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Abstract 

The use of active pharmaceutical ingredients (APIs) and personal care products (PCPs) is growing 

day by day in all over the world. Thus, these materials have appeared as the contaminants of 

emerging concern (CEC) responsible for hazards and toxicity towards aquatic and terrestrial living 

systems as well as to humans. Regulatory agencies from all over the world have formulated multiple 

rules, guidelines and regulations for the risk assessment of pharmaceuticals and PCPs (PPCPs) to the 

ecosystem. As the generation of huge amount of experimental data is time consuming, costly, and 

also requires sacrifice of a large number of animals, computational modeling or in silico approaches 

are proving an efficient technique for not only risk assessment but also for risk management and data 

gap filling. The present review deals with critical assessment of hazardous potential of PPCPs in the 

environment. The importance of in silico modeling approaches of the environmental toxicity 

endpoints to diverse organisms covering all compartments of taxonomy, details of the most 

commonly employed endpoints, ecotoxicity databases and expert systems as rapid screening tools 

are discussed meticulously with completele mechanistic interpretations of in silico models over the 

years. 

Graphical Abstract
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1. Introduction

Active pharmaceutical ingredients (APIs) and personal care products (PCPs) have appeared as 

contaminants of emerging concern (CECs). It is due to their accelerating usage, perpetual disposal 

resulting in a pseudo-persistent existence in the environment and potentially excess toxicity towards 

non-target organisms due to their intrinsic mechanism of action (MoA) they have on living 

organisms.1,2 Often APIs are inherently much more bioactive than PCPs, which are typically more 

inert, e.g., PCPs such as are detergents have a nonspecific narcotic MoA. Although they are 

completely different from each other in respect to MoA to specific organism/species, fate and 

transformation in ecosystem, for ease of the discussion we use the recognized term both forms of 

chemicals have received as so-called ‘Pharmaceuticals and Personal Care Products (PPCPs)”1-3 

throughout this review. A series of serious adverse effects on living species and ecotoxicological 

effects of PPCPs and their metabolites are reported3 over the years along with their occurrence at 

concentrations of ng/l to µg/l in wastewater treatment plants (WWTPs)4,5, surface water6,7, ground 

water8,9, sewage treatment plants (STPs)10,11, marine biota12,13, river14,15 and lakes16,17.  The aquatic 

environment is highly affected due to the intrinsic toxic effects of PPCPs and therefore the United 

Nations has announced the 2030 Agenda for Sustainable Development and formulated Sustainable 

Development Goal number 6 “to ensure availability and sustainable management of water and 

sanitation for all”.18 Regulatory agencies like European Parliament and US Environmental 

Protection Agency (US EPA) endorsed multiple rules and regulation to identify potential 

contaminants under PPCPs to include them in ‘priority list’19 and ‘contaminant candidate list (CCL-

3)’20, respectively. Although in a regulatory context, for WWTPs with sound technologies, the 

effluent is rarely causing environmental risks due to APIs only, there can be risks for sure when there 

is little wastewater treatment and large batches are operational.
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The fact of PPCP occurrence and environmental toxicity (the present manuscript deals with 

environmental toxicity only, so adverse drug reactions (ADRs) or toxicity related to humans is not 

discussed in the present review) is quite known and studied over the years but to understand the real 

scenario, one has to understand that majority of PPCPs exist as a complex mixture of individual 

constituents which exert toxicity either synergistically or through antagonism.21 Another significant 

point is consideration of toxicity of active pharmaceutical ingredient (API) only by neglecting the 

effects of all possible transformed products (TPs) or metabolites of specific API in its life cycle 

which is offering wrong evaluation of risk associated with PPCPs.22 There are hundreds of evidences 

that metabolites are more persistent, bioaccumulative, and toxic than the parent molecules, which 

suggests the importance of identification of all possible metabolites followed by their toxicity 

assessment like APIs.23 For instance, about thirty active metabolites of carbamazepine with 

genotoxic effect have been detected in WWTPs24 and thirteen TPs of diclofenac in freshwater 

generated by photolysis are toxic in nature.25 One of the major metabolites of ibuprofen is 4-

isobutylacetophenone (4-IBAP) which showed toxicity towards cultured erythrocytes and fibroblasts 

at a concentration of 1mM under in vitro study.26

Analysis of diverse aquatic environment leads to identification of around 600 PPCPs and their TPs in 

the surface water, ground water, STPs, WWTPs and soil sample covering 71 countries27,28 where 

majority of them cover antibiotics,29 analgesics and nonsteroidal anti-inflammatory drugs 

(NSAIDs),30 anticancer,31 cardiovascular,32 CNS acting drugs24 and hormones33 under 

pharmaceuticals; and disinfectants,34 fragrances,35 preservatives36 and UV filters37 under PCPs. 

Pharmaceuticals like diclofenac (1.2 μg/l),38 metoprolol (1.54 μg/l),39 17β-estradiol (0.013 μg/l),39 

carbamazepine (2.1 μg/l),38 clofibric acid (0.2 μg/l),40 erythromycin (1.7 μg/l)39 etc. were detected in 

major river waters over the years. Norfloxacin and ciprofloxacin were reported with a median 

concentration of 0.12 μg/l and 0.02 μg/l in 139 surface stream water samples of the USA41 whereas 
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ciprofloxacin was detected in wastewater of Swiss hospitals with a concentration of 0.7–124.5 μg/l.42 

Even in drinking water, diclofenac, propylphenazone, and clofibric acid were detected in Berlin, 

Germany;43 carbamazepine, paracetamol, and diclofenac were found in southern France;44 diazepams 

and clofibric acid were identified in Milan, Italy45 in ng/l concentration. Ibuprofen and its metabolic 

product ibuprofen methyl ester were detected and quantified with a concentration of 0.93 μg/l and 

4.95 μg/l, respectively in drinking water.46 One of the common APIs in contraceptive pills is 17α-

ethinylestradiol (EE2) detected in samples of tap water and ground water.47 Antimicrobial agents like 

triclosan (TCS), triclocarban (TCC) were detected in WWTPs samples ranging from 50 to 200 ng/l48 

whereas TCS reported in biosolids, surface water, and WWTPs with concentration of 0.09-16.79 

mg/kg, 75 ng/l and 23 to 434 ng/l, respectively in Australia.49 Insect repellant N, N-Diethyl-meta-

toluamide (DEET) was detected in a WWTP of North Carolina, and the observed concentration in 

the ground water of the adjacent site was 540 to 1010 ng/l.50 Although the existence of different 

PPCPs in diverse samples have been evaluated and quantified over the years, still the risk associated 

data is quite low. Therefore, to evaluate the toxicity of PPCPs to diverse species of environment, 

improved analytical detection techniques are very much necessary.

Continuous detection of PPCPs in different environment compartments lead to the introduction of 

guidelines for risk assessment associated with the PPCPs by the United States Food and Drug 

Administration (US FDA) and The European Medicines Agency (EMA) (previously known as 

European agency for the evaluation of medicinal products (EMEA)). The EMA guideline was 

introduced in 2006 which is a marketing authorization application for any medicinal product for 

human usage.51 The US FDA guidance suggested that any API with a possible concentration of 1 

μg/l in the aquatic environment required a complete risk assessment report before market approval.52 

The European Union (EU) Directive 2015/495/EU amended53 the previous watch list of 

contaminants of emerging concern prepared under Directive 2013/39/EU.54 The final watchlist 
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consists of pharmaceuticals like diclofenac, 17-alpha-ethynilestradiol (EE2), clarithromycin, 

azithromycin, erythromycin, estrone E1; and PCPs like UV filter octinoxate and food additive 

butylated hydroxytoluene.55

Unavailability of sufficient experimental risk assessment data and restriction of animal studies 

encourage in silico or computational approaches to fill the risk assessment data gaps followed by 

prediction of possible risk hazards much before chemical’s physical synthesis and/or market 

approval.56 Most importantly, in silico approaches represent economical and time-saving techniques 

with respect to orthodox experimental approaches. Regulatory bodies like US EPA, European Union 

Commission’s Scientific Committee on Toxicity, Ecotoxicity and Environment (CSTEE) and 

regulation like Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) 

under EU had endorsed in silico approaches for toxicity and fate prediction of PPCPs.57 Among the 

in silico approaches, quantitative structure-activity relationship (QSAR) is one of the most 

commonly practiced techniques for ecotoxicity prediction. Few QSAR models have been developed 

to model toxicity endpoints of PPCPs to diverse species over the years.58-64 But to address the 

complex issue of prediction for mixtures, metabolites and a large number of untested compounds, 

knowledge-based expert systems (KBES) [Assessment Tools for the Evaluation of Risk (ASTER), 

Computer Assisted Evaluation of industrial chemical Substances According to Regulations 

(CAESAR), DEREK, Ecological Structure Activity Relationships (ECOSAR), OECD Tool box, 

TOPKAT] have a huge role to play in the present scenario.65, 66 Integration of available ecotoxicity 

databases (ACToR, ChEMBL, ECOTOX, eTOX, Integrated Risk Information System (IRIS), OECD 

HPV, TOXNET) with expert system requires the usage of artificial intelligence.65, 66

The aim of the present review is to provide guidance concerning improved and reliable application of 

computational models for ecotoxicity prediction. These can be used both in risk assessments as well 

as in risk management through designing of environmentally safer PPCPs. Existing ecotoxicity 
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QSAR models helps us to understand the major features and structural fragments related to intrinsic 

chemical reactivity followed by chemical’s environmental fate, transformation, and toxicity. 

Therefore, a good number of existing computational ecotoxicity models are thoroughly interpreted 

along with the models dealing with removal of hazardous PPCPs from ecosystem through advanced 

materials. The responsibility of regulatory authorities related to environmental safety and their role in 

implementing computational models in environmental risk assessment and management purpose is 

illustrated. Along with the importance of prediction models for the risk assessment, the green 

chemistry (GC) has a vital role to play in the risk management by reducing the intrinsic risk 

associated with PPCPs from the beginning of the risk cycle. A combination of in silico technique 

with GC is capable of designing safer chemicals (here, APIs of PPCPs) by reducing ADRs as well as 

ecotoxicity (the present review deals with this aspect) taking into consideration of all possible 

physicochemical properties, structural fragments responsible for toxicity, reactive metabolites, 

toxicity pathway and pharmacokinetic and pharmacodynamics (PK/PD) nature of individual PPCP. 

We have provided inclusive lists of environmental toxicity endpoints, databases and test species to 

have idea about reasonable sources to construct computational models for risk assessment and 

management. A thorough introspection of expert systems are also discussed for readily available 

ecotoxicity prediction models both for experts and novice users. The real challenges of mixture 

toxicity and risk associated with the metabolites or TPs of PPCPs for ecotoxicity prediction are 

clarified in details.

2. OCCURRENCE AND ECOTOXICITY OF PHARMACEUTICALS  

Occurrence and concentration of pharmaceuticals and their TPs in various compartments of the 

environment are directly related to the sources.1 Thus, a clear and precise idea about major sources 

and life cycle of any pharmaceutical is utmost necessary. Most common sources and route to aquatic, 

terrestrial and soil environments for any pharmaceutical is portrayed in Figure 1.  Existence of 
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pharmaceuticals in the environment needs to be monitored continuously along with their acute and 

chronic toxicity evaluation by standard test methods employing regulatory guidelines depending on 

the nature of marketing approval and country laws.

Figure 1 Source and complete life cycle of PPCPs in the diverse environmental compartments. 

