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Virulence Attenuating Combination Therapy: A Potential Multi-
Target Synergy Approach to Treat Pseudomonas aeruginosa 

Infections in Cystic Fibrosis Patients  

Elana Shawa and William M. Wuest *a,b  

The World Health Organization considers the discovery of new treatments for P. aeruginosa a top priority. Virulence 

Attenuating Combination Therapy (VACT) is a pragmatic strategy to improve bacterial clearance, repurpose outmoded 

antibiotics, improve drug efficacy at lower doses, and reduce the evolution of resistance.  In vitro and in vivo studies have  

shown that adding a quorum sensing inhibitor or an extracellular polymeric substance repressor to classical antibiotics 

synergistically improves antipseudomonal activity. This review highlights why VACT could specifically benefit cystic fibrosis  

patients harboring chronic P. aeruginosa infections, outlines the current landscape of synergistic combinations between 

virulence-targeting small-molecules and anti-pseudomonal drugs, and suggests future directions for VACT research.

Introduction 

 

Cystic Fibrosis and P. aeruginosa : A Deadly Combination 

Individuals with cystic fibrosis (CF) carry a genetic mutation that 

causes defects in the cystic fibrosis transmembrane conductance 

regulator (CFTR) protein. The clinical result is an overproduction of 

thick, viscous mucus in the organ systems, notably the lungs. 1-10 

Airway mucus promotes chronic respiratory infections by physically 

shielding bacteria from antibiotics and impeding mucocilliary 

clearance (MCC) of inhaled pathogens. 8, 11To make matters worse, 

CFTR-dependent disruptions to complement-mediated immunity 

impair the ability of monocytes to phagocytose and kill bacteria. 12, 13 

Consequently, bacteria thrive in CF lungs and decimate lung function 

(Figure 1).14 A CFTR-mediated metabolic defect that results in 

excessive succinate release particularly favors colonization by 

succinate-metabolizing Pseudomonas aeruginosa.15 Chronic 

infection by this opportunistic Gram-negative rod is the leading 

cause of morbidity and mortality for CF patients. 6, 7, 15-18  

 

Treating P. aeruginosa with antibiotics is exceptionally difficult: 19-24 

The bacteria’s outer membrane under expresses OprD porins by 

which antibiotics can enter the cell and over expresses RND 

(Resistance-Nodulation-Division) efflux pumps which expel 

antibiotics. In addition, P. aeruginosa has an inducible gene that 

codes for AmpC cephalosporinase, a potent beta-lactamase.24, 25 The 

bacteria can also mutate to overproduce a protective, charged, 

alginate-filled biofilm. 9, 26-30 Bacteria in biofilms are up to 1000 times 

more resistant to antibiotic treatment than their planktonic 

counterparts, making this mucoidal phenotype infamously difficult 

to treat. 31-37 To make matters worse, CF patients require frequent 

antibiotics, placing near-constant pressure on P. aeruginosa to 

evolve new resistance traits. 38 

 

On average, CF patients initially contract P. aeruginosa at age 2.6. By 

adolescence, 85% of CF patients are actively harboring the bacteria 

in their lungs. 5, 14, 31, 33 To treat the infection, CF patients cycle 

through bactericidal monotherapies (including colistin (COL), 

meropenem (MER),  tobramycin (TOB), ceftazidime (CFT), 

gentamycin (GEN), and azithromycin (AZM)).23-25, 39-42 Though these 
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Figure 1: Depiction of a CF Lung 
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monotherapies may dampen P. aeruginosa flare-ups, they often fail 

to achieve full bacterial clearance due to the pathophysiology of CF 

(Figure 1). Bacteria that persist in mucus or biofilms may select for 

resistance, repopulate the lung, and evolve mucoidy. Each failed 

treatment attempt increases the likelihood of eventually colonizing 

a mucoidal multidrug resistant (MDR) or extensively drug-resistant 

(XDR) strain.43-50 As such, this current treatment paradigm promotes 

heinous chronic infections and the World Health Organization (WHO) 

has assigned top priority to discovering novel therapies for treating 

P. aeruginosa.17 

 

Virulence Attenuating Combination Therapy (VACT) 

Modern insights into how bacteria specifically interact with the body 

to cause disease have shed light on new potential drug targets: 

virulence factors.44, 51 Virulence inhibitors specifically interfere with 

the disease process, thereby preserving the host microbiome and 

minimizing the risk of selecting for resistance.44, 52 VACT couples 

virulence-targeting small-molecules (to disarm pathogens) with a 

bactericidal antibiotic (to kill pathogens).  

