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Methicillin-Resistant Staphylococcus aureus (MRSA): Antibiotic-
Resistance and the Biofilm Phenotype 
Kelly M. Craft, a Johny M. Nguyen,a Lawrence J. Berg,a and Steven D. Townsend a*

Staphylococcus aureus (S. aureus) is an asymptomatic colonizer of 30% of all human beings. While generally benign, 
antibiotic resistance contributes to the success of S. aureus as a human pathogen. Resistance is rapidly evolved through a 
wide portfolio of mechanisms including horizontal gene transfer and chromosomal mutation. In addition to traditional 
resistance mechanisms, a special feature of S. aureus pathogenesis is its ability to survive on both biotic and abiotic 
surfaces in the biofilm state. Due to this characteristic, S. aureus is a leading cause of human infection. Methicillin-resistant 
S. aureus (MRSA) in particular has emerged as a widespread cause of both community- and hospital-acquired infections. 
Currently, MRSA is responsible for 10-fold more infections than all multi-drug resistant (MDR) Gram-negative pathogens 
combined. Recently, MRSA was classified by the World Health Organization (WHO) as one of twelve priority pathogens 
that threaten human health. In this targeted mini-review, we discuss MRSA biofilm production, the relationship of biofilm 
production to antibiotic resistance, and front-line techniques to defeat the biofilm-resistance system.

I. Introduction
Nosocomial infections are a major global health concern.(1-7) 

While significant progress has been made preventing transmission, 
on any given day, approximately 5% of patients in developed 
countries and 10% of patients in developing countries will acquire a 
hospital-associated infection (HAI).(8-11) Higher rates of HAI are 
seen in developing countries due to limited resources.(12, 13) 
Furthermore, HAI rates can rise to around 50% for patients in 
intensive care units (ICUs).(14) 

Staphylococcus aureus (S. aureus) is a common cause of 
nosocomial infection.(15-17) S. aureus is a Gram-positive 
commensal that persistently colonizes the skin and mucosae of 
approximately 30% of the human population.(18) Another 60% of 
people are transiently colonized.(19) While the nose is the most 
frequent carriage site, the skin, axillae, perineum, and pharynx are 
also common sites of colonization.(20)

While S. aureus appears as an innocuous commensal, it is 
responsible for a major infectious disease burden.(18) As an 
adaptable pathogen, S. aureus can cause a wide range of illnesses 
after an open wound or “entry point” is inoculated.(21) For 
example, the most common type of staph infection in adults is the 
boil, a pocket of pus that develops in a hair follicle or an oil gland. In 
children, the most common infection is impetigo, a highly 
contagious skin infection that appears as red sores on the face near 
the mouth and nose. Other clinical manifestations of staph infection 
include endocarditis, osteoarticular infection, pneumonia, toxic 
shock syndrome, and prosthetic device and catheter infections.(22) 

Staphylococcal infections occur when host defense mechanisms 
are low as a result of debilitating illness, open wounds, or treatment 
with steroids or other drugs that compromise immunity. Indeed, S. 
aureus infection rates in ICUs are of particular concern, and the risk 
of infection increases with the duration of a patient’s stay in these 
units.(14, 23, 24) This characteristic of Staphylococcal infections is 
largely attributable to the fact that S. aureus is an opportunistic 
pathogen that possesses an extensive arsenal of virulence factors 
that enable the organism to take advantage of a compromised 
host.(25, 26) Moreover, a number of strains possess a battery of 
resistance mechanisms against conventional antibiotics.(27) To 
compound the problem, S. aureus can live in the biofilm state. 
Biofilms are organized populations of bacteria encapsulated in a 
self-produced extracellular polymeric matrix that adheres to biotic 
and abiotic surfaces.(28, 29) Importantly, biofilms provide 
protection from antibiotics and the host immune system. 
Additionally, bacteria in the biofilm state display increased 
resistance to stress compared to those in the planktonic state. 
Given the ability of biofilms to shield bacteria from harsh host 
environments, biofilm adds an additional level of complexity to the 
problem of antimicrobial resistance.
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Figure 1. Scanning electron microscope (SEM) image of 
Staphylococcus aureus-infected bone (image courtesy of Dr. 
Jennifer Gaddy at Vanderbilt University).

