxidation of a 2-hydroxy fatty acid.1°! Unlike
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the other biosynthetic enzymes just discussed, Mpol helps
degrade a membrane component rather than synthesize one.

Starting from squalene, ergosterol biosynthesis requires
four iron-containing enzymes as well as abundant O, and
NADPH.192-200 Cyp51 (Cytochrome P450 lanosterol C-14 a-
demethylase) catalyzes the synthesis of 4,4-dimethyl fecosterol
from lanosterol.1%¢ It is a key enzyme for ergosterol biosynthesis
and is essential for aerobic growth. Cyp51 is tethered on the ER
membrane but it faces the cytosol; it contains a heme b center
with a cys axial ligand. It is likely metallated by Dapl (see
below). Ncp1l is required for Cyp51 activity.201-203

Erg25 (C-4 methylsterol monooxygenase 1) catalyzes a C-4
demethylation reaction that requires O, and NADPH. This ER
membrane protein contains an [Fe-O-Fe] center.

Erg3 (Sterol C5(6)-desaturase) is in the fatty acid
hydroxylase superfamily. It adds a double bond at positions 5
and 6 of A-7 sterols in an O,-dependent reaction. Its [Fe-O-Fe]
center accesses the cytosol. Like other iron-containing enzymes
in the ER, Erg3 is reduced by NADPH via Ncpl and
Cyb5_182,190,204,205

Erg5 (Sterol C-22(23) desaturase) is a cytochrome P450
enzyme that catalyzes formation of a double bond during
ergosterol biosynthesis,??72%%  probably using Ncpl as a
reductant. Ergosterol biosynthesis is inhibited under hypoxic
conditions.8209-211

Dap1l is a heme-binding protein that activates, stabilizes,
and regulates cytochrome P450s in the ER. It lacks a membrane
spanning sequence (suggesting that it is not membrane bound)
and may be involved more generally in heme trafficking and/or
inserting hemes into various target apo-proteins. Dapl binds
heme b using a tyrosine axial ligand.18196197.212 Hemes are
synthesized in the mitochondria and must be trafficked to the
ER; Dapl may be involved in this.

Hmx1 (heme oxygenase) is an ER enzyme that catalyzes the
degradation of hemes. This releases Fe' into the cytosol.13:109,213
The reaction involves NADPH and O,. Hmx1 binds heme b with
one axial histidine ligand. The Hmx1 gene is part of the Aft1/2
iron regulon and is activated under iron deficient conditions.
This implies that the Fe' released during heme degradation
serves to relieve cellular iron deficiency. It also implies that
heme-dependent processes are not essential for cell survival.

Ynol is an NADPH oxidase on the ER membrane.?'4 This bis-
heme b containing enzyme is related to the Fre proteins, but it
is not a ferrireductase. Rather, it catalyzes the synthesis of ROS
from NADPH + O,, perhaps in a signaling capacity.

Grx6 is a monothiol glutaredoxin located in the ER, Golgi,
and/or vacuole.58215.216 | jke other Grx proteins, Grx6 contains
an [Fe,S;] cluster that bridges the two subunits and coordinates
two glutathiones and two cysteinyl protein residues. Grx6 is
associated with the early secretory pathway.!®* It has
glutathione-S-transferase and glutathione-dependent
oxidoreductase activities.?16-220  Grx6 regulates  the
glutathionylation of proteins in the ER and Golgi, and controls
the ratio of oxidized and reduced glutathione to protect the cell
against oxidative stress.

Section 2: Model Components and Description

6| J. Name., 2012, 00, 1-3

The developed model assumes S. cerevisiae cells that are
growing exponentially on three nutrients — acetyl-coenzyme A,
0,, and non-siderophore environmental iron (Fe" or Fe'
depending on the O, concentration). The modeled cell consists
of exactly 40 components including 27 protein groups and 13
nonprotein components (Table S2). It produces two waste
products (CO; and iron nanoparticles). Each protein group is
named with 3-4 capital letters or numbers whereas individual
protein components have the first letter capitalized and others
lower case. FET3 is a group; Fet3 is a member of that group.
Components are indicated in bold when introduced.