 

CF patients suffering from intractable mucoid P. aeruginosa are a 

strong example of a population that could benefit from VACT. In CF 

lungs, VACT may improve antibiotic efficacy by attenuating biofilm 

and reducing P. aeruginosa virulence factor production to improve 

the antipseudomonal activity of antibiotics. Substantial in vitro and 

in vivo P. aeruginosa VACT studies support this theory. This review 

summarizes these synergistic combinations in accordance with their 

virulence target, including 1) quorum sensing (QS) systems and 2) 

biofilm extracellular polymeric substance (EPS) as well as advocates 

for future VACT studies that target the Type 3 Secretion System 

(T3SS) (Figure 2). 

 

Discussion 

 

Quorum Sensing 

 

QS describes the process by which bacteria communicate with one 

another by synthesizing, releasing, and responding to the 

population-dependent concentration of small molecules known as 

autoinducers (Figure 3).53-55 P. aeruginosa secretes two main classes 

of autoinducer: acyl-homoserine lactones (HSLs) and 2-heptyl-3-

hydroxy-4-quinolone (PQS) (Figure 3). 56 When the environmental 

concentration of autoinducers reaches a threshold, transcriptional 

regulators alter gene expression to promote survival.55 P. 

aeruginosa’s three QS systems, (Las, Rhl, and PQS), work together to  

Figure 2: Adding a virulence inhibitor to antibiotic therapy improves P. aeruginosa killing 

Figure 3: The QS systems of P. aeruginosa are activated when 
autoinducers bind to transcriptional regulators upregulating 
autoinducers, virulence factor production, and biofilm formation. 
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control over 300 genes .57-60 Many of those genes code for potent 

virulence factors such as LasB elastase, LasA protease, the T3SS,  

exotoxin A, and pyocyanin.60-62 

 

Quorum signaling also allows individual planktonic bacteria to make 

group-behavioral decisions, notably the choice to form a biofilm 

(Figure 3).63  During biofilm formation, bacterial cells aggregate 

together within a self-produced matrix of EPS.64-66 Inside of the EPS, 

P. aeruginosa can persist, shielded from the host immune system, 

environmental stresses, and many antibiotics.37, 63 Additionally, 

biofilms facilitate horizontal gene transfer, which can lead to the 

development of resistance.67  

 

Functional QS systems are vital for P. aeruginosa pathogenesis.56, 68 

In mouse and rat models, P. aeruginosa mutants that lacked QS 

genes caused less lung pathology, suggesting that cell-cell signaling 

plays a key role in acute virulence.69, 70 In addition, sputum cultures 

from CF patients infected with chronic P. aeruginosa were 

discovered to contain significant amounts of HSLs and PQS, indicating 

that all three QS systems are deeply involved in human infection.56, 

71, 72 Thus, selectively perturbing P. aeruginosa’s QS systems with 

small molecules is an extremely promising strategy for curtailing 

pathogen virulence in both acute and chronic infections.  

 

Quorum Sensing Inhibitors and VACT 

Small molecule quorum sensing inhibitors (QSIs) have demonstrated 

therapeutic anti-pseudomonal potential.73-77 Alone, they have been 

found to reduce virulence factor production, biofilm formation, 

bacterial motility, and pathogen virulence.78-81 In mouse and rat 

infection models, QSIs alone induced immunogenicity, improved 

bacterial clearance, decreased lung pathology, and improved 

survival.69, 70, 78, 82  

 

The addition of a QSI to antibiotic therapy generally attenuates 

biofilm to improve antibiotic penetration into the cell while also 

reducing virulence factor production. Strong QSI candidates for VACT 

must be non-cytotoxic to human cells and synthetically accessible (<5 

steps) or commercially available (for feasible large-scale testing). 