II. Methicillin-Resistant S. aureus (MRSA) 
S. aureus is an adaptable organism with the ability to evolve 

resistance to an array of antibiotics. Resistance development and 
subsequent dissemination are consequences of horizontal gene 
transfer (HGT), i.e. the lateral movement of genetic information 
between organisms.  Notably, HGT enables new, antibiotic-resistant 
variants to arise without the need for genetic mutation.(30-32) This 
mode of action is often encountered in hospitals where selective 
pressure for resistance is enhanced. Inevitably, hospital-associated 
resistant strains enter and spread throughout the community. 

Antibiotic resistance in S. aureus was first observed in the 
1940s when infections caused by penicillin-resistant S. aureus 
(PRSA) emerged in hospitals.(33, 34) These strains produce a 
plasmid-encoded lactamase (penicillinase) capable of hydrolyzing 
the -lactam ring of penicillin (1). As this ring is the antimicrobial 
warhead of penicillin, its hydrolysis renders the drug inactive (2) 
(Figure 2A). Within a few years after its appearance in hospitals, 
PRSA had spread to the community. By the 1950s and 1960s, 
penicillin-resistant strains in the community had reached pandemic 
levels.(33) Today, more than 90% of Staphylococcal isolates 
produce penicillinase and are consequently resistant to 
penicillin.(35)

 In an attempt to combat penicillin resistance, methicillin (3) 
was introduced in 1959.(33, 34) Methicillin features a larger aryl 
moiety near the -lactam ring which reduces its affinity for 
Staphylococcal -lactamases.(36) Unfortunately, the first reports of 
methicillin resistance were observed in 1961, just 2 years after 
methicillin’s introduction. Contrary to penicillin resistance, 
methicillin resistance is not a result of drug inactivation, i.e. 
hydrolysis of the -lactam ring, but rather a result of drug target 
modification (Figure 2B). Methicillin-resistant S. aureus (MRSA) 
strains express an additional penicillin-binding protein (PBP), known 
as PBP2a, which has been hypothesized to have originated from 
Staphylococcus sciuri.(36)

PBPs are membrane-bound enzymes that catalyze the cross-
linking or transpeptidation reactions that link peptidoglycan chains 
in the bacterial cell wall.(35) In the absence of resistance 
mechanisms, -lactams inhibit the transpeptidase domain of PBPs. 
This results in inhibition of the cross-linking reactions which are 
integral to formation of a stable peptidoglycan layer. Without a 
structurally sound peptidoglycan layer, bacterial cell walls become 

weak and lack the ability to contain the cytoplasmic contents of the 
cell.(36) While PBP2a shares the structural features associated with 
penicillin binding that are common to other PBPs, PBP2a has a low 
affinity for all -lactams. Indeed, the PBP2a active site is able to 
block the binding of -lactams while simultaneously allowing cross-
linking to proceed.(35) Importantly, while -lactamase-mediated 
resistance is a narrow-spectrum mechanism, i.e. only penicillin is 
inactivated by the enzyme, methicillin resistance due to PBP2a 
expression is a broad-spectrum resistance mechanism. All -
lactams, including penicillins, cephalosporins, and carbapenems, are 
inactive against bacterial strains expressing PBP2a. 

The inability of -lactams to combat staph infections has led to 
an increased use of vancomycin (4) and the inevitable evolution of 
vancomycin-resistant S. aureus (VRSA) strains.(37) Similar to 
methicillin resistance, vancomycin resistant S. aureus strains derive 
their resistance from structural modification of the target. 
Modification of the terminal dipeptide of cell wall peptidoglycan 
chains from D-alanyl-D-alanine (D-Ala-D-Ala) to D-alanyl-D-lactate 
(D-Ala-D-Lac) reduces the affinity of the dipeptide for vancomycin, 
thus preventing disruption of peptidoglycan cross-linking (Figure 
2B). (38)

