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Abstract

Yeast can be engineered into “living foundries” for non-natural chemical production by reprogramming 
them via a “design-build-test” cycle. While methods for “design” and “build” are relatively scalable and 
efficient, “test” remains a bottleneck, limiting the effectiveness of the procedure. Here we describe 
Isogenic Colony Sequencing (ICO-seq), a massively-parallel strategy to assess the gene expression, and 
thus engineered pathway efficacy, of large numbers of genetically distinct yeast colonies. We use the 
approach to characterize opaque-white switching in 658 C. albicans colonies. By profiling the 
transcriptomes of 1642 engineered S. cerevisiae strains, we assess gene expression heterogeneity in a 
protein mutagenesis library. Our approach will accelerate synthetic biology by allowing facile and cost-
effective transcriptional profiling of large numbers of genetically distinct yeast strains.
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Introduction

The baker’s yeast Saccharomyces cerevisiae is easy to culture, non-infectious to humans, and has 
powerful tools for modifying its genome (1-3). For these and other reasons, S. cerevisiae has been 
engineered into “living foundries” that synthesize high-value chemicals from renewable feedstocks 
(4,5). To maximize production, the cells must be genetically engineered to convert feedstock into 
product. Optimally engineering a cell’s genome is a challenging process that often relies on a “design-
build-test” cycle, in which variants are constructed and tested for the desired activity (6,7). The 
effectiveness of this process depends on the number of strains that can be built and tested. While 
advances in computation, DNA synthesis, and genome editing enable facile construction of large 
libraries (>106), testing these strains remains a costly bottleneck as it requires each to be individually 
isolated, cultured, and assayed for activity (6). 

Droplet microfluidics has markedly increased the throughput of strain testing. Like flow 
cytometry, droplet microfluidics analyzes individual cells at kilohertz rates; however, a unique 
advantage of droplets is that they allow cells to be characterized based on phenotypes not detectable 
with flow cytometry, like extracellular analyte consumption, product secretion, and interactions with 
other cells (6,8-10). Nevertheless, a limitation of the approach is that it usually requires a fluorogenic 
assay, which is not possible for many phenotypes and can be challenging to optimize for the requisite 
water-in-oil emulsions (11,12). Moreover, these assays are usually specific to a given target, making it 
difficult to extend the approach across targets. 

Gene expression profiling by mRNA sequencing is a standard approach for characterizing cell 
phenotypes and has been used for applications like characterizing the cell cycle, transcriptional rewiring, 
pathway efficiency assessment, and metabolic flux analysis (13-16). Moreover, new droplet microfluidic 
based single cell RNA-seq (scRNA-seq) has demonstrated gene expression profiling of tens of 
thousands of single cells per experiment (17-19). However, these approaches have been optimized for 
mammalian cells, which are larger and contain more RNA than the yeast cells commonly used as living 
foundries. Consequently, droplet microfluidic scRNA-seq is ineffective when applied to fungal and 
other microbial cells. While a recent study has demonstrated single yeast cell sequencing with the 
Fluidigm C1 platform (20), the throughput is limited and not adequate for testing strains from libraries. 
Additionally, scRNA-seq is subject to significant biological and technical noise due to the dynamic 
nature of gene expression and the tiny amount of RNA available for sequencing. To enable effective, 
general, and scalable strain testing, a new approach for characterizing gene expression of engineered 
strains is needed that has the generality of single cell RNA sequencing and is applicable to fungal cells.

In this paper, we present Isogenic Colony Sequencing (ICO-seq), a general approach for 
profiling the gene expression of cultivable cells at high throughput. The key innovation of ICO-seq is 
the coupling of hydrogel droplet culture of single cells with barcoded RNA sequencing (Drop-seq). 
Hydrogel culturing amplifies single cells into an isogenic colony of tens to hundreds of cells; this 
provides ample RNA for deep sequencing of the colony and reduces error due to noisy single cell gene 
expression profiles. The resultant profiles correspond to individual strains and can be used to screen for 
the desired phenotype. To demonstrate and validate ICO-seq, we use it to study white-opaque switching 
in Candida albicans and to assess expression heterogeneity of a Saccharomyces cerevisiae ARO4 
regulatory domain mutagenesis library. We anticipate our approach will aid in the generation of 
optimized strains by allowing rich gene expression information to be collected from tens of thousands of 
genetically distinct fungal strains. This platform can be readily implemented into the “design-build-test” 
cycle of synthetic biology. 