Laboratories have been exploring VACT in vitro and in vivo with 

promising results as discussed herein. 

 

Furiga and colleagues took inspiration from the structure of C4-HSL 

(Figure 3), a key signaling molecule in CF lung infections, to develop 

N-(2-pyrimidyl) butanamide (C11) (Table 1, Entry A). C11 

downregulates las and Rhl QS systems, decreasing virulence factors 

LasB and RhlA. C11 also notably attenuates both aerobic biofilms and 

the more robust anaerobic biofilms that predominate in CF lung 

infection. When combined with CIP, TOB, and COL, C11 inhibited 

biofilm in a dose-dependent manner to improve antibiotic efficacy. 

They hypothesize that C11 tampers with QS, causing the bacteria to 

transition from a biofilm to a planktonic state where antibiotics have 

easier access for killing. C11 is a strong target for in vivo studies 

because it is stable, not cytotoxic to human cells, and synthetically 

accessible.84  

 

Similarly inspired by the structure of HSLs, Bortolotti and colleagues 

conjugated an antagonistic C12-HSL analog to CIP. They observed that 

their hybrid molecule, ET37, reduced biofilm formation and the 

development of CIP tolerance in clinical strains of P. aeruginosa 

(Table 1, Entry B).85  

 

Aware that linolenic acid (LNA), an essential fatty acid, has 

antimicrobial properties, Chanda et al. added LNA to TOB therapy 

and found that the combination synergistically attenuated biofilm 

and virulence factor production by interfering with all three QS 

systems (Table 1, Entry C).89 The  LNA and TOB combination is 

promising for future in vivo exploration and eventual studies in CF 

patients for two reasons: 1) The regiment is less toxic than TOB alone 

because the addition of LNA allowed TOB efficacy at lower doses and 

2) The VACT has been found to disrupt the production of alginate, a 

key contributor to chronicity in P. aeruginosa lung infections.  

 

Work by Brackman and colleagues showed the addition of Baicalin 

Hydrate (BH) to TOB significantly increased biofilm killing in vitro 

(Table 1, Entry D). They also found that a VACT regiment of BH and 

Entry Structure 
Synergy 
with: 

Tested 
in 
vitro? 

Tested 
in 
vivo? 

A 
 
 

CIP, 
TOB, 
COL Yes No 

B   CIP   Yes No 

C   TOB Yes No 

D 

  

TOB Yes Yes 

E   AZM Yes Yes 

F   TOB Yes No 

G   CIP Yes Yes 

H   
TOB, 
MER Yes No 

Table 1: QSI chemical structures and VACT testing summary 
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TOB improved survival in a C. elegans infection model.90 BH is 

commercially available, making larger-scale VACT studies (for 

example, in conditions that mimic the CF lung environment) very 

feasible. 

 

Berberine (BER) is an isoquinolone alkaloid that has been approved 

for over-the-counter use in China to treat gastrointestinal infections 

and is being studied as an anti-diabetic and antimicrobial.91, 92 Li and 

coworkers found that sub-MIC regimens of BER and AZM interfered 

with the Las and Rhl  QS systems to inhibit biofilm and virulence 

factor production (notably alginate) (Table 1, Entry E). The VACT also 

proved effective against 10 clinical P. aeruginosa isolates cultured 

from the sputum of CF patients. Excitingly, infected mice treated with 

a regimen of 0.8 mg/kg of AZM combined with 3.2 mg/kg of BER 

showed markedly increased survival and decreased lung 

inflammation.93 

 

Intrigued by the antibacterial properties of itaconimides, Fong and 

colleagues synthesized an analog library based on structure-activity 

relationships (SAR) and found that 10 μM (non-cytotoxic up to 40 

μM) of itaconimide 12a in combination with TOB completely 

eradicated an entire population of 72 hour old P. aeruginosa biofilm 

(Table 1, Entry F). They hypothesize that 12a works by inhibiting the 

PQS system via the Las system. 94 The VACT’s ability to entirely 

remove preformed biofilms may suggest exciting utility against 

chronic mucoid infection. However, before initiating further clinically 

oriented studies, it is necessary to test 12a for reactivity with thiol 

containing compounds such as glutathione. Such reactivity has been 

linked to cell-death.95 

 