Today, MRSA is pandemic. The rise to pandemic status started 
with hospital-acquired MRSA clones in the 1960s. This then fostered 
community-acquired MRSA clones in the 1990s and finally livestock-
associated MRSA clones in the 2000s. The evolution of MRSA from 
initial reports to widespread dissemination parallels the trajectory 
of PRSA in the 1940s. Unsurprisingly, MRSA is highly prevalent in 
hospitals (Figure 3). The highest rates of MRSA (>50%) are reported 
in North and South America, Asia, and Malta. Intermediate rates 
(25–50%) are reported in China, Australia, Africa, and several 
European countries [e.g. Portugal (49%), Greece (40%), Italy (37%) 
and Romania (34%)]. Most European countries have low prevalence 
rates (e.g. Netherlands and Scandinavia).(39-41)

Figure 2. Mechanisms of Staphylococcus aureus resistance to 
penicillin (1), methicillin (3), and vancomycin (4). (A) Penicillin is 
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inactivated by bacterial β-lactamases that hydrolyze the β-lactam 
ring, which forms an inactive penicilloic acid. (B) Resistance to 
methicillin, a modified-penicillin scaffold featuring a larger aryl side 
chain that is resistant to -lactamase action, is driven by the 
expression of the alternative transpeptidase, PBP2a, which has a 
lower affinity for methicillin. Resistance to vancomycin results from 
modification of the terminal dipeptide of cell wall peptidoglycan 
chains, which reduces the affinity of the dipeptide for vancomycin.

 
Figure 3. Global prevalence of hospital-acquired MRSA.

III. The Biofilm State
Implantable medical devices have revolutionized modern 

healthcare. Unfortunately, attachment to indwelling devices by 
surface-adhering bacteria increases patient morbidity and 
mortality. Biofilms formed by Staphylococci are the most common 
cause of biofilm-associated infections with S. aureus being among 
the most common cause of device related infections (DRI).(42-44) 
All implanted medical devices are susceptible to colonization by 
Staphylococci. As a result, biofilm-associated infections have been 
associated with devices such as implanted catheters, prosthetic 
heart valves, cardiac pacemakers, contact lenses, cerebrospinal 
fluid shunts, joint replacements, and intravascular lines. To 
exacerbate the problem, infections associated with biofilms are 
particularly difficult to treat as bacteria within the matrix are more 
resistant to antimicrobial agents and the host immune response 
than planktonic bacteria. This increased resistance is attributable 
both to the protection afforded by the biofilm matrix as well as the 
unique phenotypic characteristics of bacteria within the matrix.

The first stage of biofilm formation is the attachment of a 
bacterial cell to a living (biotic) or non-living (abiotic) surface (Figure 
4).(45) Following attachment, bacteria in the biofilm state progress 
through a growth and maturation phase.(46) At the molecular level, 
the biofilm matrix is composed of an extracellular polymeric 
substance (EPS) composed primarily of oligosaccharides, DNA, and 
proteins.(47) The primary oligosaccharide in S. aureus biofilm 
matrices is a polymer of N-acetyl--(1-6)-glucosamine 
(polysaccharide intercellular adhesin or PIA), while the 
accumulation-associated protein (Aap) is a common biofilm-
associated protein. Teichoic acids are also common biofilm 
components. At the end of the biofilm cycle, cell clusters detach 
from the larger biofilm structure. Detachment is facilitated by 
expression of surfactant-like peptides, which are also critical to 
biofilm integrity and three-dimensional structure. Once detached, 
cell clusters can start new biofilm colonies on other surfaces.

Figure 4. The biofilm life cycle.

S. aureus pathogenesis and biofilm development is controlled 
by cell-to-cell communication using a ubiquitous regulatory system 
called quorum sensing.(48-52) During its growth and maturation 
phase, S. aureus produces an autoinducing peptide (AIP) that 
accumulates in the extracellular environment. Once AIP levels reach 
a specific concentration, the signal binds to a bacterial surface 
receptor and activates a regulatory cascade. The outcome is an 
increased expression of invasive factors such as toxins, hemolysins, 
proteases, and other tissue-degrading enzymes. Interestingly, these 
factors alter the metabolic status of the bacteria which 
subsequently  changes their biofilm-forming capacity. 
Unfortunately, the relationship between environmental stress and 
pathogenesis remains poorly understood. 