The plasma membrane includes two protein groups, FET3
and FET4, and a nonprotein component called MEMBRANE
(Figure 1). FET3 imports nutrient Fe'le,, via the reductive
pathway. Some of its members are in the cell wall rather than
on the plasma membrane, but the iron content of the wall is
insignificant under exponential growth conditions,!! and so any
iron metabolism associated with it is ignored in the model. FET3
expression is controlled by the AFT-dependent iron regulon. The
product of FET3 activity is Fe'. FET3 and other membrane-
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Figure 1 Model scheme highlighting the iron-related
processes in the plasma, vacuolar, and ER membranes.
Brown dots represent heme groups. Refer to text for details
for Figures 1 - 5. The prefix a refers to apo- forms.

bound proteins are synthesized from a component called
AMINO ACIDS at rates that depend on the concentration of: a)
AMINO ACIDS; b) a model component called DNA; c) a model
component called RIB (ribosomes) and d) MEMBRANE. Soluble
proteins have the same dependencies except not on
MEMBRANE. FET3 contains a bis-heme b center (due to the
member Fre proteins) installed by DAP. Other substrates for
FET3 activity include a model component called NAH
(representing both NADPH and NADH) and O,. The iron-free
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group FET4 imports nutrient Fe'en, generating Fe':. FET4
expression increases under hypoxic conditions when Fe'e,,
dominates.

Vacuoles contain three protein groups called CCC, FET5, and
SMF. The latter two are functionally analogous to FET3 and
FET4, respectively. CCC is on the vacuolar membrane where it
imports Fe''s,x and generates a nonproteinaceous component
called Fe'\a.. CCC is positively controlled by AFT, in that
expression is stimulated (rather than inhibited) under iron-
replete conditions. FET5 is also on the vacuolar membrane
where it reduces (Fe",,c — Fe'y.) and exports iron from the
vacuole and into the cytosol as Fe':. Like FET3, FETS is
regulated by AFT such that expression increases under iron-
deficient conditions. Also like FET3, FET5 requires O, for activity,
and it contains a bis-heme b center that is metallated by DAP.
SMF is a low-affinity iron exporter that is not controlled by AFT
and is repressed under aerobic conditions.’8 |t functions
similarly to FET4 to generate Fe'l:.

The cytosol includes nine protein groups called DRE, GRX,
CIA, LEU, RIB, NUC, CAT, DAP, and CTH (Figure 2). DRE transfers

(1o aAFT)

Cytosol

/ \) o

2GRX3 - acia < POL + (1o nucleus)
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/ & acia
\
< /\ AGRX 1/ CAMM -\ arv
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(from mutos) ,‘/ ;\“",/
B 3 [l DN
_—=Tmmno acds + ATP il \b all soluble protems
L 2
Rin M DNA. membrane
amino acids + ATP & all membrane proteins
CTH (to/from vacuoles)
l
{TCA, ETC, HEM. CTH} > Felloy, ¥ (1o mitos)
n;:‘—" AT DAP
(from plasma nh'mhr.mm/ N ACAT N/ -

ROS + NP
N,

\ /
\ ® car / N apap

L,

Figure 2.  Model scheme highlighting the iron-related
processes in the cytosol. Brown diamonds, [Fe;S;] clusters;
squares, [FesSa] clusters. The prefix aa refers to apo- forms that

are metallated in two steps.

reducing equivalents from NAH to various targets including CIA
and NUC. DRE contains two [Fe;S;] clusters and is metallated by
GRX. GRX receives clusters from the mitochondria via ATM, and
donates them to aDRE, aAFT, and aClA. The CIA has permanent
[FesS4] clusters as well as a transient [FesS4] cluster that is
assembled by the reductive coupling of two [Fe,S;] clusters

This journal is © The Royal Society of Chemistry 20xx

donated by GRX. The electrons used in coupling come from NAH
via DRE. CIA has two apo forms including aaClA, which is fully
devoid of iron centers, and aCIA which contains the permanent
clusters but not the transient one.