Using bioisoteric modification of known, single-target inhibitors, 

Thomann et.al. developed compound 6, which is a multi-target 

drug that simultaneously inhibits the transcriptional regulator, 

PqsR, and a key enzyme for PQS production, PqsD (Table 1, Entry 

G). 96  Alone, 6 interfered with iron metabolism, decreased 

virulence factor production, inhibited biofilm formation (IC50= 100 

μM) and eDNA production. It also demonstrated in vivo efficacy by 

increasing the survival of Galleria mellonella (low toxicity 

observed). The VACT combination of 1 μM CIP + 50 μM 6 restored 

CIP activity against P. aeruginosa biofilm. They hypothesize that 

this synergy is due to the ability of 6 to inhibit eDNA, which hinders 

CIP.  

 

Excitingly, Maura and colleagues found that another PqsR inhibitor, 

M64, is one hundred times more potent at inhibiting biofilm than 

compound 6 (Table 1, Entry H).97 Pre-treatment with M64 restored 

TOB and MER efficacy against antibiotic-tolerant biofilms. 

Concurrent treatment with M64 and MER or TOB decreased biofilm 

CFU by 178 and 17 times respectively. 

 

In recent years, a plethora of auspicious QSIs have been 

discovered. Many of these inhibitors are commercially available, 

have low toxicity, or inhibit alginate (the main component of 

mucoid P. aeruginosa biofilm). For these reasons, such compounds 

and their synthetic analogs merit VACT studies in the context of CF. 

A summary of auspicious QSIs for VACT studies can be found in Table 

2.78, 79, 81, 98-101  

 

Extracellular Polymeric Substance Repressors 

During the early stages of biofilm formation, bacteria generate a 

matrix made up of extracellular polymeric substances (EPSs).102 P. 

aeruginosa produces three EPSs: Pel, Psl, and alginate. Pel  is believed 

to function as an eDNA cross-linker and has been implicated in the 

development of antimicrobial resistance.103 104 Psl  may act as a signal 

to initiate biofilm formation and is a critical structural element of 

biofilms during the microcolony formation stage.105 106  

 

Pel and Psl are exciting targets for VACT because inhibiting EPSs 

reduces or eliminates biofilm, making bacteria more susceptible to 

antimicrobials.104 The Lewenza Lab used a high-throughput gene 

expression screen to find compounds that repress Pel.107  When 

studied in combination with COL, polymyxin B (PB), TOB, GEN, and 

CIP, EPS inhibitors I7-I11 attenuated mucoidal biofilms to improve 

antibiotic penetration and efficacy (Figure 4). Notably, compound I7 

also demonstrated ability to attenuate biofilm in mucoidal P. 

aeruginosa, making it a prime candidate for in vivo exploration in the 

context of CF.  

 

 

 

Compound 

Reduces 
virulence 
factors: 

Inhibits 
biofilm? 

Commercially 
available? 

 
 

alginate, 
pyocyanin Yes 

No (2 
synthetic 
steps) 

  

alginate, 
rhamnolipid 
(Sub-MIC) Yes Yes 

  
elastase, 
pyocyanin, 
violacetin Yes Yes 

  pyocyanin 

Yes (IC85 
= 100 
µM) Yes 

  

elastase, 
pyocyanin 
(IC50 = 10 
µM) 

Yes (IC50 
= 50 
µM) 

No   

  
elastase, 
pyocyanin Yes Yes 

Table 2: Summary and evaluation of promising QSIs not tested for 
synergy 
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Type 3 Secretion System Inhibitors and VACT 

Type 3 Secretion Systems (T3SSs) play leading roles in P. aeruginosa 

virulence and are a strong yet unexplored candidate for VACT.108, 109 

The T3SS is highly conserved amongst gram-negative pathogens and 

broadly responsible for transferring proteins out of the bacterial 

cell.109, 110 P. aeruginosa expresses two distinct Type 3 Secretion 

Systems (T3SSs): The fT3SS and the iT3SS.111 The fT3SS expels 

flagellar proteins, enabling chemotaxis and biofilm formation and 

secreting effector toxins.111-113 The iT3SS, or injectosome, ejaculates 

cytotoxic effector toxins (ETA, ExoS, ExoT, ExoU, ExoY) directly into 

the host cell’s cytoplasm (Figure 5).80, 114, 115  

 