2.1 Active Pharmaceutical Ingredients (APIs)

2.1.1 Antibiotics: The maximum detected concentration of ciprofloxacin in wastewater were 

1.4 μg/l in Holland,67 3.7 μg/l in Italy,68 0.6 μg/l in Canada69 and 6.9 μg/l in Australia70 while 

average concentration of sulfamethoxazole in same WWTPs were 1.8 μg/l in Canada69 and 1.7 μg/l 

in Europe.71 Out of 12 soil samples, chlortetracycline and tetracycline found in 10 samples with 
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average concentration of tetracycline in three different layers of soil were 86.2 μg/kg in 0-10 cm 

layer, 198.7 μg/kg in 10-20 cm layer and 171.7 μg/kg in 20-30 cm layer while chlortetracycline was 

detected with average concentration of 4.6-7.3 μg/kg in all three sublayers.72 Amoxicillin was 

detected in WWTP of Delhi, India with a concentration of 172.6 ng/l in influent and 62.5 ng/l in 

effluent,73 while much higher concentration (100–2000 ng/l) was found in the activated sludge of a 

WWTP in Japan.74 Cefuroxime (0.6 μg/l), ampicillin (17.7 μg/l), sparfloxacin (0.5 μg/l) and 

gatifloxacin (3.7 μg/l) were identified in effluent of WWTP in Delhi, India.75 Twelve sulfonamides 

were identified in bacteria, non-target plants and algae in aquatic environment where inhibition 

assays reported EC50 values ranged from >250 mg/l for all sulfonamides whereas sulfadimethoxine 

exhibits growth inhibition of duckweed with concentration of 0.02 mg/l.76 Ciprofloxacin was found 

to be active at a concentration of 5 mg/l to Allivibrio fischeri.77

2.1.2 -blockers: In hospital effluents, propranolol and metoprolol were detected with 

concentrations of 6.5 mg/l and 25.1 mg/l, respectively.78 Propranolol was detected with 100% 

frequency and median concentration of 76 ng/l in the STP effluent sample in UK.79 Martin et al.80 

found propranolol at concentration of 3.37 mg/kg in the sediment collected from Guadiamar River in 

Spain. Propranolol affects the reproduction of C. dubia with the no-observed-effect-concentration 

(NOEC) and lowest-observed-effect concentrations (LOEC) of 125 and 250 μg/l, respectively 

whereas in case of H. Azteca, the concentration was 100 μg/l after exposure for 27 days.81 

Metoprolol exhibited a negative chronotropic effect on the heart of D. magna at high concentration 

(10-4 M) exposure and positive chronotropy at low concentration (ranges from 10-8-10-6 M).82 The 

NOEC and LOEC values for embryo-larval growth rate of 3.2 mg/l and 10 mg/l, respectively were 

obtained for fathead minnows under atenolol exposure.83
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2.1.3 Analgesics and Nonsteroidal Anti-inflammatory Drugs (NSAIDs): NSAIDs like 

paracetamol, ibuprofen and diclofenac were reported in higher concentration between 0.4 ng/l and 15 

μg/l in surface water.84 Paracetamol was present with a concentration of 78.17 μg/l in surface water 

and in STP effluents the concentration can reach around 20 ng/l to 4.3 μg/l while most of the values 

were higher than the predicted no-effect concentration (PNEC) of 9.2 μg/l.83 Ibuprofen was found in 

a German WWTPs with maximum concentrations of 3.5 and 0.3 mg/l in influent and effluent.85 

Ashton et al.79 investigated STP effluent samples from East Hyde, Great Billing, Corby, Harpenden 

and Ryemeads in the UK and found ibuprofen (frequency 84%, at concentration of 3086 ng/l), 

dextropropoxyphene (frequency 74%, at concentration of 195 ng/l), diclofenac (frequency 86%, at 

concentration of 424 ng/l) and mefenamic acid (frequency 81%, at concentration of 133 ng/l) at 

reasonably high concentrations. In Guadiamar River water of Spain, salicylic acid and naproxen 

were detected at concentrations of 9.49 and 11.2 mg/kg, respectively.80 Sediment samples analysis 

from Llobregat, Iberian River basins, Jucar, Ebro, and Guadalquivir in Spain reported ibuprofen at a 

high concentration of 13 ng/g.86 Naproxen was detected in the STP effluent and Mississippi River in 

Louisiana at concentrations 81-106 ng/l and at 22-107 ng/l, respectively.87 Most commonly detected 

and toxic analgesic is diclofenac with reported EC50 below 100 mg/l,88 whereas phytoplanktons are 

highly sensitive to it in acute and high-level exposure with EC50 of 14.5 mg/l at 96 hours.89 Renal 

lesions and gill alterations in trout fish (concentration of 5 mg/l with 28days exposure) are also 

reported for diclofenac.90 An analysis suggested that naproxen exerts protein and lipid oxidation 

followed by oxidative DNA damage in the H. Azteca.91 Diclofenac causes inner organs damage in 

rainbow trout92 and its detected concentration in surface water sample in 12 countries exceed the 

PNEC of 0.1mg/l.93 Reproduction of D. longispina and D. magna was affected with acetylsalicylic 

acid at a concentration of 1.8 mg/l.90 Chronic toxicity of ibuprofen was observed towards water flea 

and D. magna with concentrations ranging from 0 to 80 mg/l. In case of naproxen, the EC50 values 

were 30.1 or 50 mg/l for D. magna which is the most sensitive species towards it.83
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2.1.4 Antineoplasic/Anticancers: Tamoxifen has been found at alarming concentrations in 

surface water and WWTP samples with maximum concentrations of 25 ng/l and 102 ng/l, 

respectively.94 Anastrozole, used in hormone-based chemotherapy, has been measured with a high 

frequency with maximum concentrations of 0.3-0.4 ng/l in WWTP effluent and 2.38-3.70 ng/l in 

hospital effluent.95 Tamoxifen has been detected with a frequency of 4% and at a concentration of 

<10 ng/L in STP effluent samples of UK.79 5-fluorouracil and cisplatin showed growth inhibition of 

cyanobacteria Synechococcus leopoliensis (EC50 1.20 and 0.67 mg/l, respectively) and algae 

Pseudokirchneriella subcapitata (EC50 0.13 and 1.52 mg/l, respectively).96 Zounkova et al.97 reported 

cytarabine and 5-fluorouracil exerted reproduction inhibition of D. magna (EC50 10 and 0.1 mg/l, 

respectively) and growth inhibition of P. putida (EC50 17 and 0.044 mg/l, respectively). 

Methotrexate exhibited acute toxicity to Tetrahymena pyriformis and teratogenicity to fish embryos 

with EC50 of 45 mg/l for 48h98 and 85 mg/l after 48h99, respectively. 

2.1.5 Blood lipid lowering agents: The lipid regulator bezafibrate was noticed in river water 

of Germany at concentration of 3.5 mg/l.38 Based on the sediment sample analysis from different 

rivers (Iberian River basins, Jucar, Llobregat, Ebro and Guadalquivir) of Spain, gemfibrozil was 

detected as one of the most frequently found pharmaceuticals at a concentration of 6 ng/g.86 In 

Canadian STP samples, carbamazepine was found at a concentration of 2.3 mg/l.100 Fibrates was 

found to be toxic in toxicity tests towards C. dubia, B. calyciflorus and zebrafish with reported 

NOEC values of 640 μg/l (7 days), 246 μg/l (2 days) and 70 mg/l (10 days), respectively.92 

Clofibrate is specifically toxic to aquatic species with reported LC50 value of 7.7-39.7 mg/l while fish 

Gambusia holbrooki is the most sensitive one with LC50 (96 h) of 7.7 mg/l.101 Bezafibrate and 

gemfibrozil are toxic towards nano-target organism with EC50 values of 10 to 100 mg/l and 1 to 10 
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mg/l, respectively.102 Exposure of gemfibrozil for 14 days on Carssius auratus exhibited 50% 

reduction on plasma testosterone.103

2.1.6 CNS Acting Drugs: Thioridazine (antipsychotic) and carbamazepine (antiepileptic) 

were detected in Medway River, UK in upstream sewage effluent samples at concentration of 6-22 

ng/l and 53-265 ng/l, respectively.104 According to a study performed in Cape Cod, Massachusetts, 

most frequently found antiepileptic drugs are carbamazepine and phenytoin detected in well water 

samples at maximum concentrations of 72 and 66 ng/l, respectively.105 Paraxanthine detected in 

agriculture land as well as in western Lake Erie basin in Ohio at maximum concentration of 1.8 

mg/l.106 Carbamazepine exhibits carcinogenic effect to rats while does not have mutagenic effect to 

mammals.107 Chronic toxicity analysis suggested NOEC values of carbamazepine are 377 μg/l (2 

days), 25 μg/l (7 days) and 25 mg/l (10 days) toward B. calyciflorus, C. dubia and zebrafish, 

respectively.92 Carbamazepine showed acute toxicity through growth inhibition of D. magna at 

concentration of 17.2 mg/l.107 Experimental studies suggested that the in vitro growth of T. gondii is 

inhibited by mood stabilizer valproic acid and antipsychotic drug haloperidol.108 Sertraline 

demonstrates high toxicity towards rainbow trout with LC50 of 0.38 mg/l at a 96-h exposure.109

2.1.7 Antiviral and antiparasitic drugs: Extremely high concentrations (2-12 mg/l) of 

oseltamivir and its bioactive metabolite oseltamivir carboxylate (OC) were detected in WWTPs in 

the time of pandemic suggesting almost 80% of the active drug is excreted from the source.110 In a 

farm of UK, higher concentration of antiparasitic pharmaceuticals were found in dung (doramectin 

0.112 mg/kg and ivermectin 1.85 mg/kg) and soil (around 0.046 mg/kg) while the detected 

concentration of the studied drugs in soil was relatively low than the dung.111 In river waters of the 

UK, the most frequently (59%) detected drug is clotrimazole at a maximum concentration of 22 ng/l, 
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and a mean concentration of 7 ng/l.112 Fenbendazole and ivermectin affect the survival of 

Pristionchus maupasi with concentration of 10-20 mg dung/kg and 3 mg dung/kg, respectively.113

2.1.8 Hormones: 17α-estradiol and estriol are found in high concentration (about 180 and 

590 ng/l, respectively) in WWTPs samples in USA.114 EE2, an estrogenic hormone, was detected in 

surface waters of each UN regions. Based on the analysis data collected from North America, Europe 

and southeast Asian countries, the identified concentration range were from 0.001 to 0.040 mg/l.115 

In an experiment in a Canadian lake, feminization of male fish (Pimephales promelas) occurred at 

concentrations of 5 ng/l to 6 ng/l of EE2 which is capable to hamper complete population collapse of 

the studied species.116 Egg fertilization reduction in flathead minnow fish reported with exposure of 

EE2 with concentration of 320 pg/l for 150 days post hatching.117 Hydrocortisone is capable of 

intensifying the ectoparasitic infections in fish while estradiol enhanced the vulnerability of cyprinids 

to hemoflagellates through the suppression of lymphocyte proliferation.118

2.2 Metabolites

In spite of good amount of research regarding occurrence and toxicity of pharmaceuticals to the 

environment, comparatively a handful of data is accessible regarding likely biotic and abiotic TPs of 

parent APIs, namely, degradation products, metabolites and/or conjugates.119 The EMA120 and the 

Veterinary International Cooperation on Harmonization of Technical Requirements for Registration 

of Veterinary Medicinal Products (VICH)121 have released guiding principles related to which toxic 

and stable TPs need to be evaluated and included in the risk assessment study. The EU REACH 

regulation also suggested the assessment of toxicity and bioaccumulation of TPs are necessary for 

any marketed APIs.122 As major orthodox analytical methods are unable to identify the trace levels of 

TPs in the environment, three strategies are considered for future screening:123-124 (a) Target analysis 
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with reference standards, (b) Suspect screening with suspected substances without reference 

standards, and (c) Nontarget screening with no reference standards and no prior information. 