One discounted scenario was to have the CIA use Fe',; and
a sulfur-only X-S to build [FesS4] clusters de novo. Another
discounted scenario was to include a second ISU system in the
cytosol analogous to that in mitochondria (see below) and to
have this system generate [Fe,S;] clusters would be used as
substrates for the CIA. Our selection was based on the strength
of evidence, popularity in the literature, overall simplicity, and
compatibility with known chemistry. Some components of an
ISU system are found in the cytosol??! but their cellular role
needs to be better established. Assembling [Fe,S,] clusters is an
0,-sensitive process such that the low O, environment of the
mitochondrial matrix222 may be required. The recently reported
X-ray diffraction structure of the Cfdl dimer?23 and the
phylogenetic connection of this protein to the iron protein of
nitrogenase suggest that the bridging [FesS4]
assembled from the merger of two pre-formed

cluster is
[FesSs]
fragments bound to each monomer. An analogous [FesSa]
cluster that bridges the two subunits of the nitrogenase iron
[FesSs]
conditions;224 the same chemistry may operate in reverse for
the CIA.

Returning to the model, the CIA transfers its transient
[FesS4] cluster to aLEU, aRIB, aNUC, aPOL, and aaClA. The
requirement for the CIA to metallate itself is an autocatalytic
relationship (discussed below). LEU catalyzes the synthesis of
AMINO ACIDS from the component TCAM (the metabolite of
the TCA cycle). This reaction is part of anabolism and requires
ATP. LEU contains [FesS4] clusters and an iron-bound siroheme.
As mentioned above, RIB is required for ribosome biosynthesis
and protein translation. It is especially essential because it helps
synthesize all proteins in the cell, including itself (another
autocatalytic relationship). RIB contains [FesS4] clusters and Fe'"
centers. aaRIB lacks all iron centers while aRIB contains [Fe;S4]
clusters but not Fe' sites.

NUC catalyzes the synthesis of a model component called
NUCLEOTIDES from AMINO ACIDS. This protein group contains
an [FesS4] cluster, an [Fe-O-Fe] center, and an Fe'' site.
According to the model, aaNUC is devoid of all iron centers
while aNUC contains the cluster (metallated by the CIA) but not
the [Fe-O-Fe] center or the Fe' site (both metallated by Fe'l).
[Fe-O-Fe] center from the Grx3 [Fe,S;]
cluster44:45,52,64,65,192,193 seems unlikely since simple Fe'' ions can

protein dissociates into clusters under oxidizing

Assembling an

assemble this center in vitro.225

CAT catalyzes the degradation of ROS. It contains heme b
centers and an [Fe,S;] cluster. Heme centers in CAT are installed
by DAP, the heme chaperone. To account for the diverse cellular
locations of CAT members, CAT may degrade ROS generated at
any location in the cell.

CTH degrades the respiration-related groups TCA, ETC, HEM,
and CTH (promoting its own degradation is autoinhibitory); it
also stimulates NUC activity. CTH is a member of the iron
regulon; its expression during iron-deficiency helps shift the cell
to fermentation mode and economize cellular iron. Cytosolic
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CTH is presumed to degrade the above proteins regardless of
their location.

BAFT —— Nucleus
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Figure 3.  Model scheme highlighting the iron-related
processes in the nucleus.

The nucleus includes protein groups AFT, HAP, and POL
(Figure 3). The first two are involved in homeostatic regulation
while the last is involved in DNA replication and repair.
Transcription factor AFT regulates iron traffic into the cell, iron
movement into and out of vacuoles, and iron movement into
mitochondria. It does this by regulating expression of iron
regulon genes FET3, FET4, FET5, CTH, MRS, and HMX. AFT also
regulates expression of CCC and GRX even though they are not
part of the iron-regulon. AFT has dual localization in the cytosol
and nucleus, depending on whether it is apo (aAFT) or cluster-
bound (AFT). Accepting a [Fe,S;] cluster from GRX shifts the
equilibrium towards the cytosol which prevents expression of
the iron regulon. Under iron-deficient conditions, insufficient
GRX is present such that most AFT is aAFT; this form
translocates to the nucleus and promotes expression of the iron
regulon (shutting-down expression of CCC). This homeostatic
regulatory system responds to iron deficiency by...