The most potent effector toxin is ExoU. 18, 22 ExoU has been found to 

lyse lung cells and destroy the alveolar epithelia, leading to septic 

shock and severe acute lung damage.116, 117 ExoS inhibits human 

neutrophils from producing reactive oxygen species (ROS), which are 

vital for killing phagocytosed bacteria.118 ExoT inhibits mammalian 

cytokinesis, causing slowed wound healing. 9, 119   ExoY causes 

apoptosis.117, 120 In addition to their individual functions, the four 

major effector toxins collude to kill and impair alveolar neutrophils 

and macrophages, severely handicapping the phagocytotic immune 

response to bacteria.121 

 

Inhibiting the T3SS with small-molecules is a highly appealing anti 

virulence strategy: The T3SS is specific to pathogenic bacteria, 

limiting the chance of off-target effects.18, 80, 122-125 In addition, 

because the T3SS is not vital for the bacteria’s survival, disrupting it 

should not place evolutionary pressure on P. aeruginosa to evolve 

new resistance mechanisms.126 Ideally, a selective T3SS inhibitor 

would stop P. aeruginosa from impairing phagocytosis, allowing the 

host immune system to do the killing.122 However, T3SS inhibitors 

have never been studied for synergy with bactericidal antibiotics. 

Several promising T3SS inhibitors and VACT candidates are featured 

in Figure 6 and discussed herein. However, for a thorough review of 

targeting the T3SS to fight P. aeruginosa, see Anantharajah et al. 127 

and Duncan et al. 128  

 

 

Promising T3SS Inhibitors for Future VACT Studies 

Sheremet and colleagues studied the activity of Flourothiazinon (FT), 

a  2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-one, against P. 

aeruginosa infections in a mouse model.126, 129 They found that mice 

dosed with 50 mg/kg of FT twice daily for 4 days after being infected 

with various lethal doses of multi-drug resistant clinical isolates of P. 

aeruginosa often survived the infection and displayed less lung 

pathology, lower levels of systemic inflammation, increased 

clearance of bacteria in their lungs and spleen, and no bacteremia. 

This suggests that at both a systemic level and in the lungs, FT 

intercepts P. aeruginosa’s characteristic attempt to suppress host 

immunity, improving phagocytotic clearance of pathogen from the 

cells to allow survival. In vitro experiments showed that FT 

specifically inhibited secretion of ExoT and ExoY and significantly 

decreased cytotoxicity. They also found that FT restored the ability 

HeLa cells to phagocytose bacteria in a dose dependent manner. 

When plated with FT, P. aeruginosa growth was not affected. The 

efficacy, specificity, and documented low toxicity108 of FT make it a 

highly promising candidate for VACT. 

 

Anantharajah and colleagues explored two classes of T3SS inhibitors 

for antibiotic potential: Salicylidine acylhydrides and 

hydroxyquinolones.111 These molecular classes were promising as 

they had previously been found to inhibit transcription of the iT3SS 

in other gram negative pathogens including Y. pseudotuberculosis, 

Shigella, Salmonella, and Chlamydia.123-125 The team compared the 

anti-pseudomonal activity of the two chemical classes by selecting a 

non-cytotoxic model molecule from each and testing it in a series of 

in vitro experiments. From the salicylidine acylhydrides, they 

selected INP0341 (SA INP0341), and from the hydroxyquinolines, 

they selected INP1750 (HINP1750). They found that both INPs 

reduced P. aeruginosa’s cytotoxicity in phagocytotic and epithelial 

eukaryotic cells. Further experimentation revealed that SA INP0341 

interferes with iT3SS gene transcription while HINP1750 mediates 

cytotoxicity by inhibiting a key ATPase homologous to the iT3SS and 

the fT3SS to decrease ExoS secretion and flagellar motility. HINP1750 

had a more robust effect on T3SS inhibition as it was active against 

both T3SS systems, making it a stronger candidate for future study in 

acute animal infection models and VACT. However, before such 

Figure 4: Chemical structures of EPS inhibitors by the Lewenza Lab 
used in VACT 

Figure 5: The T3SS secretes effector toxins into the host cytoplasm Figure 6: Promising T3SS inhibitors for future VACT study 
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studies take place, it is necessary to test the mutagenicity of 