As erythromycin (ERY) is not stable in aquatic media, thus it is immediately converted to its TP 

erythromycin-H2O (ERY-H2O), which is one of the most studied TP in the environment among 

antibiotics and used as marker to detect ERY in any sample. The identified concentrations of ERY-

H2O in WWTPs are 1978125 and 6000 ng/l126 in China and Germany, respectively. ERY-H2O 

detected in concerning concentration in drug manufacturing effluents (7840 ng/l) and hospital 

sewage (6110 ng/l).127 Four hydrolysis TPs of amoxicillin (AMX) antibiotic [(5S)-AMXO, (5R)-

AMXO, (5R)-AMX- diketopiperazine-2′,5′ and (5S)-AMX- diketopiperazine-2′,5′] are detected in 

the influent and effluent samples of WWTPs in Spain.128 Active metabolite of metronidazole 

antibiotic is hydroxylated metronidazole (METR-OH) identified in WWTPs and in hospital swage in 

Portugal where the concentration in hospital effluents reach upto 11 μg/l.129 Among statins, o-

hydroxy-atorvastatin and p-hydroxy atorvastatin are two major metabolites of atorvastatin are 

identified in WWTPs influents with a concentration of 196 and 280 ng/l, respectively whereas much 

lower concentration (10 ng/l) of simvastatin hydroxyl acid, which is a TP of simvastatin detected in 

influents of WWTPs.130 Antiviral drug oseltamivir (OSL) and its carboxylated TP oseltamivir 

carboxylate (OSLCAR) are detected in wastewater (42.7 ng/l in influents and 17.3 ng/l in effluents) 

which may cause serious hazards as OSL-CAR resistance in wildfowl, and birds are capable hosts of 

influenza viruses.131 Three metabolites (2-hydroxy-estradiol (2-OHE2), 2-hydroxy estrone (2-OHE1) 

and 4-hydroxyestrone (4-OHE1)) of the estradiol hormone are detected at a concentration level of 14 

ng/l in WWTP influents in UK.132

Metabolites of NSAIDS and analgesics are frequently detected in STPs and WWTPs. The most 

common TPs are salicylic acid (SA), carboxy-ibuprofen (CX-IBU), 1-hydroxy-ibuprofen (1′-OH-
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IBU), 2-hydroxy-ibuprofen (2′-OH-IBU), 4-hydroxy-diclofenac (4′-OH-DCF), 4-hydroxydiclofenac-

dehydrate (4′-OH-DCF-H2O), 5-hydroxydiclofenac (5′-OH-DCF), 4-hydroxyacelofenac (4′-OH-

ACF), 1,5-dimethyl-1,2-dehydro-3-pyrazolone (DP), 1-acetyl-1-methyl-2-phenylhydrazide (AMPH) 

and1-acetyl-1-methyl-2-dimethyloxamoyl-2-phenylhydrazide (AMDOPH).119 SA is the active 

metabolite of acetylsalicylic acid which is detected with a frequency of 100% in WWTPs and surface 

water.133 CX-IBU and OH-IBU are detected at very high concentration in WWTP influents (38.4 and 

6840 ng/l, respectively) and effluents (10.6 and 1130 ng/l, respectively).134 Clofibric acid is the 

hydrolyzed metabolic product of clofibrate and etofibrate recurrently identified in industrial, 

municipal and hospital waste water up to 41.4 μg/l level.135 Fenofibric acid, a TP of fenofibrate, was  

detected at concentrations of 349 ng/l in WWTPs in Spain.136  Among antidepressant drugs, hydroxyl 

(3-hydroxy-diazepam,10-hydroxy-amitriptyline, hydroxy-bupropion) and desmethyl (N-desmethyl 

venlafaxine, desmethyl sertraline, desmethyl citalopram, O-desmethyl venlafaxine, didesmethyl 

citalopram, nortriptyline) metabolites are most regularly detected ones in waste waters with 

concentrations of 5500 and 2000 ng/l for O-desmethyl-venlafaxine and hydroxy-bupropion, 

respectively.137 Hydroxy-tamoxifen (OH-TMX) and 4,4-dihydroxy desmethyltamoxifen (endoxifen) 

are major metabolites of tamoxifen (TMX) showed higher estrogenicity than the TMX detected in 

waste water sample of hospitals.138Around 30 metabolites are formed for carbamazepine (CBZ), but 

major reported metabolites in the ecosystems are CBZ-10,11-epoxide (CBZ-Ep) formed through 

oxidation (pharmacologicallyactive with anticonvulsant properties), hydration product 10,11-

dihydro-10,11-trans-dihydroxy-carbamazepine (DiOH-CBZ), followed hydroxylated TPs 2-hydroxy-

CBZand 3-hydroxy-CBZ.24 The metabolite DiOH-CBZ wasthe predominant analyte in the aqueous 

phase with concentrations higher than the parent compound, reaching few μg/l in influents and 

effluents as well (up to 4000 and 3400 ng/l, respectively). On the otherhand, CBZ-Ep, which is 

present in human plasma at 3- to 4-fold lower concentrations than DiOH-CBZ, was found in some 

cases at concentrationsat least 50-fold lower than those of DiOH-CBZ in sewage.24
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Di-desmethyl, N-desmethyl and N-oxide metabolic products of amitriptyline and imipramine showed 

toxic effects towards Spirostomum ambiguum and Thamnocephalus platyurus in experiemntal 

studies.139 Norfluoxetine, a major metabolite of fluoxetine is known to bioaccumulate in fish tissues 

and exert 50% higher toxicity than the parent chemical, whereas another metabolite 

trifluoromethylphenol exhibits a lower toxicity.140 Metabolites of aspirin or acetylsalicylic acid 

showed toxicity to embryos of zebrafish with EC50 of 37 mg/l by SA;99 and acute and chronic 

toxicity to Daphnia longispina and Daphnia magna by gentisic acid.141 Based on multiple fish 

reproduction studies, the recommended PNEC for EE2 is 0.35 ng/l in surface water.142 Almost 

similar level of toxicity was experienced for freshwater and marine species through exposure of 

CBZ-Ep compare to CBZ while the toxicity concern was higher in case of 2-OH-CBZ, 3-OH-CBZ 

and DiOH-CBZ.143 V. fisheri exhibits higher toxicity under the exposure of 2-OH-CBZ and 3-OH-

CBZ compare to parent compound CBZ.143

In Table S1 (See Supporting Information), we have reported the concentrations of pharmaceuticals 

from diverse therapeutic classes in different samples covering countries from all continents along 

with ecotoxicity data to definite toxicological endpoints.29-33,83,133-134,144-167 Figure 2 portrayed the 

existence of a number of pharmaceuticals identified in surface water, ground water and drinking 

water all over the world.1 The world Health Organization (WHO) had provided recommendations 

and practical guidance for managing the concern about pharmaceuticals in drinking-water giving 

uttermost emphasize in prioritizing the water safety management including microorganism present in 

the aquatic environment.168 Figure 3 represents chemical structures of top 50 pharmaceuticals 

including metabolites based on detection frequency as well as concerning concentrations considering 

available literatures.67-168
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Figure 2 Number of pharmaceuticals detected in groundwater, surface waters and drinking water 

covering all countries. [Reprinted by taking permission from Reference1]

Figure 3 Chemical structures of top fifty most frequently detected pharmaceuticals in alarming 

higher concentrations including metabolites (Compound’s name in red denotes parent compound and 

in blue suggests metabolite or TPs).
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Figure 3 (Continued) Chemical structures of top fifty most frequently detected pharmaceuticals in 

alarming higher concentrations including metabolites (Compound’s name in red denotes parent 

compound and in blue suggests metabolite or TPs).

Figure 3 (Continued) Chemical structures of top fifty most frequently detected pharmaceuticals in 

alarming higher concentrations including metabolites (Compound’s name in red denotes parent 

compound and in blue suggests metabolite or TPs).
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3. OCCURRENCE AND ECOTOXICITY OF PERSONAL CARE PRODUCTS (PCPS) 

The PCPs are one of the major classes of emerging pollutants apart from pharmaceuticals found in 

the environment at a significant level of concentration worldwide which majorly contribute to the 

toxicity to aquatic biota and soil.169-170 The major sources and routes to ecotoxicity of PCPs are 

illustrated in Figure 1. However, very few ecotoxicity data exist for PCPs in the public domain. 

PCPs include diverse group of synthetic organic chemicals used in daily life like cosmetics, soaps, 

toothpaste, lotions, preservatives (Methylparaben (MPB, Ethylparaben (EPB), Propylparaben 

(PPB)), fragrance/musk (Galaxolide (HHCB), Tonalide (AHTN), Celestolide (ADBI)), 

sunscreens/UV filters (2-Ethyl-hexyl-4-trimethoxycinnamate (EHMC), 4-Methyl-benzylidene-

camphor (4-MBC), Octyl-methoxycinnamate (OMC), Octyl-triazone (OC)), disinfectants 

(Methyltriclosan, triclosan (TCS), Triclocarbon (TCC)), insect repellents (N,N-diethyl-m-

toluamide (DEET), 1,4-dichlorobenzene).170,171 Most of the PCPs are intended for external usage 

and therefore not subjected to metabolic changes inside the body unlike pharmaceuticals; thus, an 

enormous number of unaltered PCPs are washed and/or excreted into the surface water of 

waterbodies,170 waste water treatment plants (WWTPs)172 along with rivers and oceans.13 Extensive 

usage, inappropriate disposal followed by ineffective treatment in WWTPs contribute as the major 

sources of aquatic toxicity due to PCPs and their transformed products in the ecosystem.5,173-174 

Studies have confirmed that many of them are environmentally bioactive, persistent, and display 

high bioconcentration and bioaccumulation in aquatic organisms.13,170,171 A number of evidences 

supported endocrine disruption effect in aquatic species along with acute and chronic toxicity 

towards them by PCPs.175 Considering spread of PCP usage, a little portion of PCPs are tested 

experimentally in different samples of environment. Thus, evaluation of toxicity data of major 

PCPs requires fast and precise analytical techniques for monitoring, followed by continuous 

investigation of their fate and transformation typically at low levels of concentration in ng/l as 
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majority of them exist as mixture at trace levels in aquatic environment.176 PCPs identified in water 

matrices throughout different countries covering all continents are illustrated in Figure 4.171

Figure 4 Number of PCPs detected in diverse water matrices covering all countries. [Reprinted by 

taking permission from Reference171]

3.1 Disinfectants and bactericides: Biphenyl ethers like TCC and TCS are frequently detected in 

waste water which are generally used as antimicrobials in deodorants, soaps, lotions toothpaste and 

plastics.34 TCS has been detected in surface water, ground water, STPI, marine biota worldwide170 

with a multiple study characterizing presence of its methyl derivative methyl triclosan (M-TCS) in 