Results

ICO-seq Workflow
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The goal of ICO-seq is to obtain high-quality gene expression profiles from genetically and 
epigenetically distinct yeast strains with the scalability of droplet approaches. To enable this, ICO-seq 
integrates two droplet microfluidic technologies: the encapsulation and culture of single cells in 
hydrogel beads (21) and Drop-seq RNA sequencing (17). In the cultivation step, single yeast cells are 
encapsulated in 90 μm agarose beads and immersed in culture medium; this expands a single cell into an 
encapsulated colony of hundreds of isogenic clones, mitigating single cell noise and amplifying the 
amount of RNA available for barcoded sequencing (Figure 1a). In the barcoding step, the hydrogel 
cultures are paired with barcoded Drop-seq beads and encapsulated in droplets using a custom 
microfluidic device; lysis buffer is also included, lysing the cells and releasing mRNA for oligo(dT) 
capture and barcoding, as in standard Drop-seq protocols (Figure 1b). The resultant barcoded data is 
processed similarly to conventional single cell RNA sequencing data, first grouped by barcode and then 
subjected to gene expression analysis (Figure 1c). The principal difference between ICO-seq and Drop-
seq is that barcode groups correspond to isogenic colonies of many of cells, rather than single cells. 

Figure 1. Schematic of ICO-seq workflow. 
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(a) Colony-containing agarose microgels are generated by encapsulating single yeast cells into agarose 
microdroplets followed by microgel recovery and colony formation within the microgel. (b) mRNA is 
converted to cDNA from single colonies by co-encapsulation of microgels and barcoded RNA capture 
beads followed by in-droplet hybridization and a bulk reverse transcription reaction after droplets are 
demulsified. (c) Sequencing libraries are prepared from cDNA containing barcoded RNA capture beads 
following the Drop-seq protocol.  Following sequencing, digital gene expression tables for individual 
yeast colonies are generated and analyzed.

Microfluidic design and operation in ICO-seq
ICO-seq utilizes microfluidic technologies for encapsulating single cells in microgels and pairing 

the resultant isogenic cultures with barcoded beads for sequencing. The hydrogel matrix must be 
carefully selected to allow microfluidic synthesis of the microgels, single cell culture, and Drop-seq. 
Agarose is a suitable hydrogel material for many biological applications and is compatible with 
microfluidic microgel fabrication and Drop-seq (21-23). A key property of agarose is that it melts at 
moderate temperatures (~90°C), allowing it to flow through microfluidic channels and be formed into 
liquid droplets. Upon cooling, the droplets solidify into elastic microgels. If cells are included in the 
droplets, they are embedded in the resultant microgels (21,23). To utilize agarose in this way, we thus 
require a microfluidic device that can emulsify the molten solution into monodispersed droplets. 
Because the elevated temperature (~50 °C) required to keep molten agarose from gelling may harm 
cells, the melt and cell suspensions are introduced via separate inlets using a “co-flow” geometry (Figure 
2a, yellow box). Due to low Reynolds number laminar flow, these miscible solutions merge but do not 
mix until encapsulated in droplets in the flow-focus junction. In addition, the droplets cool down rapidly 
due to their large surface area to volume ratio. 

For ICO-seq to be useful, it must be scalable to tens of thousands of cells, which necessitates 
rapid encapsulation of cells in the microgel spheres. However, molten agarose is viscous, slowing 
droplet generation. To increase droplet production rate, we thus employ sequential droplet splitting (24). 
A large droplet (3200 pL) is formed at high flow rates and subsequently bisected into eight sister 
droplets (400 pL) (Figure 2a, green and red boxes). The net throughput of this device (5 KHz) is ~8-fold 
faster than a single droplet generator creating 400 pL droplets directly. To ensure the daughter droplets 
contain an equivalent composition of cell and agarose solution, a mixing channel stirs the large droplets 
before they reach the first split (Figure 2a, blue box). 

The molten agarose droplets are collected on ice to solidify, then the oil is removed via 
demulsification and the droplets are washed and transferred to an aqueous solution. To ensure a 
substantial fraction of microgels contain single yeast cells, the cell suspension is diluted such that ~22% 
of droplets contain one cell in accordance with a Poisson distribution (Figure 2b, top panel).  This cell 
encapsulation rate yields ~10% of microgels containing cultured yeast colonies, because some of the 
encapsulated cells do not grow and form colonies. This cell encapsulation rate is dependent on the 
ability of individual cells to form colonies and must be experimentally determined for specific yeast 
strains and media conditions.  The washed microgels are then transferred into culture media. The porous 
agarose allows the media to perfuse through the gels, allowing the cells to grow to form colonies (Figure 
2b, middle and bottom panels). The colony size can be tuned by controlling the culture properties, 
including the media composition, and duration and temperature (21,23).