HINP1750 with an Ames test or its equivalent -- nitroaromatic groups 

have been linked to mutagenicity and HINP1750 has 2 nitro groups 

attached to an aromatic ring.130  

 

The iT3SS injectosome needle is composed of repeated subunits of a 

single protein termed PscF. Before PscF is secreted to form the 

needle, it is protected by two chaperonins, PscE, and PscG. Without 

protection from the chaperonins, PscF will degrade in the cytosol, 

and the injectosome needle will not form. Thus, inhibiting the 

interactions between PscF and the chaperonins will prevent 

biogenesis of the iT3SS and its resulting cytotoxicity.80, 115 This effect 

is confirmed by PscE/PscG knockout studies.115 In July 2019, Feng and 

colleagues made a serendipitous discovery that non-bactericidal 

tanshinones compete with PscF for PscE-PscG binding.80 They found 

that dihydrotanshinone 1 (dHTSN1) demonstrated an IC50 of 0.68 μM, 

and dihydrotanshinone (dHTSN) demonstrated an IC50 of 1.5 μM in a 

fluorescence polarization (FP) assay. In addition, the compounds 

were found by Western Blot to decrease ExoS secretion at 

concentrations of 100 μM in Ca2+ depleted (T3SS stimulating) 

conditions. Western blot also revealed that the tanshinones 

repressed P. aeruginosa-induced macrophage lysis by reducing 

bacterial caspase-1 release. Caspase-1 is normally released by the 

T3SS, further suggesting that the tanshinones inhibit T3SS 

biogenesis.131 In mouse models, 90% of mice challenged with LD70 of 

PA01 survived when dosed with either dHTSN or dHTSN1. These mice 

showed less bacteria in their lungs, lower levels of inflammation, and 

less alveolar damage. The impressive anti virulence properties of 

tanshinones demonstrated in vitro and in vivo make them prime 

candidates for VACT exploration. 

Conclusions 

Despite a cornucopia of promising academic work in the 

development of virulence inhibitors such as QSIs or EPS 

repressors, these compounds have yet to progress to clinical 

trials. One potential explanation for this disconnect is that large 

pharmaceutical companies are likely deterred by the financial 

risk of such an endeavor for two reasons. 1) The path by which 

such a compound would pass Phase 3 is unclear and has yet to 

be evaluated and 2) testing molecules that specifically inhibit 

virulence and not bacterial growth in humans might raise some 

ethical questions. However, with antibiotic resistance on the 

rise, failing to pursue non-bactericidal options, even in 

combination with approved drugs, is potentially both 

dangerous and a missed opportunity to revolutionize our 

antiquated approach to treating infectious disease.  

 

Virulence inhibitors (notably QSIs and EPS repressors) have 

demonstrated a strong ability to potentiate antipseudomonal 

antibiotics in both in vitro and animal models. There is a long 

road from in vitro and murine model experimentation to clinical 

testing. However, the early promising results of VACT merit 

further exploration: First, synergy testing of known and novel 

QSIs and EPS inhibitors is needed to identify new and potent 

VACT combinations. Computational screening methods can be 

used to identify highly specific, multi-target virulence inhibitors 

for such testing. Second, labs must begin testing VACT regimens 

in conditions that replicate the CF lung. For example, in the 

presence of alginate, CF sputum,132 or in genetically engineered 

mouse models (GEMM) with CFTR defects. Third, VACT studies 

with T3SS (and other virulence) inhibitors demand exploration. 

It is our hope that the next generation of chemists will use 

virulence-inhibiting small-molecules to resuscitate antibiotics 

and annihilate resistant bacteria.  
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Virulence Attenuating Combination Therapy may be a promising approach to treating chronic P. 
aeruginosa infections in patients with cystic fibrosis. 
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