WWTP effluent (up to 650 ng/l TCS and 11 ng/l M-TCS), STP influents (0.2–16.6 μg/l of TCS) 

and effluents (0.08–2.7 μg/l of TCS),5,177 surface water (74 ng/l of TCS)7 and fish tissue (2100 ng/g 

of lipid of M-TCS).178 Due to lipophilic nature, M-TCS is stable and tends to bioaccumulate with 

high concentration in fish.7 In surface water, TCC, TCS and chloroxylenol (PCMX) were detected 

with concentrations up to 478,14,16 24,00016,179 and 358,000 ng/l,179 respectively. TCS exerts 

toxicity to biofilm algae and aquatic bacteria by enhancing mortality rate with a no effect 

concentration (NEC) of 210 ng/l15, inhibition of the growth180 and photosynthetic efficiency (NEC: 
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420 ng/l).9,15 Among all species, algae growth was the most sensitive towards TCS and was 

affected at concentrations less than 1 μg/l.181 Considering behavior pattern change, TCS is found to 

alter swimming performance of Danio rerio, Oncorhynchus mykiss, and Oryzias latipes at 

concentrations as low as 71 μg/l.182 In surface water, TCC is found in alarming concentration in 

species like fishes (Danio rerio, Oryzias latipes), crustacean (D. magna, Mysidopsis bahia), 

planktonic copepod (Acartia tonsa), water flea (Ceriodaphnia dubia, P. subcapitata.183,184 Recent 

studies showed toxicity of TCC is on the higher side to fish and aquatic invertebrate for both short- 

and long-term exposures than TCS.185

3.2 Fragrances: Commercialized synthetic fragrances are either polycyclic musks (HHCB, AHTN, 

ADBI) or nitro musks (musk ketone (MK), musk moskene (MM), musk tibetene (MT), musk 

ambrette (MA)) majorly used in deodorants, detergents and soap industry.170 Due to high octanol–

water partition coefficients (5.4 to 5.9 for polycyclic musks and 3.8 for nitro musk), they are 

bioaccumulating in aquatic species and benthic invertebrates with potential to accumulate in 

humans, and have been alleged to be endocrine disruptors.186 In the present time, nitro musks are 

largely substituted with polycyclic musks due to their higher environmental persistence and aquatic 

toxicity.187 HHCB and AHTN have been placed by the USEPA in the High Production Volume 

(HPV) list due to production over 1 million pounds per year.188 HHCB and AHTN were frequently 

detected in STP influents with concentration of 0.043–13.7 μg/l all over the world whereas MX and 

MK found in 83 to 90% of STP effluents but at low concentrations.170 The mean concentrations of 

AHTN and HHCB were 0.18 μg/l (0.05–0.44 μg/l) and 1.86 μg/l (0.45–4.79 μg/l), respectively 

based on the samples collected from 40 STPs.11 In surface water also, most commonly found musk 

is HHCB with a concentration of 13,920 ng/l.189 Among 33 documented fragrances in WWTPs, 

AHTN (influents: 0.41–68,120 ng/l, effluents: 0.05–7555 ng/l)35 and HHCB (influents: 1.44–

595,480 ng/l, effluents: 0.14–108,000 ng/l)190 were frequently detected ones in 16 countries. 
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Although studies found that the amount of HHCB is under the EC50 for O. latipes, Danio rerio, 

Mysidopsis bahia,  D. magna, Acartia tonsa and P. subcapitata,183,184 but few studies also 

suggested it could exert toxicity due to its bioaccumulation, changes on fecundity, growth and 

development of exposed species.3 The detected concentrations of HHCB in WWTPs effluents are 

above the threshold of chronic toxicity for species like Neopachyloidesspinipes (LOEC: 20,000 

ng/l), A. tonsa (EC50: 59,000 ng/l) and D. magna (NOEC: 10,000 ng/l).191 In case of species like 

Potamopyrgus antipodarum and Capitella, juveniles were more sensitive than the adult ones to 

HHCB.192

3.3 Insect repellants

DEET and 1,4-dichlorobenzene are commonly used as insect repellants routinely detected in 

surface waters193,194 as well as in WWTP effluents throughout the United States with concentrations 

of 0.2 μg/l and 0.28 μg/l, respectively.193,195 DEET is detected in 8 countries in WWTP samples 

with concentrations of 15.1–6900 ng/l in influents and 6.4–2110 ng/l in effluents.196-197 Unlike 

other PCPs, DEET showed lower bioconcentration and bioaccumulation in aquatic organisms.193 

The detected concentration of DEET is drastically reduced in winter due to less usage.198 The risk 

assessment report of moth repellant 1,4-dichlorobenzene suggested that it is sensitive to fish in 

long-term exposure while D. magna appears to be sensitive to short-term exposure199. 

3.4 Preservatives

Parabens, esters of para-hydroxybenzoic acid, are used as preservatives in cosmetics, 

pharmaceuticals, toiletries and food.200 Most commonly employed parabens are substituted with 

alkyl or benzyl groups (benzyl paraben (BnPB), ethyl paraben (EPB), methyl (MPB), propyl (PPB), 

butyl paraben (BuPB)).200 BnPB appears to be the toxic one where as MPB and EPB are least toxic 

with lower LC50 values which are 3 times less than BnPB.201 MPB is recorded in WWTPs samples 
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of 4 countries with concentration of 1193.9–30,688,000 ng/l for influents and ND–155,000 ng/l for 

effluents.179 In case of STP influents, the PPB and MPB are detected with concentrations of up to 

20 μg/l and 30 μg/l, respectively.202 Concerning amounts of parabens are detected in surface water 

with concentrations ranging from 15 to 400 ng/l.179 Interestingly, MPB was detected in mineral 

water of Spain with a concentration of 40 ng/l.202 Dobbins et al.203 revealed that MPB and EPB are 

least toxic towards fish and invertebrates whereas most toxic ones are BnPB and BuPB which is 

supported with the following theory: toxicity increases with the increased chain length of parabens, 

and chlorination also noticeably increases toxicity.204 The acute toxicity of parabens also increases 

with hydrophobicity and alkyl chain length increases along with increased octanol-water partition 

coefficient204. MPB was detected in fish species, marine mammals, sharks from Washington, 

Alaska, Florida coast with high concentration and frequency at ng/g and ng/l levels.36,205  In few 

instances, EPB and PPB were found in seawater and EPB found in sediments at ng/g and ng/l 

level.36 In all fish samples of Philippines, EPB, MPB and PPB were detected at concentration levels 

of 0.01–1.4 ng/g, 0.2–4.5 ng/g and 0.02–1.5 ng/g206,207 whereas MPB is detected in pelagic fishes 

and demersal in Florida coasts with concentration of 2.1–92.9 ng/g208 and 1.0–6.1 ng/g were found 

in Antarctic fishes.209 4-hydroxybenzoic acid (4-HB) is the only paraben metabolite detected at 

significant concentrations in fishes (6.4 μg/g), molluscs (68.1 μg/g), marine plants (15.7 μg/g)208 

and mammals (32.6 μg/g)36. A good number of studies have demonstrated elicit estrogenic 

responses of parabens at low concentration levels.210

3.5 UV filters/Sunscreen agents 

UV filters (UVF) and UV stabilizers (UVS) are employed in sunscreens, cosmetics and lotions to 

protect skin against UV radiation. More than 10,000 tons of UV filters are used annually and 

released to water bodies resulting in growing concerns of adverse health effects to human as well as 

aquatic species due to their high hydrophobicity followed by higher bioconcentration factor.186 
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Twenty-six organic compounds are allowed as UVF according to the EU regulations,211 and most 

significant ones are 3-benzylidene camphor (3-BC), benzophenone-3 (BP-3), benzophenone-4 (BP-

4), 4-Methyl-benzilidine-camphor (4MBC), ethylhexyl methoxy cinnamate (EHMC), octocrylene 

(OC) and Octyl dimethyl-p-aminobenzoic acid (ODPABA). Due to high bioconcentration and 

bioaccumulation of UVF in aquatic organism, especially in fish, they are potentially toxic in 

nature.170 In WWTPs, BP-4 was detected with concentrations of 6,325,000 ng/l179 which exceeded 

the LOEC for Oncorhynchus mykiss (4,897,000 ng/l),212 whereas BP-3 was detected in six 

countries with concentrations of 7–3,975,000 ng/l in influents and 1.1-2,196,000 ng/l in effluents of 

WWTPs.213 BP-4 was also detected in surface water with concentration of 323,000 ng/l179 which 

exceeds the predicted no effect concentration (PNEC) of 50,000 ng/l for D. magna.214 Experimental 

studies supported that UVFs have potential endocrine disruption, estrogenic effects as well as affect 

on reproduction and fecundity to fishes like O. mykiss and P. promelas.170,215 Four UV filters 

(EHMC, BP3, 4MBC, and OC) were found in surface water, WWTPs and in fish tissue in 

Switzerland where 4MBC was detected at highest concentration in all samples (2.7 μg/l in WWTP, 

35 ng/l in surface water and 123 ng/g lipid tissue).17 Again, BP-3 was detected with concentrations 

of 5–125 ng/l in Swiss lakes.216 Based on worldwide sample data, OC and 4MBC were detected in 

WWTP effluents (77% and 95%, respectively) and surface water (14% and 86%, respectively).170 

OD-PABA was found in fishes in Hong Kong with concentrations of 6.4–10.3 ng/g217 and in 

Mytilus galloprovincialis in Portugal with concentrations up to 800 ng/g.218 Occurrence of OC in 

mammals, especially in Franciscana dolphins was detected by Gago-Ferrero et al.219

Table S2 (See Supporting Information) gives a broader overview of occurrence of PCPs from 

diverse classes in different sample types along with the ecotoxicity for specified endpoints and 

species.5,8,22-23,37,160,177,181,189,197,220-257 Figure 5 represents chemical structures of top 20 PCPs 
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including metabolites based on detection frequency as well as concerning concentrations 

considering available literatures.169-257

Figure 5 Chemical structures of top twenty most frequently detected PCPs in alarming higher 

concentrations including metabolites (Compound’s name in red denotes parent compound and in 

blue suggests metabolite or TPs).
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4. ENVIRONMENTAL RISK ASSESSMENT (ERA)

The ERA is a procedure of evaluation of the concentration, occurrence, frequency, and level of 

environment and human exposure of hazardous chemicals, here PPCPs. The primary objectives of 

ERA are risk mitigation and risk management.258 To prepare an effective environmental policy, 

dependable and appropriate risk assessment is necessary. Thus, the ERA process must be prepared 

with updated techniques and intradisciplinary science. The purpose of majority of risk assessment 

data is to set risk threshold and acceptable toxicity limits for individual products before their 

approval for markets by regulatory agencies. Interestingly, the ERA data for pharmaceuticals 

projected for human use was not considered a reason for denying market approval few decades ago; 

even many products are already in the market without enough ecotoxicity data. In the present 

situation, most of the regulatory guidelines suggested that the ERA should be prepared by 

industries and evaluated by regulators.51 A risk assessment has to be done for the entire life cycle of 

a chemical including its TPs and metabolites followed by reporting of all hazardous characteristics 

to different species and media along with complete environmental exposure, fate and effects 

(Figure 6). 

Figure 6 Area to focus for risk assessment.
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4.1 ERA approaches

The risk assessment of the potential risks of PPCPs to the environment is a stepwise multi-phased 

procedure which depends on the regulatory authorities, and the guidelines may vary country wise. 

Most frequently used ERA approaches of single PPCPs along with their mixtures and metabolites 

are reported in Table 1.259-267

Table 1 Fundamental ERA approaches implemented by major regulatory agencies.