IV. Biofilm-Mediated Antimicrobial Resistance
It has long been recognized that biofilms increase resistance to 

antimicrobial action from both external agents, such as antibiotics, 
and internal agents of the innate immune system, such as 
antimicrobial peptides (AMPs).(53) Broadly speaking, two 
mechanisms are responsible for biofilm-mediated resistance. The 
first is prevention of chemotherapeutics from reaching their target 
due to limited diffusion or repulsion caused by the biofilm matrix 
itself.(28, 54) The second mechanism involves alteration of the 
physiology of biofilm-dwelling bacteria compared to planktonic 
bacteria. 

Cells within the biofilm, particularly those deep within the 
matrix, are generally thought to exist in a slow-growing state; these 
slow-growing cells are referred to as dormant or persister cells. 
Persister cells are a small fraction of exponentially growing cells, but 
are ca. 1% of bacteria in both the stationary phase and in biofilms. 
The decreased growth rate of persister cells can limit the efficacy of 
antibiotics, especially those that target active cell processes, 
without the need for genetic alteration.(55-57) For example, this 
type of cell would be immune to -lactams that target cell wall 
formation in actively dividing cells.(28, 29, 54) The ability of 
dormant cells to survive numerous rounds of antibiotic treatment 
also makes them key contributors to the restoration of biofilm 
communities.(54)

V. Strategies to Combat MRSA Biofilms
The development of strategies to prevent, remove, or disperse 

biofilms are as critical to treating staph infections as the 
development of new antibiotics.(58-63) A frontier approach in the 
battle against S. aureus is to develop anti-biofilm strategies that can 
be combined with conventional antibiotics as a means to restore 
antibiotic efficacy to levels observed when treating planktonic 
bacteria. In this section, we will discuss several approaches used to 
eradicate MRSA biofilms. These strategies can be broken down 
broadly into two categories: prevention of biofilm formation 
(antibiotic chemotherapy, anti-adhesive coatings/surfaces) and 
elimination of established S. aureus biofilms. 

A. Antibiotic Therapy
The best method for treating a biofilm-related infection is by 
preventing initial infection altogether. Unfortunately, the facile 
evolution of antibiotic resistance by S. aureus poses a significant 
challenge to this approach. Biofilms compound this issue by 
significantly increasing antibiotic minimum inhibitory 
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concentrations (MICs) compared to cells in the planktonic state.(64) 
For example, the MIC for vancomycin, the most commonly 
administered drug for S. aureus biofilm-associated infections, is 10-
times higher for biofilm-bound cells than for planktonic, free-
floating cells (planktonic cell MIC = ca. 2 μg/ml, biofilm bound cell 
MIC = ca. 20 μg/ml).(65) 

Despite growing resistance levels, there do exist antibiotics, 
such as daptomycin (5) that are effective at treating even VRSA 
biofilm-related infections (Figure 5),. Daptomycin, a cyclic 
lipopeptide molecule, is a novel antibiotic that disrupts the 
cytoplasmic membrane via rapid depolarization and interruption of 
DNA, RNA, and protein synthesis. Importantly, daptomycin is one of 
the most effective antibiotics at clearing S. aureus from an existing 
biofilm.(66) Moreover, because the mode of action for daptomycin 
does not require cells to be in a metabolically active state, it is a 
particularly useful agent in the fight against persister cells 
embedded deep within the biofilm matrix.