The second step in ICO-seq is to capture and barcode each microgel culture’s mRNA. This 
requires lysing the cultures in a droplet containing a barcoded oligo(dT) capture bead, following the 
Drop-seq protocol (17). It thus requires a microfluidic device that encapsulates each microgel culture 
with a barcoding bead (Figure 2c). Prior to injection into the device, the microgels are close-packed by 
centrifugation. Due to the monodispersity of the microgels and their close packing, they flow regularly 
into the droplet generator, allowing efficient loading (25). In our experiment, we observe a loading 
efficiency of around 25% and further optimization can be performed to increase this efficiency. 
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Barcoded RNA capture beads are suspended in lysis buffer at a concentration such that on average 10% 
of droplets contain a single bead, and are introduced via a parallel inlet, spacing the microgels just 
before droplet generation. With this loading efficiency, we co-encapsulate ~3000 yeast colonies and 
barcode RNA capture beads per hour. Upon encapsulation, lysis buffer diffuses into the microgels. This 
releases polyadenylated mRNA from the colony so that it hybridizes to the oligo(dT) barcodes on the 
capture beads. This process is repeated for hundreds of thousands of droplets in parallel. For each colony 
that is co-encapsulated with a capture bead, its mRNA is captured onto the uniquely barcoded oligo(dT) 
capture probes on the bead surface. The droplets are then demulsified, and the recovered beads are 
subjected to the remaining steps of Drop-seq, including reverse transcription (Figure 1b), PCR, and 
tagmentation for Illumina sequencing library preparation. The library is sequenced and the resulting 
gene expression data is analyzed (Figure 1c). 

Figure 2. ICO-seq microfluidic device design and operation.
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(a) Microfluidic device design for high throughput single yeast encapsulation into agarose microgels. 
From top to bottom, images showing droplet generator, droplet mixer, the first droplet splitter and the 
third droplet splitter. (b) Yeast colony formation within agarose microgels. Top: single cell encapsulated 
agarose microgels; middle and bottom: colony containing agarose microgels. (c) Microfluidic device 
design for co-encapsulation of agarose microgels and barcoded RNA capture beads. Images on the 
bottom showing co-encapsulation step (left panel) and droplets generated with this device (right panel). 
   
Analysis of white-opaque switching in C. albicans using ICO-seq

C. albicans is an opportunistic commensal yeast that can colonize and invade human tissue when 
the human immune system is compromised, or the competing microbial flora is eliminated (26). It has 
been hypothesized that the ability of C. albicans cells to colonize warm-blooded hosts is enhanced by its 
ability to switch between multiple cell types, amongst which are the white and opaque cell types (27,28). 
White-opaque switching results in two distinct types of cells from the same genome that vary 
significantly from each other in size, shape, susceptibility to host defense and mating-competence (29). 
Perhaps most interesting to us, white-opaque switching is heritable; in other words, when an opaque cell 
switches to white, the resulting progeny continue to be white (it is important to note that these white 
cells can switch back to opaque cells, albeit at a low frequency). 

Here we use an opaque diploid C. albicans strain engineered such that YFP (yeast fluorescent 
protein) replaces one copy of the WH11 gene. Since the WH11 promoter is active only in white cells 
(30) and its expression correlates with the commitment of cells being white, YFP expression under 
WH11 control monitors the switch from opaque to white (29). With ICO-seq, which provides gene 
expression profiles of isogenic colonies, the presence of YFP mRNA can be used to define colony type. 
In this experiment, we encapsulated opaque C. albicans cells in agarose microgels followed by colony 
formation through cultivation. Due to switching from opaque-to-white cells, opaque and white C. 
albicans colonies (as well as some mixed cultures) existed at the end of cell culturing. These colonies 
were analyzed for gene expression using ICO-seq (658 colonies with at least 600 genes that exists in at 
least two colonies were used for analysis) (Figure 3a). 

Using principle component analysis (PCA) and YFP expression as reference, we saw that 
colonies with highly positive YFP expression (n=50 with normalized YFP expression > 1.4, which we 
attribute to white cells), have a distinct gene expression profile from ones with no YFP expression 
(n=381 with normalized YFP expression < 0, which we attribute to opaque cells) (Figure 3b). Moreover, 
this PCA analysis revealed that WH11 expression correlates well with YFP expression; in other words, 
WH11 is also induced in colonies with positive YFP expression (Figure 3c, blue arrow). Finally, PCA 
analysis revealed that genes implicated in energy metabolism such as C1_08610C, STF2 and AOX2 also 
correlates with WH11 and YFP. Multiple reports have shown that a majority of the ~1000 gene 
expression differences (using a two-fold cutoff) between white and opaque cells involve genes 
implicated in nutrient acquisition and metabolism (31-33). PCA analysis of ICO-Seq data (1) reaffirms 
that WH11 is a valid reporter for white cells, (2) validates that the major gene expression differences 
between white and opaque cells involve metabolism and (3) identifies a handful of valuable reference 
genes for both white and opaque cells.