Method Role

Hazard

Identification

The first step is identification of source and occurrence of hazards along with the 

intensity of risk for a  compound. In case of lack of enough in vitro data to explicit 

species and specific environment compartment, the researcher needs to rely on the 

in vivo data obtained from the sacrifice of large number of animals. Thus, a greater 

attention needs to be given for the proper and efficient use of in vitro assays in 

human cells along with in silico modeling studies to generate good number of data 

for hazard identification.259

Dose-

Response

Assessment

Identification of threshold dose of the toxicity is essential for scientific risk 

assessment of any hazards. Dose-response information over a wide range of test 

concentrations should be evaluated employing quantitative high throughput 

screening (q-HTS) technique. There should be accessibility of sensitive assays 

proficient of detecting toxicity at very low doses or below environmental levels 

experienced by living organisms. If required, statistical approaches can be used to 

assess critical concentrations data and extrapolate adversarial responses and to 

assess critical concentrations. Most importantly the extrapolation techniques will 

be essential to interpret in vitro test data in terms of in vivo data employing a 
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suitable internal tissue dose metric.260

Dose and 

Species

Extrapolation

Evaluation of low-dose toxicity and extrapolation of interspecies data are two 

major drawbacks. Regulatory authorities and government administrations have 

supported such extrapolations, including linear and threshold models for low-dose 

extrapolation and body weight or surface area alterations for interspecies 

extrapolation implementing in silico models and expert systems as alternatives. In 

vitro to in vivo extrapolation and physiologically based pharmacokinetic (PBPK) 

models are agreeable to sensitivity, variability, and uncertainty analysis using 

conventional tools.261

Exposure 

Assessment

The human exposure assessment is assessed primarily on the measured levels of 

environmental hazards. For few instances, internal dose measurement performed 

employing biomonitoring and/or pharmacokinetic modeling. For precise exposure 

assessment, the emphasis should be on direct measures of critical toxicity pathway 

agitations in humans and other significant species by employing advanced 

biomonitoring techniques coupled with new high throughput approaches.262

Risk

Characterizati

on

The final phase is risk characterization which integrates the analyses from the 

exposure and ecological effects characterization along with the doubts, hypothesis, 

strengths and limitations of the analyses. The risk characterization has two major 

components: (a) risk estimation and (b) risk description. Again, risk estimation 

compares integrated exposure and effects data in the context of Levels of Concern 

(LOCs) and states the potential for risk.263

Deterministic

Approach and 

Calculation

The US EPA recommends the deterministic approach and the risk quotient (RQ) 

calculation to assess the toxicity to environment exposure. The RQ can be 

calculatedaccording to EMA guidelines:264
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of Risk 

Quotients

𝑅𝑄 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑒𝑠𝑝𝑜𝑠𝑢𝑟𝑒
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦

=
Measured Environmental Concentration (MEC) in water/sediment/air

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑁𝑜 ― 𝐸𝑓𝑓𝑒𝑐𝑡 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑃𝑁𝐸𝐶)𝑖𝑛 𝐿𝐶50 𝑜𝑟 𝐸𝐶50 𝑜𝑟 𝑁𝑂𝐸𝐶

Where NOEC is No observed effect concentration;

𝑃𝑁𝐸𝐶𝐴𝑐𝑢𝑡𝑒 =
𝐸𝐶50 𝑜𝑟 𝐿𝐶50

1000

𝑃𝑁𝐸𝐶𝐶ℎ𝑟𝑜𝑛𝑖𝑐 = 𝑁𝑂𝐸𝐶
𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐴𝐹)

MEC corresponds to the highest measured concentration detected in samples and 

PNEC is estimated using the lowest values of acute EC50 or LC50 or the chronic 

NOEC.265 According to Water Framework Directive (WFD), for each 

pharmaceutical compound, two estimations need to be made with the toxicity data 

obtained from the literature for three different representative trophic levels of the 

ecosystem, such as fish, invertebrates and algae. The first was the PNEC estimated 

from the acute toxicity test results and the second was the PNEC estimated from 

the chronic toxicity test results.266 Thresholds267 are following: High risk (RQ ≥ 

1), medium risk (0.1 < RQ < 1) and Low risk (0.01 < RQ < 0.1). The computation 

of RQ depends upon following factors: a) ecological effects data, b) hazards use 

data, c) fate and transport data, and d) estimates of exposure to the hazards. 

Probabilistic 

risk 

assessment

The goal of probabilistic environmental risk assessment (PERA)268 is to estimate 

the likelihood and the extent of adverse effects occurring to ecological systems 

due to exposure(s) to substances. It is based on the comparison of an exposure 

concentration distribution (ECD) with a species sensitivity distribution (SSD) 

derived from toxicity data. So, where the deterministic risk assessment only uses 

single value the probabilistic uses a distribution of all the values to predict risk.

Page 29 of 156 Green Chemistry



30

Although the steps for risk assessment by regulatory authorities are different from each other, but 

the basic idea is same, which is characterization and quantification of the risk associated with a 

specific product to definite species and environment. The major regulatory agencies role and 

functioning methods are discussed in detail in section 7. But, for basic understanding, how EMA 

under EU functions in the three-phase risk assessment process is reported in Figure 7 as an 

example.

Figure 7 Three phase risk assessment process by EMA.

4.2 ERA modeling 

The ERA model comprises both risk assessment and risk management processes to understand the 

safety issues in a quantitative manner like concentrations, dosages, and risk quotients of each 

PPCPs. The ERA model considers the safety issues and RQ of each chemical carefully to reflect 

the associated risk of it to specific species and environmental compartment. To estimate the 

concentration of individual products in different compartments, the guidelines developed by the 
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EMA and US FDA need to be followed. But, before preparation of an ERA model, one needs to 

evaluate the exposure of any PPCPs employing following points:65,66

 The exposure of a specific product needs to be evaluated in form of environmental 

concentration to which the system is affected along with the time period, intensity and 

frequency, not using concentrations to which any specific species of individual is exposed. 

Again, the exposure relies upon multiple parameters like the sorption effects, metabolism, fate, 

and transformation rate of the product.

 Species, which is affected by PPCP’s toxicity, needs to be monitored for a definite period 

and throughout its life cycle to replicate the behavioral pattern in modeling. 

 Dose-response study and PK/PD data of individual chemical are important as they are 

directly related to absorption, distribution, metabolism, excretion, and toxicity (ADMET) 

pattern.

 The toxicokinetic and comprehensive bioavailability study is required for each product.

 Knowledge of toxicity pathways and target sites in the biological system need to be 

understood for individual PPCP.

 The MOA is different from species to species for each PPCP; thus species wise 

understanding of MOA is important to portray its molecular and functional effects.

 The risk occurred from intrinsic toxicity of the pharmaceuticals due to its chemical 

properties is desired to be studied.

5. ENVIRONMENTAL RISK MANAGEMENT (ERM)

The risk management is a process of protecting public health by recognizing, appraising, and 

executing actions to decrease the risk to human health and to ecosystems associated with any 

hazardous/toxic product. The objective of the ERM is integrated actions to reduce or prevent the 

Page 31 of 156 Green Chemistry



32

risk effects considering cost-effective and risk benefit analysis taking into considerations of social, 

ethical, cultural, political, and legal aspects.269 Examples of risk management activities comprise 

following:

 How much and where active substances and treated residuals will be discharged by industry, 

 Decision to make which product may be stored at a hazardous waste disposal facility and 

how they will be treated before release to environment,

 Deciding to what level a perilous waste site must be cleaned up,

 Establishing permit levels for discharge, storage, or transport, 

 Setting national ambient air and water quality standards,

 Determining permissible levels of contamination of PPCPs in drinking water.270

Risk assessment delivers knowledge on likely health or ecological risks, and risk management is 

the action taken based on the information. Thus, ERA and ERM are complementary to each other 

scientifically. The principle steps for ERA and ERM are portrayed in Figure 8. The major factors 

and commonly employed risk management approaches are provided in Table 2.

Figure 8 Fundamental steps under ERA and ERM.
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Table 2 Factors and methods associated with ERM.

ERM Type Explanation

Scientific Offers fundamental understanding about the risk assessment, counting 

information drawn from chemistry, biology, toxicology, epidemiology, 

ecology, and statistics.

Economic Calculation of the risk cost and the paybacks of reducing them, the costs of 

risk mitigation or remediation options and the distributional effects are 

important factor before choosing right management option.

Social Although social factors have no direct involvement, but it has an indirect 

role to play in ERM. Ethnic background, income level, land use, community 

values, availability of health care, psychological condition and life style of 

the suffered populations, may affect the vulnerability of an individual or a 

specific group to risks from a particular stressor.

Laws and legal 

decisions

Outline the basis for the Agency’s ERA and ERM decisions, and, in some 

instances, the schedule, level or methods for risk reduction.

Technological Includes the impacts, feasibility, and range of risk management options.

Political The cooperation among Federal, state, and local government authorities, 

and even with foreign governments are important. Most importantly, 

regulatory agencies and industries need to work parallelly. 

F

A

C

T

O

R

S

People Peoples requirement and public values replicate the far-reaching attitudes of 

society about environmental risk management.

A

P

P

Preventive 

measures

A series of guidelines has been proposed by the EMA as safety measures 

for risk management:

1. Early assessment of risk for each marketed product,
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2. Packaging should have apposite product labeling and summary product 

characteristics (SPC) for proper recycle of unused and expired product,

3. Educated patients about the possible toxicity toward humans as well as 

environment through Package leaflet (PL),

4. Safe storage and disposal of pharmaceutical products.

High-end and 

Advanced 

Sewage 

Treatment

Majority of the risk management can be controlled with advanced waste 

water and sewage treatment which can treat most of the products before 

releasing to the environment removing or neutralizing the toxic products up 

to manifolds. Among the treatment, most common ones are oxidation, 

adsorption, photochemical and filtration.271

Training and 

Awareness of 

stakeholders

Awareness and training about occurrence and effect of individual PPCPs 

along with their corresponding effects toward environment is important 

along with the facts about disposal process. The awareness needs to be 

spread among all the stakeholders. In this specific approach, industry has a 

huge role to play to generate material safety data sheets (MSDSs) for each 

raw materials, APIs and formulations.272

R

O

A

C

H

Green and 

Sustainable 

Pharmacy

The approach for future which demands for environmentally benign 

compound. Though this method is less practiced, in terms of sustainability, 

it seems to be the most reassuring one in the long run. Implication of green 

chemistry has immense role to play in designing followed by synthesis of 

easy and fast degradable PPCPs to reduce. Regarding sustainability issue, 

the understanding of life cycle, fate, transformation and related pathway is 

very much important for implementation of green pharmacy in required 

phase.272
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6. GLOBAL REGULATORY AGENCIES RELATED TO ECOTOXICITY OF PPCPs

The idea of ecotoxicity is a global affair which cannot be confined in certain boundaries of 

countries. Ecotoxicity due to PPCPs is not only related to environmental hazards but also directly 

connected with existence of living system on earth. Therefore, a mutual harmony and collective 

efforts are required from all regulatory bodies to come up with policies, guidelines and strict rules 

regarding safety issues and one of the burning topics of the present time, i.e., ecotoxicity due to 

uncontrollable usage of PPCPs. Regulatory agenciesare in chargethroughout the world for the risk 

characterization, risk assessment and management of PPCPs ecotoxicity andthe major ones are: 

 Australian Environment Agency (AEA)273

 Center for drug evaluation and research (CDER) and USFDA274

 European Medicines Agency (EMA) for the evaluation of medicinal products275

 European Union Commission’s scientific committee on toxicity, ecotoxicity and 

environment (EU-CSTEE)276

 The Ministry of Health, Labor and Welfare of Japan (MHLW)277

 National Industrial Chemicals Notification and Assessment Scheme (NICNAS)278

 Registration, Evaluation, Authorization and Restriction of Chemicals (REACH)279

 Swedish Environmental Classification and Information System (SECIS)280

 The UBA – Umweltbundesamt (UBA) of Germany281

 United States Environmental Protection Agency (US EPA)282

 Canadian Environmental Protection Act (CEPA)284

The role and responsibility of most of the agencies are slightly different from each other based on 

the requirement of countries environmental and industrial rules and regulations but the basic idea 

behind all of them are same i.e. the ERA and ERM of environmentally hazardous chemicals and 