B. Physical Methods for Biofilm Removal
Second to preventing initial infection and, by extension, initial 
formation of a biofilm matrix, the next simplest method to treat an 
S. aureus biofilm-mediated infection is through surgical removal of 
the biofilm abcess.(67) Removal can occur through debridement of 
wounds or surgical implants. Irrigation and pulsed lavage are also 
strategies that are commonly employed. Unfortunately, techniques 
that apply purely physical tools have limited success. For example, 
pulse lavage irrigation is ineffective at eliminating S. aureus biofilms 
present on indwelling devices.(68)

C. Attachment Prevention
Attachment of bacteria to abiotic surfaces is mediated by a number 
of factors such as adhesion surface proteins, fimbriae or pili, and 
exopolysaccharides.(69, 70) Adhesion occurs most readily on 
surfaces that are coarse or hydrophobic. As hospitals are rich with 
these types of surfaces, hospitals are a major source of device-
associated infections. In a similar vein, indwelling medical devices 
often feature coarse or hydrophobic surfaces and thus present 
another potential colonization surface. Due to the prevalence of 
device-related infections, there has been increased interest in 
developing anti-infective strategies to prevent colonization.(71-74) 

While adhesion to abiotic surfaces, such as metal and plastics, 
proceeds through nonspecific mechanisms, adherence to biotic 
surfaces is dependent on surface proteins that are anchored to the 
cell wall peptidoglycan.(75, 76) Indeed, cell surface proteins, which 
are designed to recognize host surfaces, are critical for S. aureus 
adherence to host tissues as well as subsequent tissue colonization 
and ultimately the survival of MRSA infections. Surface proteins 
known to play important roles in biofilm formation include Bap, 
clumping factors (ClfB), FnBPs, SasC, SasG, and protein A. ClfB, 
FnBPs and protein A are widely distributed.(77-81) To target these 
proteins, and thus disrupt attachment, the Clubb group used an 
array of small molecules to inhibit MRSA transpeptidase sortase A; 
MRSA transpeptidase sortase A is a protein that anchors surface 
proteins to the cell wall.(82, 83) In theory, cell surface proteins are 
a novel therapeutic target to disrupt adhesion or adherence and 
mitigate biofilm formation.

Whether dealing with biotic or abiotic surfaces, the frontier 
challenge in attachment prevention methods remains 
understanding how bacteria coordinate the expression of different 
effectors and how various surfaces, particularly cellular surfaces, 
react to these effectors. If this communication system can be 
deciphered, one can develop strategies to eradicate biofilms by 

blocking initial adherence of the microbe. In the proceeding 
sections, several  coatings that prevent bacterial attachment to and 
growth on surfaces are described.

C1. Small Molecules
Aryl rhodanines (6) are 5-membered ring heterocycles that are 
known to inhibit biofilm formation in several Gram-positive models, 
including Staphylococcal and Enterococcal species (Figure 5).(84) 
Aryl rhodanines function by inhibiting attachment of bacterial cells 
through a mechanism that likely involves complexation of the 
rhodanines to one or more adhesins located on the microbial cell 
surface. Interestingly, aryl rhodanines are inactive against Gram-
negative microbes. Importantly, while rhodanines possess anti-
biofilm activity, they do not possess antimicrobial activity and are 
not cytotoxic against human cells. From a therapeutic perspective, 
rhodanines have the potential to be important tools in the battle 
against MRSA as their lack of antimicrobial activity reduces selective 
pressure. In other words, this class of small molecule is less likely to 
produce resistant strains or to induce high levels of biofilm 
production as a means to protect against a strong antimicrobial 
substance. 

Figure 5. Select antibiofilm small molecules.

C2. Abiotic Surface Coating 
Catheters coated with tetracyclines and ansamycins, both of which 
are bacteriostatic as opposed to bactericidal antibiotics, have been 
shown to decrease the frequency of MRSA central line-associated 
bloodstream infection (CLABSI) in ICUs.(85, 86) This result suggests 
that alteration of the surface properties of an indwelling device by 
coating the surface with bacteriostatic agents can prevent biofilm-
associated infections. 
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A number of metals have also been used to coat abiotic 
surfaces, such as catheters, in an effort to prevent biofilm 
formation.(87)  The most well-known example is silver in the form 
of elemental silver, silver ions, and/or silver nanoparticles.(88-90) 
Silver is effective at preventing biofilm formation against both 
Gram-positive and Gram-negative microbes, including MRSA. 
Interestingly, although silver coatings are frequently used, the 
mechanism of action behind silver-mediated biofilm production 
prevention remains unknown. However, changes to bacterial cell 
morphology have hinted at several mechanisms. For example, silver 
nanoparticles have been shown to attach to the bacterial 
membrane and penetrate the cell. After gaining entrance, the 
nanoparticles engage sulfide-containing proteins and DNA. This 
resultantly inhibits DNA replication and transcription. Thus, it is 
thought that silver prevents biofilm production by serving as an 
antimicrobial agent.