To gain more insight into the heterogeneity across opaque and white cells with a more unbiased 
approach, we employed t-SNE (34) using Seurat (35), a clustering algorithm that revealed 4 major 
clusters (Figure 3d). WH11 expression is mostly contained in colonies within cluster 0 (orange), 
suggesting cluster 0 corresponds to white colonies (Figure 3e). Besides WH11, genes related to glycerol 
metabolism and biofilm formation such as GPD2, RHR2 are also upregulated in cluster 0 (Figure 3f), in 
accordance with previous findings (36,37). In addition, energy metabolism genes (AOX2 and 
C1_08610C) found by PCA are also over-represented in cluster 0 (Figure 3f). Cluster 2 cells 
overexpress fermentation genes (ALD5 and 6) (Figure 3f), as is to be expected for opaque cells (38). In 
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addition to these two major populations (which we attribute to white and opaque cells), another cluster 
(cluster 3, which could either be a separate cell-type or a population of cells that includes both white and 
opaque cells) is marked by expression of SLR and NPL3 (Figure 3f), members from the SR (serine-
arginine) family of RNA-binding proteins that may influence polarized growth (39). This t-SNE analysis 
uses an orthogonal clustering algorithm to identify additional reference genes that can be used to 
distinguish between white and opaque cells and further demonstrates the ability of ICO-seq to dissect 
gene expression differences between cell types. 

Figure 3. White-opaque switching analysis of C. albicans using ICO-seq.

(a) Schematic workflow of C. albicans opaque-white analysis using ICO-seq. (b) Principal component 
analysis of gene expression profiles from single C. albicans colonies with YFP positive colonies labeled 
blue and YFP negative colonies labeled grey. (c) Gene expression heatmaps for PC1 and PC2 with both 
cells and genes are ordered according to their PCA scores (barcodes on x-axis and upregulated gene 
names on y-axis, yellow indicates upregulation, purple indicates downregulation, top 15 genes and 100 
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barcodes are shown in the heatmap). Genes shown are color coded and listed on the right. (d) t-SNE 
analysis plot of gene expression profiles from C. albicans colonies showing four separate clusters. (e) t-
SNE analysis plot with WH11 expression shown in red. (f) Heatmap shows top 35 marker genes 
(thresh.use set as 0.25) from each cluster. When there were more than 35 genes, only the top 35 were 
shown.  Genes shown are color coded and listed on the right.

Heterogeneity analysis of S. cerevisiae ARO4 mutagenesis library 
In the previous section, we employed ICO-seq to analyze the differences between two cell-types 

for which population-level gene expression differences had already been documented. Next, we used 
ICO-seq to identify gene expression differences across colonies in a yeast system where gene expression 
profiling has, to our knowledge, not been conducted. 

ARO4 is a key regulator for the pathway that synthesizes aromatic amino acids in S. cerevisiae, 
the building blocks of many valuable molecules (40). ARO4 is inhibited by the aromatic amino acid 
tyrosine, one of several negative feedback loops that constrain flux through the pathway (40).  Mutations 
in the regulatory region (residues 191-263) and elsewhere in the protein have been shown to reduce 
feedback inhibition by tyrosine and increase metabolic flux through the pathway (6,41). We applied 
ICO-seq to study the effect that mutations in the regulatory domain of ARO4 have on the transcriptome 
of S. cerevisiae (Figure 4a), 

We analyzed expression data from 1642 colonies that expressed at least 500 unique genes that 
exist in at least two colonies. Similar to analysis performed with data from C. albicans experiment, we 
identified three major clusters through tSNE analysis using Seurat (35) (Figure 4b, c). The colonies in 
cluster 1 express genes related to protein biosynthesis, suggesting these colonies were actively growing 
when profiled. The colonies in cluster 2 express genes related to amino acid biosynthesis (GLN1, SER3, 
LYS12, MET14, LYS9, LEU1), suggesting they could correspond to ARO4 mutants that upregulate the 
amino acid biosynthesis pathway. Meanwhile, colonies in cluster 0 express genes implicated in the 
stationary phase of growth (SPG4, SPG1) and respiratory metabolism (OLI1, FMP43, RGI2, 
YDR119W-A). 

To provide a more comprehensive analysis, we further limited our analysis to 1064 genes that 
had at least 3 mRNA counts in at least one of the 300 colonies with the lowest overall expression level.  
In principal component space we can identify three large clusters that are separated most clearly by a 
linear combination of principal components 1 and 2 ( ) (Figure 4d). Along that axis, clusters A 𝑣𝑠𝑒𝑝
(magenta, N=620) and B (cyan, N=155) express relatively more genes related to cytoplasmic translation 
(RPL33B, RPS25B, TIF11, RPS18B, etc), and cluster C (grey, N=867) expresses relatively more genes 
related to growth in stationary phase (SPG1 and SPG4), as well as genes associated with respiratory 
metabolism (MPC3, OLI1, RGI1, COX26, RGI2) and stress (MRK1, GPX1) (Supplementary Tables 1-
3).  This suggests that the colonies in clusters A and B were actively growing when profiled. This is 
further supported by the fact that the correlation between the average expression for clusters A and B to 
bulk sequencing data from unperturbed cells is higher than the correlation between cluster C and 
unperturbed bulk sequencing data, while the opposite is true when comparing to bulk sequencing data 
for cells in which the master regulator PKA is inhibited (Supplementary Figure 1). We also compare the 
average of our single colony sequencing data to bulk colony sequencing data and find a positive 
correlation (~0.4). The differences of gene expression profiles between single and bulk colony 
sequencing may be attributed to different culture conditions, since culture in picoliter-volume spherical 
hydrogels in suspension is not the same as culture on an open agar slab, and different growth phases, 
since many of the colonies formed in the microgel appear in exponential growth phase and the colony 
formed on the agar plate is in late stationary phase (Supplementary Figure 2). 