PPCPs. If we summarize the responsibility of these agencies together then they can be following: 
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1. Environmental exposure/emission estimation assessment including higher tier/probabilistic 

modelling for aquatic exposure. 273-283

2. Guidance on the environmental behaviour and/or fate of chemicals on the following issues: 

Biodegradation (persistence) in different environmental media, bioaccumulation, physical and 

chemical properties, interpretation and summaries of laboratory and field studies, multimedia 

(environmental distribution) modelling, estimation of exposure concentrations, higher tier 

ground and aerial spray drift modelling.273-275

3. Environmental hazards assessment for the aquatic environment, terrestrial environment and 

estimation of acceptable or "safe threshold" exposure concentrations.273-280

4. Environmental risk characterisation including probabilistic risk assessment and ERM 

advice.273

5. Preparation of environmental risk assessment reports within National frameworks.273

6. US FDA implemented a Note for Guidance paper in which all drugs entering the aquatic 

compartment at levels below 1μgl–1 Predicted Environmental Concentration (PECEFFLUENT) were 

exempted from a detailed risk assessment.274

7. Pre-screening and estimation of exposure for the API, screening and initial prediction of 

risk, Extended and compartment-specific risk assessment are the three tier ERA of EMA.275

8. The risk assessment is evaluated by the PEC/PNEC ratio or ΣPECi/PNECi
277,280.

9. Circulation of safety information of substances and their effects on the human health and 

environment.278

10. Identification, evaluation and regulating “Persistent, Bioaccumulating and Toxic substances 

(PBT)” effectively. In addition, the REACH regulation endorses the use of valid QSARs for 

predicting the environmental and toxicological properties of chemicals.279,280
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11. UBA evaluated more than 240 human pharmaceuticals and around 180 veterinary drugs. 

Cytostatic medicines, contrast agents and hormones dominated the human pharmaceutical 

dossiers measured by UBA.281

12. The US EPA ensures clean air, land and water and provide efforts to decrease 

environmental risks generated from diverse set of industrial chemicals and PPCPs. Several 

statute and citations were enabled by US EPA like Toxic Substances Control Act/15 USC § 

2603, Safe Drinking Water Act/42 USC § 300g-1, Federal Water Pollution Control Act (Clean 

Water Act)/33 USC §§ 1312-1333, Food Quality Protection Acta/21 USC § 346a(b), Federal 

Insecticide, Fungicide, and Rodenticide Act/7 USC §§ 136a, 136w, Clean Air Act/42 USC §§ 

7408(a), 7412(f).282

13. In Danish EPA, the QSAR models are employed for identification of PBT substances of 

around 166000 chemicals, and these data can be used for self-classification of around 20000 

chemicals based on QSAR. 283

14. The CEPA applies SAR for the prediction of biodegradation, toxicity and fate of Domestic 

Substance List (DSL) chemicals and to support in the categorization process. Environment 

Canada also evaluated six modelling packages (TOPKAT, ECOSAR, CNN, PNN, ASTER and 

OASIS) to predict acute toxicity, with  application to prioritizing chemicals within the Canadian 

DSL.283

As the number of PPCPs are too huge, laboratory experiments and animal tests are not the ultimate 

solution. Again, considering time and economy, there is no doubt about the widespread use of 

computational models (especially QSAR models) by regulatory authorities to predict toxicity, fate 

and risk associated with the used substances along with the risk management. Although India and 

China are among the top 10 producers of APIs, till now these computer models is mainly employed 

in the US, but also increasingly in Canada and the EU. So, global regulatory agencies need to come 
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together and focus more on those countries which are lacking to provide sufficient information 

regarding the deleterious effects of PPCPs to the environment and human health along with 

structured implication of fast and economical in silico approaches for risk assessment and risk 

management. 

7. WHY IS IN SILICO MODELING IN ECOTOXICOLOGICAL ASSESSMENT OF 

PPCPS?

The number of results obtained by Google search with the terms “In silico and Environmental 

toxicity” is around 1,810,000 in November 2018. The term ‘In silico’, coming from latin in silicon, 

is an expression suggesting “computer simulation" in reference to biological problems and/or 

experiments. A good number of in silico tools have been developed to predict and/or model diverse 

responses of chemicals and materials successfully in the last five decades. Regression- and 

classification-based QSAR, machine learning, toxicophore, read-across, interspecies, docking and a 

good number of expert systems can be considered under in silico modeling which have been 

employed to model a huge number of environmental toxicants including PPCPs. The purpose of in 

silico modeling is to provide a fast analysis of untested and/or new potential chemical to cause 

adverse effects to environmental species, as well as being capable to predict a range of physico-

chemical parameters and fate properties along with some extent of mechanistic interpretations. The 

models have been employed for the ERA/ERM by different regulatory authorities across the globe 

as well as to support the design of greener PPCPs with reduced or no animal testing. The reasons to 

use in silico models in ecotoxicity assessment are following:

 The prohibition of animal experiment: Council Directive 86/609/EEC on the approximation 

of Laws, Regulations and Administrative (EU) restricted animal experimentation. The testing ban 

on the active ingredients or combined products applied on 11th March 2009 and on finished 
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cosmetic products applied since 11th September 2004. Thus, regulatory agencies around the world 

introduced molecular modelling approach for risk assessment.285,286

 The 3Rs concept: The principle of 3Rs implies “Reduction”, “Replacement” and 

“Refinement” of regarding animals’ usage in scientific experiments. ‘Reduction’ signifies less 

number of animal usages, ‘Replacement’ links to the usage of non-living resources to replace 

higher taxonomical animals, and ‘Refinement’ advises muffle the harshness or brutality to the 

experimental animals.287 In silico models are the answer for all three principles of the 3Rs 

approach.

 Regulatory decision: In silico models help regulatory and government bodies for risk 

assessment and management, predicting toxicity of new and untested compounds, evaluation of 

physicochemical parameters and fate properties evaluation.

 Data gaps filling: The toxicity assessment of APIs and PCPs was not necessary before 

introduction to the market up to 2006 according to EMA guidelines. Thus, a huge number of 

PPCPs are already in the market which has no toxicity data available for even single species. The 

available ecotoxicity data of PPCPs is less than 5%.288 Thus, filling out this huge data gaps, in 

silico models are fast and economical approach.

 Mechanistic interpretation: In many cases, the generated mathematical equation from in 

silico model is capable to identify the responsible structural as well as physicochemical properties 

for toxicity to a specific organism or animal system. Generally, it assumed that compounds fitting 

the similar in silico (especially QSAR model) models are acting by the same MOA.289

 Cost and time saving: In silico models can save huge monetary cost along with fast risk 

assessment and prediction of toxicity for diverse species in diverse compartments. Toxicity 

predictions of PPCPs are possible even before the product synthesis which can help for earlier 

toxicity study.290 A graphical depiction is reported in Figure 9 where importance of in silico 

models are illustrated evaluating pharmaceuticals ecotoxicity.
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Figure 9 Significance of in silico modeling evaluating the influence of PPCPs ecotoxicity.

It is true that environmental toxicity is not a significant determinant for approving APIs on to the 

market as efficacy is a more important criterion. But, here we make a point that in silico approaches 

can offer a fast check of ecotoxicity before the final approval of a drug. The knowledge related to 

probable ecotoxicity of API can be helpful for environmental risk assessment and risk management 

along with safe handling and disposal of these chemicals.

8. IN SILICO TOOLS

Although each phrase has a different meaning, many times researchers use in silico approaches as 

synonymous with computational modeling and/or molecular modeling methods. In silico 

techniques constitute an integral part of the high throughput screening (HTS) procedure for the 

virtual screening of toxicity of new and/or untested chemical entities. In silico methods are capable 

of providing information about the physicochemical properties of chemicals and the necessary 

structural fragments influencing the biological response (here, toxicity).56,57 The need of in silico 
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techniques in predicting toxicological and hazardous properties of PPCPs are taking the central 

stage of attention day by day among the scientific community, regulatory bodies and the public in 

general.290-293 The quantitative structure-activity/property/toxicity relationship 

(QSAR/QSPR/QSTR) is one of the most commonly used techniques among different in silico 

approaches. Advanced QSTR predictive models are being developed and tested by different 

international industries of different countries for the final approval from governing regulatory 

agencies to assess physical, chemical, and biological properties of individual chemical entities 

using applications that are specific for decision-making frameworks in safety assessments.290 It is 

important to mention that when the toxicity endpoints are modeled and predicted, the QSAR term is 

denoted as QSTR. As this present review is dealing with ecotoxicity modeling, the term QSAR will 

be expressed here as QSTR. The most employed in silico tools for ecotoxicity prediction are 

illustrated in Figure 10.

Figure 10 Most commonly used in silico tools for ecotoxicity modeling and prediction of PPCPs.
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8.1 Quantitative Structure-Toxicity Relationship (QSTR) modeling

8.1.1 Definition and hypothesis of QSTR 

QSTR is a statistical model which can be developed based on a similarity principle to correlate the 

changes in the toxicity of chemicals  with changes in their structural features or other 

physicochemical properties making it possible to develop quantitative mathematical models for 

structure-activity correlations.56,57 The QSTR models are extensively used for regulatory purposes 

in the chemical industries of the EU in view of the REACH regulations and other EU 

regulations.291-293 The basic formalism of QSTR approach can be mathematically defined with 

following expressions:

𝑇𝑜𝑥𝑖𝑐𝑖𝑡𝑦 (𝑌)
= 𝑓(𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠) = 𝑓

(𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑝ℎ𝑦𝑠𝑖𝑐𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠)

    (1)                           = 𝑓(𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠) = 𝑓(𝑋1 + 𝑋2 +⋯ + 𝑋𝑁)

Chemical attributes are the essential information of the compounds which regulate its specific 

response that are often defined in terms of the information generated straight from the chemical 

structure and the physicochemical properties. The obtained information in form of numerical values 

are labeled as descriptors which help to find the best possible correlation with the toxicity response. 

The QSTR equation can be mathematically stated as follows:

(2)𝑌 = 𝑎0 + 𝑎1𝑋1 +⋯ + 𝑎𝑛𝑋𝑛

Here, a1, a2, …, an are the coefficients suggest contributions of specific descriptors to the toxicity, 

with a0 being a constant.

In the QSTR model, the toxicity response acts as the dependent variable and descriptors play the 

role of predictor variables or independent variables. In some cases, the response parameter like 
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toxicity may act as a predictor variable for the modeling of another toxicity endpoint. This specific 

model is termed as quantitative toxicity–toxicity relationship (QTTR) or interspecies-QSTR (i-

QSTR). The hypothesis is explained schematically in Figure 11. The details about i-QSTR will be 

discussed later.

Figure 11 Hypothesis underlying QSTR and i-QSTR models.

8.1.2 Principles of QSTR

The regulatory QSTR models should be developed based on five principles proposed by 

Organization for Economic Co-operation and Development (OECD) for QSAR model development 

and validation.294 These guidelines recommend a defined endpoint for modeling ensuring similar 

experimental protocol for the endpoint values (Principle 1), an unambiguous algorithm for model 

development which ascertains reproducibility (Principle 2), a defined chemical applicability 
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domain (AD) of the model which ensures that the query chemicals are sufficiently similar to the 

compounds used for model development (Principle 3), appropriate use of statistical measures for 

checking fitness and predictive ability of the developed model which decides the acceptability of a 

model (Principle 4) and finally, mechanistic interpretability of the model, if possible (Principle 5). 