While silver-coating is common, there are cytotoxicity concerns 
with this method. Silver accelerates thrombin formation and 
platelet activation which subsequently places patients at higher risk 
for thrombosis. To avoid this issue, stainless steel and titanium have 
also been used to coat implant materials.(91-93) Interestingly, a 
number of medical devices have also been coated with vancomycin 
to prevent MRSA adherence. 

Figure 6. General methods for biofilm dispersal.

D. Treatment or Dispersal of Established Biofilms 
D1. Small Molecules
Cis-2-Decenoic acid (C2DA, 7) is a medium-chain fatty acid 
produced by Pseudomonas aeruginosa that has been shown not 
only to possess the ability to disperse established MRSA biofilms 
but also to completely inhibit MRSA biofilm formation (Figure 
5).(94, 95) In addition to this lipid, it has been shown that D-amino 
acids disperse established biofilms in S. aureus. Incorporation of D-
amino acids into the peptidoglycan layer results in the release of 
amyloid fibers, a component of the extracellular matrix that 
connects cells in the biofilm matrix.(96-99) Kolodkin-Gal 
demonstrated that D-amino acids disperse Bacillus subtilis biofilms 
by affecting the function of these amyloid fibers.(100) 
Mechanistically, when noncanonical amino acids are incorporated 
into the peptidoglycan layer, they interfere with the normal 
anchoring that helps maintain biofilm architecture integrity. 
Moreover, D-amino acids compete with canonical amino acids for 
positions in the peptidoglycan layer which interferes with 
transpeptidation and transglycosylation. Importantly, this 
disruption of bacterial cell wall composition caused by D-amino acid 
incorporation interferes with biofilm formation.

D2. Matrix Degrading Enzymes 
Disruption of biofilm matrix structural integrity is an attractive 
approach to limit the protective effects the matrix affords cells 
enclosed within it. This method is the reason for the addition of 

exogenous enzymes, such as dispersion B or DNAase, to S. aureus 
biofilms.(101-104) DNAase works by degrading the extracellular 
DNA in the biofilm matrix EPS, while dispersin B targets the 
polysaccharide EPS component. As biofilm matrices consist largely 
of extracellular DNA and polysaccharides, the actions of dispersin B 
and DNase serve to destabilize the matrix. It is important to note, 
however, that the use of exogenous enzymes like as dispersin B and 
DNase to disrupt S. aureus biofilm formation does have its 
shortcomings. For example, the susceptibility of S. aureus to 
dispersin B differs significantly among strains. Moreover, a number 
of clinically relevant MRSA strains produce biofilms that contain 
little polysaccharide which serves to limit the influence of dispersin 
B treatment on biofilm production.

D3. Plant-Derived Natural Compounds 
Natural products are critical to the discovery and development 

of new anti-infective agents against MRSA.(59-62) For example, 
extracts from the broths of Krameria, Aesculus hippocastanum, 
and Conopodium majus each contains four compounds that have all 
been shown to inhibit S. aureus biofilm formation: chelerythrine (8), 
dihydroxybenzofuran (9), sanguinarine (10), and proanthocyanidin 
(11) (Figure 5).(105) American cranberry extracts, which contain 
proanthocyanins (PAC), have also been shown to inhibit S. aureus 
biofilm formation as well as S. aureus growth.(106, 107) Moreover, 
polyphenolic compounds found in plant tissues, such as tannic acid 
(12), are known to inhibit S. aureus biofilm formation (Figure 
5).(108, 109)

Tea-tree oil, an essential oil extracted from the leaves 
of Melaleuca alternifolia, eradicates biofilm production by S. 
aureus, including MRSA, by damaging the extracellular matrix.(110, 
111) This damage initiates subsequent removal of the biofilm from 
biotic surfaces. Ellagic acid (13) derivatives from Rubus 
ulmifolius limit S. aureus biofilm production and also enhance the 
susceptibility of S. aureus to the antibiotics daptomycin, 
clindamycin, and oxacillin without contaminant cytotoxicity to 
mammalian cells (Figure 5).(112, 113) 

Although the agents discussed in the section are effective at 
combatting biofilms, their modes of action remain unclear. 