e  TFET3 > T Fel.
(read increasing FET3 expression causes an increase in [Fe',])

o  TFET5 - TFellyy.
e TMRS — iFe"cyt — T mitochondrial Fe"m.
o THMX — TFelly.

e TCTH — degrades nonessential respiration-related
proteins, economizing cellular iron, and TFe”cyt or
TFe”mit.

e lccc— Trelly

Overall, there is a coordinated response of the AFT system
to iron-deficiency —namely to increase Fe'l, even though Fe'l.
is not considered to be “sensed” directly by the cell.226 Cellular
iron deficiency is thought to be sensed by the rate/extent by
which ISU-generated [Fe,S;] clusters (i.e. X-S) exit the
mitochondria, bind to aAFT, and deactivate the iron regulon.
However, for this mechanism to function properly there must
be a causal connection between the concentration of Fe',: and
the rate/extent of X-S export into the cytosol. | hypothesize that

8| J. Name., 2012, 00, 1-3

the rate of X-S exported from mitochondria is controlled by the
concentration of Fe'n; which is, in turn, controlled by the
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Figure 4. Model scheme highlighting the iron-related
processes in the mitochondria.

concentration of Fe',;. These connections close an

autoinhibitory loop (see below). Without the causal chain

T Fely, > Fep, > T 1SU -1 X-S

operating in healthy cells, an increase in Fe',: could not be
sensed by mitochondrial ISC activity or by AFT. In this case, Fe'le
would increase unceasingly, and the cell would be dysregulated
(as is observed in many ISC mutants, in which case the causal
connection T Fe', =T 1SU is lost).

Returning to the model, HAP is a transcription factor that
controls expression of heme-associated proteins involved in
respiration. When bound with model component heme b (and
in the presence of 0;), HAP stimulates expression of ETC.
Switching from fermentation to respiration in aerobic
conditions increases heme levels, and this activates HAP which
stimulates expression of heme-requiring respiratory proteins.

POL helps replicate and repair DNA. It contains [FesSa]
clusters which are metallated in the cytosol by the CIA. POL
converts NUCLEOTIDES into DNA during both replication and
repair. DNA is easily damaged by ROS which is generated mainly
as a side-product of respiration.

The mitochondrial matrix contains four protein groups
called ISU, ISA, TCA, and LYS (Figure 4). ISU catalyzes the
assembly of [Fe;S,] clusters using Fe''lni as substrate. ISU
contains a permanent [Fe,S;] cluster (metallated by ISU in an
autocatalytic manner) and a transient [Fe,S,] cluster that is
transferred to various target proteins.

ISA helps assemble [FesS4] clusters and deliver them to
target proteins. This group contains permanent [Fe;S4] and
[FezS,] clusters, as well as a site for two [Fe,S;] clusters that are
reductively coupled to form a transient [FesS4] cluster. The
[Fe,S;] clusters are donated by ISU and the formed transient
[FesS4] cluster is transferred to aTCA, aLYS, and aalSA (another
autocatalytic process). TCA represents enzymes of the TCA

This journal is © The Royal Society of Chemistry 20xx
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cycle. This group receives [FesS4] clusters from ISA and [Fe,S;]
clusters from ISU. TCA and TCAM both catalyze the reaction

|
/ \’;muolcs
|

| 4

| 4

Environment

Nucleus

Y o

\ Endoplasmic

cytosol
\ Reticulum

Figure 5. Major traffic patterns of iron flow in yeast.
Cytosoliciron plays a major role in distributing iron the cell;
Fellcyt enters the cell from the plasma membrane and is
trafficked to three major locations including the
mitochondria, vacuoles and endoplasmic reticulum.
Mitocondria play a major role in iron trafficking; the iron
the flows into this organelle is converted into [Fe,S;],
hemes, and [FesS4] clusters. Much of that iron is installed
into mitochondrial respiratory complexes, but some hemes
are [Fe,S;] clusters are exported through the DAP and GRX
“highways”. The GRX pathway splits with a portion going to
the CIA for conversion into [FesSa] clusters and passage to
the nucleus. This is the most critical flow of iron in the cell.
Flow along the GRX pathway branches to AFT which is
associated with iron regulation.