It is necessary to apply a variety of statistical methods and metrics depending on the regression-

based or classification-based modeling methods being used to examine the statistical quality of the 

developed models. The OECD principles, the fundamental steps for a QSTR study and how OECD 

principles are related to each step are reported in Figure 12.

Figure 12 OECD principles and fundamental steps for QSTR formalism.

8.1.3 Classification of QSTR models

QSTR models are most commonly classified based on the linearity and non-linearity 

techniques for the development of the models where linear models are obtained by simple 

correlation between the toxicity response (Y variable) and the descriptors (X variables). On the 
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contrary, the non-linear models might be generated within the linear modeling framework 

employing quadratic terms, spline functions, and other higher order polynomials. Again, the models 

may also be classified into regression-, classification-based approach and machine learning tools. A 

comprehensive and commonly employed representative chemometric tools like multiple linear 

regression (MLR),295 stepwise regression,296 partial least squares (PLS),297 genetic function 

approximation (GFA),298-299 genetic partial least square analysis (G/PLS)297,299 etc. under 

regression-based methods;  principal component analysis (PCA),300 factor analysis (FA),301 factor 

analysis followed by MLR (FA-MLR),301 factor analysis followed by PLS (FA-PLS),297 linear 

discriminant analysis (LDA)302 etc. under classification-based methods; and artificial neural 

network (ANN),303 support vector machine (SVM),304 random forest (RF)305 etc. under machine 

learning techniques  to build the QSAR/QSTR model is discussed elsewhere in details.295-305 Again, 

based on geometric dimension of descriptors employed for model development, QSTR models can 

be categorized into multiple methods which are illustrated in Figure 13. For elaborate discussion 

and examples for individual methods, please refer to literatures.56,57
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Figure 13 Classification of QSTR models based on dimensional geometry.

8.2 Interspecies quantitative structure-toxicity relationship (i-QSTR) modeling

8.2.1 Hypothesis and expression

The interspecies correlation estimation (ICE) model is a simple correlation between biological 

response (here, toxicity) of two species which is majorly employed to extrapolate toxicity data of a 

set of chemicals from one species to another species.306 An ICE model can be calculated according 

to the below mentioned mathematical expression:

   (3)log10 (1
𝑌[𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) = 𝑎 + 𝑎1 × log10 (1

𝑌[𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠])

Here, the toxicity response Y can be expressed as EC50, ED50, IC50 or LD50 values, a and a1are the 

intercept and slope of the line, respectively. 

An interspecies-QSTR (i-QSTR) model is a combination of ICE and simple QSTR models where 

the experiemental toxicity data for a specific species acts as a predictor variable along with other 
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descriptors to establish a correlation against another species for similar endpoint.307 The toxicity 

endpoint which acts as a predictor variable can highlight the MOA of a series of molecules to some 

extent as it is produced by an experimental bioassay, while other descriptors are obtained purely 

from chemical structure and/or physicochemical experiments. The mathematical expression of i-

QSTR model is:59,308

X   (4)log10 (1
Y[Predicted species]) = a + a1 × log10 (1

Y[Surrogate species]) + a2 ×

Here, a1 and a2 are the coefficients of predictor descriptors, i.e., surrogate species toxicity and 

descriptor X, respectively. Although we have shown here only one physicochemical/structural 

descriptor X, but based on the complexity of the model, the descriptor number may vary from 2 to 

n.

Zhang et al.309 proposed four rules to distinguish the importance of physicochemical descriptors 

which need to be considered in i-QSTR modeling as reported in Figure 14.

Figure 14 Four conditions for making of ideal i-QSTR models.
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Following four conditions, Zhang et al.309 modified equation 4 by including features signifying 

difference in bio-uptake and variance in toxic MOA between two species for an explicit endpoint:

  (5)log10 (1
𝑌[𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) = 𝑎 + 𝑎1 × log10 (1

𝑌[𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠]) + 𝐹
𝐵

+ 𝐹𝑀

Here, FB is a physicochemical parameter to invalidate the difference of bio-uptake, FM is a 

physicochemical parameter to correct the variation of toxic MOA between two species. The 

difference between ICE and i-QSTR models is only consideration of bio-uptake factors and 

physicochemical parameters to recognize the probable MOA of toxicity in an explicit species.

8.2.2 Significance of i-QSTR/QTTR models

 Extrapolation of toxicity data: i-QSTR models are capable of extrapolating toxicity data 

from one species to another species for a specific toxicity endpoint when the experimental data 

for the second species are unavailable. Thus, this approach is very much important for data gap 

filling.

 Identification of toxicity MOA: The i-QSTR models can help to understand the MOA of 

studied chemicals for diverse species and definite endpoints through correlations between two 

species. As i-QSTR model employs the toxicity of one species as a predictor variable, it is 

capable of identifying the MOA to some extent as it is derived by a standard experimental 

bioassay.

 Species-specific toxicities: A good correlation specifies that the chemicals studied may 

share the similar toxic MOA between two species. On the contrary, a poor interspecies 

correlation may specify that the chemicals have different MOA for the studied species.

 Reduction of animal usage: A complete replacement of animal experiment is not possible, 

thus the i-QSTR models can be the right choice for toxicity prediction purpose by encouraging 
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the decrease in the use of higher class of animals/organisms for toxicity testing. Extrapolation of 

toxicity data from lower class species to higher class species is possible with i-QSTR models.

 Data gap filling: In addition, it can also extrapolate toxicological features and helps in 

filling data-gaps while dealing with the absolute assessment of chemical hazards.

8.3 Read-across (RA)

RA can be defined as a method capable of interpolating response data for a target compound from 

the corresponding experiemental data of closely related chemicals.310 The idea of interpolation 

and/or extrapolation for target or query chemicals is reported in Figure 15 (Left). The RA can be 

considered as a vital data-gap filling approach in ecotoxicity prediction of PPCPs. Regarding the 

subject of chemicals similarity, they can be structurally similar, the MOA can be similar for a 

specific system, they may share similar ADMET profileetc.310,311 Depending on the nature of 

endpoint data, RA can be quantitative or qualitative. RA is generally performed in four ways to fill 

data gaps as demonstrated in Figure 15 (Right). 

Based on the employed methods, the RA can be categorized into two approaches:312

a) Analog approach (AN): Consider one-to one approach which uses one or few analogs for 

similarity measure. This particular method is sensitive to outliers as two analogs may have 

unrelated response profiles.

b) Category approach (CA):  This approach employs many-to-one criteria and uses multiple 

analogs.  The CA is a better approach than the AN, as it notices trends within a category and is 

helpful in toxicity predictions within confidence limit. Chemicals with similar properties or with 

a regular structural pattern can be considered as a group, or ‘category’ of substances. These 

similarities can be any factor: common functional group, constant pattern in changing potency, 

common precursor or breakdown products, common constituents or chemical class.
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Figure 15 (Left) Hypothesis and classification of different approach of RA; (Right) ways to 

perform the RA approach.

The similarity among chemicals can be performed by identifying chemicals through feature vectors 

of chemical properties followed by the calculation of similarity percentage. The first step is applied 

employing either holographic fingerprints or binary. A holographic fingerprint utilizes the 

frequency of features (example: number of specific functional group). But a binary fingerprint is a 

feature vector of binary bits representing absence (0) or presence (1) of a property (example: 

specific functional group present or not). Then, the identified categories are divided employing 

another feature to create subcategories and so on. The hierarchy is helpful for inspecting the 

importance of individual features and can ease the model interpretation. Statistical similarity among 

the compounds can be checked through distances measuring approach in 2D or 3D spaces using 

Euclidean, Mahalanobis, Tanimoto distance, Hamming, or linear or nonlinear relationships of the 

features.56,57 Tools executing the RA approach are Toxmatch,313 The OECD QSAR Toolbox,314 

AMBIT,315 ToxTree316 etc.

Page 50 of 156Green Chemistry



51

8.4 Pharmacophore (Toxicophore)

A pharmacophore is the ensemble of steric and electronic features of a molecule that are necessary 

to ensure the optimal supramolecular interactions with a specific biological target structure and to 

trigger (or to block) its biological response.317 The pharmacophore does not represent a real 

molecule or a real association of functional groups, but a purely abstract concept that accounts for 

the common molecular interaction capacities of a group of compounds towards their target 

structure.318 A pharmacophore can also be thought of as a template, a partial description of a 

molecule where certain blanks need to be filled. It starts with the selection of ligands from which 

the pharmacophore model is to be constructed. Hypothesis and common features of pharmacophore 

along with example are portrayed in Figure 16. Conformational expansion is the most critical step, 

since the goal is not only to have the most representative coverage of the conformational space of a 

molecule, but also to have either the bioactive conformation as part of the set of generated 

conformations or at least a cluster of conformations that are close enough to the bioactive 

conformation. This conformational search can be divided into following categories: systematic 

search in the torsional space, optionally followed by clustering, stochastic methods, e.g., Monte 

Carlo, sampling, Poling, and molecular dynamics (MD).319,320 The next step is 3D pharmacophore 

generation which is a formalized description of the hared features found in the previous step.321 The 

derived pharmacophore model can be used to search compound databases and screening purpose. 

In case of toxicity response, pharmacophores can be employed to understand the structural template 

which is responsible for toxicity. In the case of toxicity response modeling, the pharmacophore is 

defined as a toxicophore. Thus, the hypothesis is completely the same for pharmacophore and 

toxicophore, just the modeled responses are biological activity and toxicity, respectively.  Again, 

toxicophore/toxic fragments are denoted as structural alerts (SAs)312,322 in a chemical structure that 

indicate or associate to toxicity. Toxicophore models can be built in four steps process and they are 

following:
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a) Diverse conformation generation: In the first step, the conformational analysis of the 

compounds is done which eradicates much of the redundancy in conformation generation followed 

by improve the coverage of conformational space. 

b) Generation of 3D toxicophore models: Thetoxicophores are created in three stages. The 

first stage is the constructive phase which generates toxicophores considering active molecules of 

the training set. The next stage is the subtractive phase which deals with the toxicophores created in 

the constructive phase and eliminates less important or useless toxicophores from the data structure. 

Finally, the optimization is done using the simulated annealing algorithm followed by models 

developed with different toxicophore features: (i) Hydrogen-bond donor (HBD), (ii) Hydrogen-

bond acceptor (HBA), (iii) Hydrophobic (HYD) [HYDROPHOBIC (aromatic) and 

HYDROPHOBIC (aliphatic)], (iv) Positive charge (POS CHARGE), (v) Negative charge (NEG 

CHARGE), (vi) Negative ionizable (NEG IONIZABLE), (vii) Positive ionizable (POS 

IONIZABLE) and (viii) Ring aromatic (RA). The model’s quality is analyzed in terms of their 

correlation coefficients and the cost function values. 
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Figure 16 (A) Points/Atoms/Features based Pharmacophore (Toxicophore) hypothesis; (B) 

Representation of common pharmacophore features identification from three chemicals; (C) 

Example of a common pharmacophore model; (D) Common pharmacophore features.

c) Assessment of the quality of toxicophore hypotheses: To measure the quality of 

toxicophore hypothesis, a subsequent cost calculation needs to be done (Table 3).

Table 3 Cost hypothesis for quality measure of toxicophore models.

Parameter Definition Equation

Total cost A small range of the total hypothesis 

cost obtained for each of the hypothesis 

indicates homogeneity of the 

corresponding hypothesis, and the 

training set selected for the purpose of 

toxicophore generation is adequate

𝑐𝑜𝑠𝑡 = 𝑒𝐸 + 𝑤𝑊 + 𝑐𝐶

Here, e, w, and c are the coefficients 

associated with the error (E), weight (W), 

and configuration (C) components, 

respectively.