There is heterogeneity within the clusters in the direction orthogonal to  (which we denote 𝑣𝑠𝑒𝑝
).  Colonies with lower values on the  axis have higher overall sequencing reads (Figure 4e).  𝑣ℎ𝑒𝑡 𝑣ℎ𝑒𝑡

These colonies have relatively higher expression of genes associated with the ER-Associated 
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Degradation pathway (UBC7, CUE1) and mitochondrial ribosomal proteins (MRPL38, MRP17, MNP1, 
MRPS8, MRPL49, Supplementary Table 1).  Colonies with lower total transcript counts tend to have 
higher  values.  Those colonies have higher transcript counts of 21s rRNA and RPL24A as well as 𝑣ℎ𝑒𝑡
two paralogous metallothioneins, CUP1-1 and CUP1-2 which mediate resistance to copper and 
cadmium (Supplementary Table 1).  Interestingly, cluster C (which was characterized by higher 
expression of stress and stationary phase genes) contained the colonies with both the lowest number of 
transcript counts (which might include colonies that grew very slowly after implanting in a microgel) as 
well as those with the highest number of transcript counts (which may have slowed growth after 
reaching saturation). 

The two actively growing clusters, A and B, separate most clearly along principal component 3 
(Figure 4f, g).  Colonies with higher principal component 3 values have relatively more expression of 
genes associated with the GO term Organophosphate Metabolic Process (YSA1, ATP16, CYC7, PHM8, 
YNK1, MTD1, PGM2, URA10, NRK1, AFT2) as well as other amino acid metabolism genes (SER3, 
GLN3, LYS12) and relatively lower expression of genes associated with the GO term rRNA processing 
(POP8, NHP2, LOC1, CGR1, LRP1, EBP2, CBF5, RPL37A, NOP56, NOP15, NIP7, Supplementary 
Tables 1-3).  This suggests that the colonies in cluster B could be actively growing mutants from the 
ARO4 library that have adjusted their metabolism to adapt to changes in metabolic flux resulting from 
the mutations.

Figure 4. Heterogeneity analysis of S. cerevisiae ARO4 mutagenesis library.
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(a) Schematic workflow of S. cerevisiae library heterogeneity analysis using ICO-seq. (b) t-SNE 
analysis plot of gene expression profiles from single S. cerevisiae colonies showing three clusters. (c) 
Heatmap shows top 35 marker genes (thresh.use set as 0.25) from each cluster. When there were more 
than 35 genes, only the top 35 were shown.  Genes shown are color coded and listed on the right. (d) 
Plot of principal component 1 and 2 values for all colonies analyzed showing the different clusters, as 
well as the direction that most clearly separates the clusters ( ) and the direction along which colonies 𝑣𝑠𝑒𝑝
within clusters vary most ( ). (e) Same as (d), but colonies are colored by the logarithm of the total 𝑣ℎ𝑒𝑡
number of counts.  (f) Same as (d) but for principal components 1 and 3.  (g) Expression heatmap of 
genes whose expression separates the clusters most clearly.  Groups GAC and GCA include genes that are 
expressed at higher or lower levels respectively in cluster A than in cluster C.  Groups GAB and GBA 
include genes that are expressed at higher or lower levels respectively in cluster A than in cluster B 
(subtracting out any genes already included in groups GAC and GCA).
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From this analysis, we can group colonies from a yeast mutagenesis library into three major bins 
and use gene expression profiling to select those that appear to be conducting efficient protein 
biosynthesis.  Confirming that the observed heterogeneity is a direct result from the mutations of ARO4 
will require further development of ICO-seq to enable the direct linking of genotype (mutations) with 
phenotype (transcriptome). We expect that using high-throughput RNA sequencing to screen for 
mutants with desired gene expression profiles will be valuable for protein engineering (42), deep 
mutational scanning (43), and strain engineering (44); Current methods are costly, limited in throughput, 
or restricted to optical assays (6,8). ICO-seq may provide a versatile, high-throughput and scalable 
alternative for such analyses going forward.