acetyl-CoA —[TCAITCAM]

NAH + CO,

(Note: model reactions are not balanced). TCA contains [Fe,S;],
[FesSa] and [FesS4] clusters; thus, aTCA is metallated by both ISU
and ISA. aLYS receives two [FesS4] clusters from ISA; LYS
catalyzes the synthesis of AMINO ACIDS from TCAM.

There are four protein groups in the mitochondrial IM,
including MRS, ATM, ETC, and HEM. MRS imports Fe',; into the
matrix where it becomes Fe',;. MRS does not contain a
permanent iron center. Iron import into mitochondria depends
on the mitochondrial membrane potential. Since this property
is not included in the model, the concentration of ETC (which
should be proportional to membrane potential) is included as a
catalytic influence (Table S2). ATM is an IM exporter of [Fe,S;]
clusters, passing them from ISU in the matrix to GRX in the
cytosol. This is an ATP-requiring process.

ETC catalyzes the (unbalanced) reaction

NAH + O, — ATP + ROS.

This journal is © The Royal Society of Chemistry 20xx

It contains heme centers, an [Fe-O-Fe] center and a [Fe,S,]

cluster. Hemes are metallated by heme b, the [Fe;S;] cluster is

installed by ISU, and the [Fe-O-Fe] center is metallated by Fe',:.
HEM catalyzes the (unbalanced) reaction

TCAM + Fe'lnit + O, = heme b.

Heme b is used directly to metallate aETC, but it is bound to DAP
for transport to other cellular regions.

The ER contains 2 protein groups MEM and HMX (Figure 1).
MEM is a membrane-bound group that catalyzes the synthesis
of MEMBRANE from acetyl-CoA in an NAH- and O,-requiring
reaction. MEM contains heme b and [Fe-O-Fe] centers. The
heme b sites are metallated by DAP and the [Fe-O-Fe] sites are
metallated by Fe'l:.

HMX is heme oxygenase anchored to the ER membrane.
Under iron-deficient conditions, it degrades MEM, CAT, and
other heme-containing groups (ETC) to generate Fe'y: and
economize iron. HMX is a member of the AFT-dependent iron
regulon.

Fe''ions play important roles in the model. Fe' is imported
from the plasma membrane and sent to mitochondria and
vacuoles. It reacts at the interface between the cytosol and the
ER and diffuses into the nucleus and mitochondrial IMS. Fe'
metallates proteins that contain either mononuclear Fe' or [Fe-
O-Fe] sites. Fe'l,; reacts with O, to generate ROS and
nanoparticles (NP). Fe',: converts to Fe'nit when it is imported
into the mitochondrial matrix. Fe',; is a substrate for ISC
assembly and for heme b biosynthesis.101,102,112,113,227,228 | jke
Fe'let, Fe''mir can react with O, to generate ROS and NP. When
Fe'e,t is imported into vacuoles, it becomes Fe'ys., which is
oxidized to Fe',,.. Mobilization of Fe'l\ . is initiated by reduction
to the Fe'\ 5 state229.230 which promotes export into the cytosol.

Nutrient acetyl-CoA is a substrate of 3 reactions: the
synthesis of MEMBRANES, the TCA cycle, and the synthesis of
TCAM (reflecting anaplerotic reactions that serve to fill-up TCA
metabolites to counterbalance their utilization in various
anabolic processes). This last reaction is required because TCAM
is consumed by the synthesis of AMINO ACIDS, NUCLEOTIDES,
and hemes. The NAH generated by the TCA cycle is used to
synthesize ATP.

Nutrient O, enters the cell at a defined rate and is used for
and for dioxygenase and

the ER to generate
oxidized/unsaturated fatty acids. It is used in the high-affinity

respiration in mitochondria,

hydroxylase reactions in
iron import pathway on the plasma membrane and in
corresponding iron transport pathway from the vacuolar lumen
to the cytosol. O, also reacts with Fe',; and Fe''mi; to generate
ROS and NP. ROS damages the cell by reacting with DNA and

MEMBRANES.