Conclusion and Future Outlook
Rising MRSA infection rates pose a significant threat to human 

health. While increasing antibiotic resistance is a well-appreciated 
contributing factor, a lesser appreciated but equally important 
factor is the ability of S. aureus to form biofilms. Biofilms serve to 
protect S. aureus from host defenses and antibiotics alike and are 
consequently integral to S. aureus pathogenesis. Indeed, biofilm-
dwelling bacteria are generally able to tolerate much higher 
antibiotic concentrations than their planktonic counterparts. The 
increased resistance of biofilm-associated bacteria against 
antimicrobial action is attributable to the physical barrier between 
bacteria and antimicrobial afforded by the biofilm matrix as well as 
the phenotypic shift bacteria embedded in the matrix undergo. As a 
result, biofilm-associated infections are notoriously difficult to 
eradicate. 

Indicative of the benefit of biofilm production for S. aureus 
survival, most chronic MRSA infections leverage the biofilm state in 
their pathogenesis. This is especially true for those associated with 
indwelling medical devices. As most therapeutic strategies are only 
effective at treating planktonic cells or acute infections, there is an 
urgent need to develop new therapeutic strategies capable of 
targeting S. aureus in the biofilm state. Unfortunately, despite much 
effort, the development of useful biofilm inhibitors and/or dispersal 
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agents for staphylococcal biofilms is in its infancy. While many 
innovative approaches to eradicate S. aureus biofilms have been 
achieved over the past two decades such as small molecules that 
prevent biofilm formation, enzymes that weaken biofilm matrix 
structural integrity, and antibodies and vaccines that target specific 
biofilm life cycle stages, these approaches lack clinical validation.

One potential future source of antibiofilm compounds are 
cationic small molecules. Indeed, several recent studies have 
showcased the ability of positively-charged molecules to disrupt 
biofilm matrices and inhibit biofilm formation by a number of 
pathogens.(114-119) However, the antibiofilm activity of this class 
of molecule is generally accompanied by antimicrobial activity. 
Although this may seem beneficial, the antimicrobial activity is likely 
to induce selective pressure and promote the evolution of resistant 
bacteria. Additionally, care must be taken with cationic molecules 
to limit cytotoxicity to mammalian cells. Given these concerns, 
identifying cationic small molecules with exclusive antibiofilm 
activity represents an exciting research avenue. 

Another approach, one which our lab has begun to investigate, 
is to use host defense mechanisms as a source of molecular 
inspiration. We recently demonstrated that human milk 
oligosaccharides (HMOs), non-conjugated oligosaccharides 
abundant in human milk, modulate growth and biofilm production 
for several bacterial pathogens, including MRSA.(120) However, we 
have yet to identify the mechanism of action behind the antibiofilm 
activity observed. In a parallel study, we discovered that conversion 
of the ubiquitous HMO 2’-fucosyllactose (2’-FL) to an anomeric, 
amino-variant gave a compound with impressive antibiofilm activity 
against Group B Streptococcus.(121) Once again, the mechanism 
behind this antibiofilm activity remains unknown. Thus, future 
studies are directed at elucidating a mechanism of action as well as 
investigating if this result translates to an S. aureus model. 

In addition to these approaches, as previously mentioned, 
further elucidation of how bacteria coordinate the expression of 
various effectors and how surfaces react with these effectors will be 
paramount to the development of antibiofilm compounds. Indeed, 
a greater understanding of this communication system has the 
potential to identify unique bacterial targets that can be engaged to 
target biofilm production selectively without accompanying 
antimicrobial activity.  
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