Discussion 
ICO-seq enables high-throughput RNA-seq of isogenic cell colonies, which can be used to characterize 
cellular phenotype for high throughput screening applications. We demonstrated the proof-of-concept 
usage of ICO-seq by expression profiling hundreds to thousands of colonies of both C. albicans and S. 
cerevisiae.  By scaling up our protocol, we would be able to collect data from hundreds of thousands of 
individual yeast colonies. In our current implementation, ~10% of yeast colonies are sequenced. The 
major factor limiting colony sequencing efficiency is co-encapsulation of each colony with a barcode 
bead, loaded at ~10%. To increase colony sequencing efficiency, barcode bead loading efficiency must 
be increased, which would be best achieved by using close-packed hydrogels that can barcode RNA 
(either by increasing the fraction of hydrogels containing a barcoded RNA capture beads through 
enrichment (45), or by functionalizing the hydrogels directly via split pool methods, ensuring that every 
introduced hydrogel contains a barcode). Using published close-packing methods (26), this should 
enable sequencing of up to ~80% of colonies, similar to commercially-available single mammalian cell 
RNA sequencing approaches (19).

The core innovation of our approach is to exploit the ability of individual yeast cells to expand 
into isogenic colonies in microgels, thereby biologically amplifying mRNA available for sequencing. 
Such in vitro cultivation is thus essential to our approach. The ability of a single cell to generate a 
colony will depend on its genotype and the culture conditions. In our experiments, the yeast cells are 
cultured for 16-20 hours, and colony sizes generally >100 cells, yielding ample material for analysis. To 
provide a rough estimation of the number of cells needed for analysis, there are ~15,000 mRNA per 
yeast cell (46) and ~200,000 mRNA in a mammalian cell (47), so ~14 yeast cells yield mRNA roughly 
equivalent to one mammalian cell, which has been shown to be sufficient for RNA sequencing. Thus, 
we estimate a minimum colony size of 14 cells for our method, although fewer cells may also be used at 
the expense of expression profile coverage and overall data quality. Generally, if it is possible, a longer 
culture will yield a larger colony and, thus, more mRNA and better sequencing data. 

Key to the method is the capture, growth, and sequencing of single cells in agarose hydrogel 
spheres, which affords a facile route towards generating and analyzing large numbers of distinct 
colonies. Because gene expression is a universal readout, ICO-seq can be applied to a broad range of 
phenotypes such as metabolic flux prediction (47-49). It can also be applied to dissect a heterogeneous 
response from single colonies when they are perturbed (e.g. addition of toxic compound, elevated 
temperature and when co-cultured with other species). Moreover, microgels are compatible with sorting 
via flow cytometry prior to ICO-seq, adding more flexibility of the workflow.  Additionally, collective 
analysis of gene expression across large numbers of genetically distinct variants can be applied to 
characterize sequence-phenotype relationships, and aid in identifying optimal genetic engineering to 
obtain a desired phenotype. To do this, it is essential to link gene expression profiles to perturbation 
genotypes. This can be done by incorporating barcodes (expressed as mRNA) for each perturbation as is 
done in Perturb-seq applications (50,51). In this method a library of single-guide RNA (sgRNA) that 
cause CAS9 based genetic perturbations are introduced into single cells and transcriptome data is 
collected using droplet-based sequencing.  The identity of the sgRNA for each perturbation is encoded 
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in a sequence that is highly expressed in each cell and is sequenced with the rest of the transcriptome. 
ICO-seq will enable Pertub-seq to be used with yeast and potentially other microbes. ICO-seq can also 
be applied to genetic circuits, allowing characterization of genetic logic gates and associated promoters, 
insulators, and terminators, for thousands of circuit variants per experiment (52).

While we have focused on yeast, ICO-seq is applicable to any culturable cell type, including 
mammalian, bacterial, plant and other fungal cells. Profiling soil microbes may yield novel enzymes and 
pathways (53), and analyzing the gene expression of gut microbes when cultured in the gut may yield 
insights useful to microbiome-based therapy (54). By combining ICO-seq with modern in situ 
cultivation approaches (55) that also rely on hydrogel colony culture, it should be possible to obtain 
accurate and comprehensive gene expression profiles for currently uncultivable microorganisms. When 
applied to mammalian cells, ICO-seq should be valuable for methods that currently rely on single cell 
RNA-seq, such as Perturb-seq (50,51), with the significant benefit of reduced expression noise. ICO-seq 
also enables new possibilities for studying small colonies of genetically or phenotypically distinct cells, 
allowing accurate gene expression profiling of microbial consortia, cancer spheroids (56) or organoids 
(57,58). While we have applied the approach using a custom microfluidics and Drop-seq strategy, new 
microgel workflows announced for commercial platforms (10X Genomics) should allow our approach to 
be applied in a more accessible format using commercially available hardware. 