Section 3: Analysis of the Model

Some general conclusions and themes are evident from the
model, as listed below.
1. Iron import via plasma membrane and iron export via
vacuoles are synchronized. Both membranes contain reductive
Fe'" and non-reductive Fe'!' pathways that are regulated by the
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iron status of the cell and by O,. The two systems operating on
two different membranes must function synchronously. Under
iron-deficient aerobic conditions, the reductive systems (FET3
and FET5) dominate and both serve to increase Fe',. Under
iron-deficient hypoxic conditions, the non-reductive systems
(FET4 and SMF) dominate, and both again serve to increase
Fe',s. The opposite would happen under iron-replete
conditions.

2. The cell economizes iron by shifting from respiration to
fermentation. No iron-containing proteins involved in
fermentation were identified whereas respiration uses iron
extensively. Thus, the cell could switch from respiration to
fermentation to economize iron during period of iron scarcity.
Respiration-related iron is unessential as long as a fermentable
carbon source is available.

3. Essential iron flows from the cytosol, through the
mitochondrial ISU system, then through the CIA, and finally
into the nucleus (summarized in Figure 5). This is the most
important traffic flow of iron in the cell, as the cell cannot
survive without the [FesSs]-containing enzymes that help
replicate and repair DNA. This is ironic since the biochemical
roles of those ISCs are largely unknown. Such clusters might
pass charge along the DNA for long-range signaling?31.232 but this
is controversial?33 and perhaps simplistic given the diversity of
nuclear enzymes that contain these clusters.

4. [Fe,S;] clusters flow out of the mitochondria and into the
cytosol via the “GRX highway” which splits into CIA and AFT
branches. After the split, some [Fe;S;] clusters are trafficked to
the CIA (the essential branch) for conversion to [FesS4] clusters,
while others are sent to the AFT regulatory branch.

5. In the mitochondria, the “ISU highway” splits into an ISA
branch and a cytosol branch leading to GRX and CIA highways.
The rate of production of mitochondrial [Fe;S;] clusters is
regulated by the AFT system.

6. Heme b originates in mitochondria and splits; one branch
converts to hemes a and c¢ which are installed into
mitochondrial respiratory proteins. The other branch flows
heme b out of the organelle and into the cytosol (the DAP
highway) for distribution to non-mitochondrial targets. DAP
may be the chaperone used but further evidence is needed.
Hemes are regulated by O,, iron content, and metabolic mode
(fermentation vs respiration). Hemes are the major prosthetic
groups in respiration-related proteins. Under iron-starved
conditions, CTH will shut-down production of heme-containing
proteins and HMX will degrade hemes to economize iron for
essential DNA-related processes.

7. Fe''tis the central iron species in the cell. Fe'; is distributed
to all other compartments in the cell. It used to metallate
proteins with mononuclear iron and [Fe-O-Fe] centers. Fe' is
strongly regulated by transport processes in the plasma
membrane and vacuoles, which undoubtedly impacts the

10 | J. Name., 2012, 00, 1-3

rate/efficiency of these metallation reactions. Fe' is imported
into mitochondria where Fe',,i: serves as feedstock for ISC and
heme biosynthesis. Fe',: is dynamically stored in vacuoles.

8. Autocatalysis is an essential property of growing and
dividing cells. Cells are autocatalysts because they catalyze
their own synthesis from nutrients. This can be translated into
a chemical reaction involving nutrient N and cell C (Figure 6,
panel A). One daughter cell can be viewed as the parent and
catalyst for the reaction, while the other daughter cell can be
viewed as the product. This property causes exponential growth
of cells under conditions of unlimited nutrients. The molecular-
level mechanisms responsible for it involve biochemicals in the
cell operating together as a mutual autocatalyst. Cell models
that possess this property should be more accurate and realistic
than those that don’t.

Mutual autocatalysis can be identified by a causal chain that
connects arrows head-to-tail, starting with an increase in one
component and ending with an increase in the same
component. In these autocatalytic loops (ACLs), horizontal
arrows indicate reactions and vertical or U-shaped arrows
indicate catalytic influences. To identify an ACL in the system
shown in Figure 6C, follow a causal chain initiated by an increase
in either component, e.g. A. If the chain eventually leads to a
further increase in A, it is an ACL; here TATBSTA (read as
an increase in A causes an increase in B which causes a further
increase in A). For B, the ACL is TB-TASTB. Mutual
autocatalysis is lost when the catalytic influence of A or B is
removed.

9. Autoinhibition is an essential property of homestatically
regulated cells: Cells are also homeostatically regulated —i.e. a
perturbation in any component from its “set-point”
concentration will eventually cause it to return to its set-point.
To achieve this property, each component must be part of an
autoinhibitory loop (AIL). In AlLs, a causal chain initiated by an
increase in one component will eventually cause a decrease in
the same component. Reaction networks occurring within
exponentially growing cells are guaranteed to have an AlL
because the ODE for each component C; will include a dilution
term that is proportional to the particular component, 234235 3s
follows.

NC) _ o)., —atc)

dr =

y ——
chemical terms dilution term

The inclusion of the dilution term immediately leads to an AlL of
the form T[C,]—{[C,] (this is not technically a loop since it
involves just one species). There may be other more specificand
more powerful AlLs than those associated with dilution.

10. Autocatinhibition is a property of homestatically regulated
cells that are growing and dividing: Autocatalysis and
autoinhibition can occur in the same dynamical system?23%, and
we propose that this includes cellular systems. Mutual
autocatalysis and mutual autoinhibition occur simultaneously in
cells. Thus, models of cellular processes occurring within cells

This journal is © The Royal Society of Chemistry 20xx
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Figure 6. Simple and mutual autocatalysis and
autocatinhibitory mechanisms. Panel A shows a cell growing
and dividing, which can be transformed into the simple
chemical reaction shown in Panel B. Here, N is nutrient and C
represents all components of the cell considered as a group.
There may be specific autoinhibitory reactions or nonspecific
autoinhibition due to cell growth/dilution. Panel Cillustrates a
mutual autocatinhibitory reaction in which two components
(A and B) are mutual autocatalysts and mutual autoinhibitory
agents. In this example, A catalyzes both the synthesis and
degradation of B, and vis-versa. Panel D illustrates a simple
mutual autocatinhibitory system in which the cell grows at an
exponential rate a that depends on both [A] and [B] but does
not otherwise include specific autoinhibitory reactions.

should include this property for greater accuracy and realism. In
the simplest autocatinhibitory system (ACIS) of Figure 6B,
component C is both a catalyst for its own production and a
catalyst of its own degradation. If the nutrient concentration is
fixed and in excess, the ODE describing time-dependent
changes in C might be

d[C]/dt =k.[C]—K,[CT-

The second-order dependence of [C] in the negative term arises
because C is presumed to be both a first-order substrate and a
catalyst for its own degradation. Note that the autoinhibitory
chain does not loop-back onto C but flows outward from C. The
sign of the horizontal reaction arrow must be reversed to create
the loop ((L ) but the direction of causality must also be
reversed, becoming TC—C.

Either autocatalysis or autoinhibition can dominate
depending on the rates of the reactions associated with the
chains - or they can be balanced in which case the steady-state
concentration of [C] would equal kc/k. In the mutual
autocatinhibitory system of Figure 6C, an increase in A will
cause an increase in B which could either cause an increase in A
(ACL dominates) or a decrease in A (AIL dominates), depending
on rates.