Methods

Microfabrication of devices
Photoresist masters are created by spinning on a layer of photoresist SU-8 (Microchem) onto a 3 

inch silicon wafer (University Wafer), then baking at 95 °C for 20 min. Then, the photoresist is 
subjected to 3 min ultraviolet exposure over photolithography masks (CAD/Art Services) printed at 
12,000 DPI. After ultraviolet exposure, the wafers are baked at 95 °C for 10 min then developed in fresh 
propylene glycol monomethyl ether acetate (Sigma Aldrich) then rinsed with fresh propylene glycol 
monomethyl ether acetate and baked at 95 °C for 5 min to remove solvent. The microfluidic devices are 
fabricated by curing poly(dimethylsiloxane) (10:1 polymer-to-crosslinker ratio) over the photoresist 
master (59). The devices are cured in an 80 °C oven for 1 h, extracted with a scalpel, and inlet ports 
added using a 0.75 mm biopsy core (World Precision Instruments). The device is bonded to a glass slide 
using O2 plasma treatment and channels are treated with Aquapel (PPG Industries) to render them 
hydrophobic. Finally, the devices are baked at 65 °C for 20 min to dry the Aquapel before they are ready 
for use.
Yeast strains and culture conditions

C. albicans experiments were carried out in strain RZY122. RZY122 is modified from strain 
SN87, a SC5314 derivative (60), with YFP-HIS1 replaces one copy of the WH11 ORF (a/a leu2∆/leu2∆ 
his1∆/his1∆ URA3/ura3∆::imm434 IRO1/iro1∆::imm434 WH11::YFP-HIS1/WH11). Cultures of opaque 
cells were inoculated from a single colony from a plate into liquid media at 25 °C for ~20 hours before 
encapsulation. Plates are standard synthetic complete yeast media with Uridine. Media is same as the 
plates but without agarose.

S. cerevisiae experiments were carried out in strain BY4741 (MATa; his3Δ1; leu2Δ0; met15Δ0; 
ura3Δ0). The ARO4 regulatory domain mutagenesis library used in this study has been described in 
Abatemarco et al. (6). The library was cultivated with constant agitation in YSC-HIS at 30 °C for ~16 
hours. YSC-HIS media consisted of 20 g/L glucose (Thermo Fisher Scientific), 0.77 g/L CSM-His 
supplement (MP Biomedicals), and 0.67 g/L Yeast Nitrogen Base (Becton, Dickinson, and Company). 
Plate is same as the YSC-HIS media with agarose. 
Agarose microgel generation

The yeast culture was washed with PBS 2 times before being resuspended in PBS at an 
appropriate concentration based on hemocytometer counting. The low melting agarose (Sigma) solution 
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was made with heating 2% ultra low melting agarose in PBS at 90 °C until completely melted. The 
melted agarose was quickly loaded in a syringe and installed to the pump. A tabletop space heater set to 
80 °C was positioned to keep the agarose syringe warm during droplet generation. HFE7500 oil with 2% 
ionic krytox as surfactant was used for the oil phase. The agarose droplets were collected into a 50 ml 
falcon tube placed on ice for the formation of agarose microgel. The agarose microgel were released 
from the droplets by adding 20% PFO (1H,1H,2H,2H-Perfluoro-1-octanol, sigma) in HFE7500 into the 
emulsion followed by washing twice with TETW solution (10mM Tris pH 8.0, 1mM EDTA, 0.01% 
Tween-20). The agarose microgels were then resuspended in appropriate media for overnight culturing 
to form single colony containing microgels.
Dropseq workflow with agarose microgels

Barcoded Drop-seq beads were purchased from ChemGenes corporation (catalog number 
MACOSKO-2011-10) at 10um synthesis scale. Cleanup and storage of the beads was performed as in 
(17). 

For the C. albicans experiment, the barcoded Drop-seq beads were resuspended in 0.9X YR lysis 
buffer (Zymo Research) with additional 500 mM NaCl. The yeast colonies in agarose microgels were 
first washed with PBS buffer twice and YR Digestion buffer (Zymo Research) once then treated with 
Zymolyase in YR Digestion buffer to digest the yeast cell walls for 1 hour at 37oC. The microgels were 
then close-packed in a 1ml syringe by centrifugation. The dropseq beads, close-packed agarose 
microgels, and HFE 7500 with 2% w/v EA surfactant (RAN Biotechnologies) were then loaded into the 
yeast agarose Drop-seq device for droplet generation controlled via syringe pumps. Guanidine chloride 
from the YR lysis buffer leads to dissociation of the agarose microgels, which may improve availability 
of mRNA for capture.

For the S. cerevisiae experiment, a LiOAc-SDS based lysis protocol was used to simplify the 
workflow (61). The barcoded Drop-seq beads were resuspended in Drop-seq lysis buffer with additional 
400 mM LiOAc, 2% SDS solution and 500mM NaCl. The microgels were then close-packed in a 1ml 
syringe by centrifugation. The dropseq beads, close-packed microgels, and HFE 7500 with 2% w/v ionic 
krytox surfactant were then connected to the yeast agarose Drop-seq device for droplet generation. The 
collected emulsions were heated at 70 °C for 15min to facilitate the cell lysis and dissociation of the 
agarose microgels and then kept on ice to facilitate mRNA capture. 