Assessing whether a more complicated system is
autocatinhibitory is more difficult. The difficulty can be
diminished if cell growth is assumed (e.g. Figure 6D); then the
only assessment is whether the system is autocatalytic. One
necessary condition for a group of chemicals to form a mutual
autocatalytic system is that each considered species is related
to the others. A component of the system will influence another
component of the system and be influenced by yet another
component. Symbolically, C; would be a component of the
system if

¢, > Torh)C andif TC, - (Tor)C,
where C; and G are known components of the system. Lacking
a more rigorous assessment method, ACL’s for each component

were informally identified by tracing loops mentally. Using
these criteria, the 40 components described above appear to be

J. Name., 2013, 00, 1-3 | 11
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members of an ACIS (see Table S2 for sample influences).
Nutrients acetyl-CoA, O, and environmental iron are not
components of the ACIS because their rates of synthesis are not
influenced by any component of the system. Waste products
CO; and nanoparticles are not components of the ACIS because
they do not influence any other components. | have selected
FET3 to illustrate an ACL

TRET3>TRell > TFell 1 > TISUSTGRX 5TCIASTPOLTFET3

In this loop, an increase in FET3 causes an increase in Fe'l,
which causes an increase in Fe'l,i, which causes an increase in
ISU in mitochondria, which causes an increase in GRX in the
cytosol which causes an increase in the CIA which causes an
increase in POL which generates more DNA which allows more
FET3 (as well as all other proteins in the cell) to be expressed.
One AlL is

TFET3 1 Fec';,t -7 Ferlrlm —T 18U »T GRX —{ aAFT —| FET3
Here, an increase in FET3 has the same effect as above except
that an increase in GRX also causes a decrease in AFT activity,
which causes a decrease in FET3 (since the iron regulation will
be turned-off).

Both processes operate simultaneously in the cell. Consider
an exponentially growing cell that is just barely iron-sufficient
such that both loops are operating at half-capacity. As the cell
grows, new FET3 must be generated to maintain a constant
concentration in the plasma membrane. If iron is limiting
growth, then adding more iron will increase the ACL rate (and
the cell will grow faster). Then, after excess iron enters the cell,
the AIL rate will increase, shutting down excessive iron import.
The opposite would happen if an iron chelator were added.

Only some components of the system will have a specific AL
pathway (e.g. the iron regulon) because only some processes
are tightly regulated. Likewise, only some components (e.g.
Yah1l, CIA, ISA, RIB) have a direct specific ACL pathway. Perhaps
such components need to be activated or deactivated more
quickly (as a burst) than do other components. Such behavior
seems to be particularly important for the ISC assembly systems
in the cell, implying the need for ultrasensitive regulation for
this process.

There has been speculation, including from my lab237
regarding the species that is “sensed” by the cell in controlling
the Aft1l/2-dependent iron regulon. Prior to ca. 2004, cytosolic
iron was presumed to be the sensed signal that controlled the
iron regulon. Thereafter, the ISC activity of mitochondria and/or
the rate of X-S export have been viewed as the signal. Cellular
regulatory mechanisms are commonly interpreted from the
perspective of engineering control theory in which a signal is
monitored and compared to a set-point value. Any difference
between the two is minimized by adjusting mechanical devices
that increase or decrease the signal. However, considering the
chemistry of AIL and ACL causal loops might be more accurate.
This perspective implies that there is no unique signal in
regulatory processes —any member of the causal chain could be
a signal. For example, if the rate of ISC assembly limits the rate

12 | J. Name., 2012, 00, 1-3

of the loop, as occurs in many ISC mutations (e.g. Yfh1A), the
rate of the entire loop will affected — similar to how inhibition of
any step of an enzyme catalytic cycle can slow the overall rate
of catalysis (at steady state). Cytosolic Fe", mitochondrial ISC
activity, and X-S are components of the same causal chains. A
deletion that affects any component of that chain would cause
the same phenotype. In my view, the search for sensed
regulatory signals should be replaced by efforts to better
understand loop mechanisms and kinetics.

The next step in developing the 40-component model will
be to generate a set of ODEs that translate the chemistry
developed here into a quantitative description of the flow or
iron into the cell and into various cellular compartments. To
integrate these ODEs, an entire set of kinetic parameters (rate
constants and concentrations) must be employed, but many of
these are unknown. If even approximately correct values can be
found, the model should be able to simulate (to some degree)
the phenotypes observed when any of the 139 proteins of the
ironome are deleted which would be a novel achievement.
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