The collected emulsions were then processed following the Drop-seq protocol (17). In short, 
collected emulsions were broken by addition of PFO. mRNA transcripts bound on Drop-seq beads were 
then reverse transcribed using reverse transcriptase (Maxima RT, Thermo Fisher). Unused primers were 
degraded by addition of Exonuclease I (New England Biolabs). Washed beads were counted and 
aliquoted for PCR amplification (a representative bioanalyzer time trace can be found in Supplementary 
Figure 3). 600 pg of the amplified cDNA was then used to construct a sequencing library using the 
Nextera XT kit. 

For bulk yeast colony RNA-seq, colonies of ARO4 expressing strain (6) from YSC-HIS plate 
were collected after growth for 60 hours at 30 °C and total RNA was extracted using YeaStar kit (Zymo 
Reseach). Reverse transcription reaction was performed with primer  5’-TTTAAGCAGTGGTATCAAC
GCAGAGTACNNNNNNNNNNNNNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3’ followed by 
PCR amplification and sequencing library construction based on Drop-seq protocol (17). 
Next generation sequencing and data analysis

Nextera XT generated sequencing libraries were sequenced with Illumina MiSeq system using 
custom read 1 primer. Read1 length is 25 bp and Read2 length is 75 bp. C. albicans library was 
sequenced with 24 million paired-end reads and S. cerevisiae library was sequenced with 23.6 million 
paired-end reads. Two libraries of bulk colonies were sequenced with 8.7 and 8.3 million paired-end 
reads.

For ICO-seq, the sequencing reads were fed into the Drop-seq bioinformatics analysis pipeline 
following Drop-seq protocol (17) except the alignment were done with Bowtie (62). C. albicans (63) or 

Page 14 of 22Lab on a Chip



15

S. cereivisae (64) reference genomes were used for alignment. YFP gene sequence was added to the C. 
albicans reference genome to facilitate the analysis. The resulted digital gene expression tables were 
then used as input for Seurat V1.3 for analysis and visualization (35). For C. albicans PCA plot, we first 
used scale.data from Seurat object to analyze the expression distribution of YFP gene followed by 
extracting cell barcodes with high YFP expression (>1.4) and low YFP expression  (<0) to use as white 
cells and opaque cells respectively. We scanned different cut-offs and parameters to balance data quality 
and cell numbers. 

For the Principal Component Analysis for the ARO4 library, we first filtered out genes that did 
not have at least 3 counts in at least one of the 300 colonies with the lowest overall expression level.  We 
then normalized counts for each colony,  by the total number of read counts for that colony in this 𝑘
reduced set of genes , and multiplied by the median total read number for all colonies,   𝑐𝑘

𝑡𝑜𝑡 𝑆 =
.   We then added a pseudocount of   so that the pseudocount would be 10% of the 𝑚𝑒𝑑

𝑘
(𝑐𝑘

𝑡𝑜𝑡)
0.1𝑆

max
𝑘

(𝑐𝑘
𝑡𝑜𝑡)

value of the smallest possible value that a real count could take on.  We then took the base 10 logarithm 
prior to principal component analysis (Figure 4c-f).  The vector  is defined as the direction 𝑣𝑠𝑒𝑝
connecting the points  and  in PC1 PC2 space.  The vector (𝑥0,𝑦0) = (3.1, ― 1.6) (𝑥1,𝑦1) = (20.9, 10.5)

 is the vector perpendicular to  that passes through  and .  For each 𝑣ℎ𝑒𝑡 𝑣𝑠𝑒𝑝 (𝑥0,𝑦0) (𝑥2,𝑦2) = ( ― 6.9,𝑦2)
colony we can find coordinates in PC1/PC2 space, and project those coordinates onto  to obtain 𝑣𝑠𝑒𝑝 𝑢𝑠𝑒𝑝
. Clusters A, B, and C are defined as all colonies for which , , or 𝑢𝑠𝑒𝑝 < ―9.83 ―9.83 < 𝑢𝑠𝑒𝑝 < 0 𝑢𝑠𝑒𝑝

 respectively.> 0
For bulk colony sequencing, after alignment using Bowtie (60) to S.cerevisiae genome assembly 

EF4. We used BEDTools with feature annotation to extract counts of gene expression from the 
alignment file. Counts from all exons for a given gene were summed. The average of the two bulk 
colony sequencing data sets was used to compare with average of our single colony sequencing data set. 
After filtering the bulk colony count data so that only genes analyzed for individual colonies were 
considered, counts were normalized and multiplied by S, the same scaling factor as was used for the 
individual colonies.  A pseudocount of   was added to the normalized ( 0.1𝑆

max (𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒))
counts prior to taking the log10 value.  
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We describe Isogenic Colony Sequencing (ICO-seq), a massively-parallel strategy to 
assess the gene expression profiles of large numbers of genetically distinct yeast colonies.
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