Fixed cost A fixed cost calculation which 

represents the simple model that fits all 

the data of the dataset

𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 = 𝑒𝐸(𝑥 = 0) + 𝑤𝑊(𝑥 = 0) + 𝑐𝐶

Here, x is the deviation from the expected 

values of weight and error and other signs 

are the same as above.

Null cost A null cost calculation that assumes 

that there is no relationship in the 

dataset and that the experimental 

activities are normally distributed about 

their average value and the toxicophore 

has no features

𝑛𝑢𝑙𝑙 𝑐𝑜𝑠𝑡 = 𝑒𝐸(𝜒𝑒𝑠𝑡 = 𝜒)

Here, χest is the averaged scaled toxicity of 

the training set molecules.

Page 53 of 156 Green Chemistry



54

Criteria for acceptance of toxicophore hypothesis:323

 Total cost values should be close to the fixed costs, suggesting that the hypotheses 

generated are statistically robust.

 The variances between the generated hypothesis cost and the null hypothesis cost should be 

in the higher side (40-60 bits difference) which specifies that it has a 75-90% chance of 

suggesting a true correlation for the modeled dataset. 

 The total cost of any hypothesis should be close to the value of fixed cost for any acceptable 

predictive model. 

 Another important criterion is configuration cost value which should be lower than 17 for 

the acceptability of the developed model. If it is more than 17, then the model is developed by 

chance.

 The error cost rises as the value of the root mean square (rms) increases, which shows the 

quality of the correlation between the experimental and predicted data.

d) Validation of toxicophore model: Validation of a toxicophore model is performed in 

order to determine whether the developed model can identify active structures and forecast their 

activity precisely. Validation of the obtained models can be done using two procedures, viz. 

Fischer’s validation and external validation using the test set prediction method.

8.5 Docking: Molecular docking is an application, wherein molecular modeling techniques 

are used to predict how a protein (enzyme) interacts with small molecules (ligands).324 The ability 

of a protein/enzyme to interact with small molecules (example: pharmaceuticals) plays a major role 

in the dynamics of the protein which may enhance/inhibit its biological function. The capability to 

bind large molecules, such as other proteins and nucleic acids to form a supra-molecular complex 

plays an important role in controlling biological activity. The behavior of small molecules in the 
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binding pockets of target proteins can be described by molecular docking. The method aims to 

identify correct binding poses of ligands in the binding pocket (known as active sites) of a protein 

and to predict the affinity between ligand and the protein. The basic principle of docking, protein-

ligand docked structure, binding dispositions with amino acid residues and 2D interaction maps 

solved for a docked ligand is provided as an example in Figure 17. Molecular docking can be 

classified as: (i) protein-small molecule docking, (ii) protein-nucleic acid docking, and (iii) protein-

protein docking.

Figure 17 Fundamental hypothesisof the docking (Top); Docked complex of ligand-protein, 

binding dispositions with amino acid residues and 2D interaction maps solved for docked complex 

(below).

Protein-small molecule/ligand docking represents a simpler end of the complexity spectrum, and 

there are many available programs that perform particularly well in predicting molecules that may 

potentially inhibit proteins. Protein-protein docking is typically much more complex. The reason is 

that proteins are flexible, and their conformational space is quite vast. Docking can be performed 

Page 55 of 156 Green Chemistry



56

by placing rigid molecules or fragments into the protein's active site using different approaches like 

the clique-search, geometric hashing, or pose clustering. The performance of a docking depends on 

the search algorithm like Monte Carlo methods, Genetic algorithms, Fragment-based methods, 

Tabusearches, Distance geometry methods etc. and the scoring functions like Force-field methods, 

Empirical free energy scoring functions etc. The first thing is the composition of all possible 

conformations and orientations of the protein paired with the ligand. The scoring function takes 

input and returns a number which indicates favorable interaction.325 Dockingis primarily a three-

step process regardless of software and docking algorithms.326,327 The steps are following: a) 

Ligand preparation, b) Protein preparation and c) Ligand-protein docking. Once the ligand is 

docked into a protein, one can check the binding interactions with amino acid residues, binding 

energy along with RMSD difference with the co-crystalized ligand. The overall steps of the 

docking formalism are illustrated in Figure 18. 

Figure 18. (a) Fundamental steps of docking method; (b) Classification of docking (Software tools 

are mentioned in bold and under bracket).
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In case of toxicity evaluation, the docking study can identify the important structural fragments 

present in a small molecule as well as amino acid residues in specific a protein which are creating 

toxic effects by interacting with each other. The protein-ligand docking can be classified based on 

three vital criteria: (i) ligand sampling, (ii) protein flexibility, and (iii) scoring function, as 

demonstrated in Figure 18.  As the present review deals with a different topic, to understand the 

docking technique in depth, please refer to a more extensive literature.56

9. EXPERT SYSTEMS FOR ECOTOXICITY PREDICTION OF PPCPs

An expert system is any formalized system, not necessarily computer-based, which enables a user 

to obtain rational predictions about the toxicities of chemicals. All expert systems for the prediction 

of chemical toxicities are built upon experimental data representing one or more effects of 

chemicals in biological systems (the database), and/or rules derived from such data (the rule base). 

Accordingly, the treatment by an expert system tool can be indicated as ‘automated rule-indication 

system’ where model statistics gets priority while another type of tools includes ‘knowledge-based 

systems (KBS)’ that provide mechanistic information. Expert systems are a convenient option for 

toxicity prediction over the traditional QSTR models as most of the time they require only the input 

of structure. The complete prediction can be performed even with a single click in no time and easy 

to recompute as per the requirement and modification of endpoints and species for a definite 

molecule. Majority of regulatory authorities, industries and academic people are employing expert 

systems for toxicity prediction, risk assessment and characterization along with identification of 

toxic or non-toxic molecules for the diverse compartment of environment and species. Manifold 

mechanisms can show comparable toxic effects which require precise and effective predictive 

tools, and which can distinguish manifold regions in the activity space. Expert systems can handle a 

wide spectrum structural and mechanistic complexity region in comparison to the local (single) 
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QSTR models. Open access, as well as commercially available expert systems capable to deal with 

PPCPs ecotoxicity, are illustrated in Table 4.328-345

10. TEST BATTERIES FOR ECOTOXICOLOGICAL ASSESSMENT

Specific ecotoxicity of PPCPs should be assayed on a definite species/organism or test batteries 

maintaining similar experimental protocols and environment. The hypothesis behind it is quite 

clear, as one can thoroughly check the toxic effects of all studied PPCPs to a specific species and 

can monitor changes from one compound to another. Thus, in-depth understanding about the 

assessed ecotoxicity and experimental species are important to develop precisely, statistically and 

mechanistically interpretable in silico models. Selection of appropriate endpoint species is very 

much significant to replicate the mode of toxicity to a definite environment. There is a specific list 

of species available to model the toxicity according to regulatory agencies and diverse environment 

conserve programs like Office of Prevention, Pesticides and Toxic Substances (OPPTS), Office of 

Pesticide Programs (OPP), Office of Technology Solutions (OTS), OECD, USEPA, REACH. 

Again, all the experimental PPCPs employed for modeling to a specific toxicity endpoint 

hypothetically work via similar MOA for the studied species. An exhaustive literature search has 

been done to enlist all possible test species for ecotoxicity assessment in Table 5.65,66,285,290,346

11. ENDPOINTS FOR IN SILICO MODELING OF ECOTOXICITY

The response which needs to be modeled in computational modeling is known as ‘Endpoint’. To 

understand and quantify risk related to the environment, one needs to categorize the endpoints 

carefully. Once the endpoints are identified, it is easy to model them for future screening and 

toxicity prediction of new compounds. Ecotoxicity modeling can be performed not only for toxicity 

endpoints but also for physicochemical and fate properties which are indirectly related to 
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ecotoxicity. Endpoints for ecotoxicity modeling according to OECD’s guidelines where in silico 

models can be employed for risk prediction is illustrated in Figure 19.

Figure 19 Most frequently modeled endpoints for ecotoxicity according to the OECD guidelines.

12. ECOTOXICITY DATABASES IN RELATION TO PPCPS 

An ecotoxicity database is a comprehensive source of information on adverse and/or toxic effects 

of multiple chemicals to ecologically relevant aquatic and terrestrial species as well as environment 

compartments. The ecotoxicity databases consist of information in the form of qualitative or 

quantitative or sometimesa combination of both along with detailed experimental protocols 

followed by test species and endpoints. The ecotoxicity databases are rich sources of evidence for 

not only modeling purpose but also to validate different in silico models in respect to definite 

endpoints and species. To develop acceptable toxicity prediction computational models, good 

quality experimental ecotoxicity data is important with minimizing the experimental errors and the 
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procedural similarity. Although significant numbers of toxicity databases related to drug discovery 

and development are available, the number of databases related to ecotoxicity due to PPCPs are 

reasonably less. The number of such databases should be based on the present demands with detail 

and to the point toxicity information along with open accessibility which is an utmost requirement 

for transparent development of in silico models. An inclusive list of ecotoxicity databases is 

represented in Table 6 which can be employed for in silico modeling, toxicity screening and 

validation for extensiverisk assessment, management, safety evaluation followed by hazard 

characterization of PPCPs.347-400

Page 60 of 156Green Chemistry



61

Table 4 Illustrative list of freely available and commercial expert systems to predict environmental toxicity due to PPCPs.328-345

Expert 

system

Company/

Organization

Description

ASTER328 US EPA, NHEERL Assessment Tools for the Evaluation of Risk (ASTER) is an integration of ECOTOX database and a 

structure-activity based expert system which is freely available to provide high quality data for discrete 

chemicals.

CAESAR329 EC funded project 

(Project no. 022674

SSPI)

Computer Assisted Evaluation of industrial chemical Substances According to Regulations (CAESAR) 

is dedicated to develop QSTR models for the REACH legislation, specifically generates reproducible 

toxicity models. Five endpoints considered are bioconcentration factor, skin sensitization, 

carcinogenicity, Mutagenicity, developmental toxicity.

CATALOGIC3

30

LMC in "Prof. Dr. 

AsenZlatarov" University 

BURGAS, Bulgaria

Platform for models and databases related to the environment fate of chemicals such as abiotic and 

biotic degradation, bioaccumulation and acute aquatic toxicity. 

DEREK331 Harvard University Office 

of Technology 

Development

DEREK, a KBES, developed in collaboration with industrial partners, which makes predictions based 

on SA, reasoning rules and examples contained within its knowledge base. Currently, 21 structural 

alerts for teratogenicity or teratogenic endpoints are considered under this expert system.
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DfW332 Lhasa Limited Derek for Windows (DFW), a KBES, covers 361 toxicological endpoints alerts with toxicophore. The 

skin sensitization knowledge base was developed in collaboration with Unilever in 1993 using its 

database of GPMT data for 294 chemicals. Version 9.0.0 contains 64 alerts for skin sensitization.

ECOSAR333 US EPA ECOSAR is freely available from the US EPA which utilizes a number of class-specific log Kow-based 

QSTRs to predict the toxicity (both short-term and long term) of chemicals. Hazard assessment of 

environmentally occurring pharmaceuticals to fish, daphnids and green algae can be performed.

HazardExpert 

Pro334

CompuDrug Inc. Teratogenicity and reproductive toxicity predicted based on the structural fragments.

MCASE/ 

MC4PC335

MultiCASE Inc. A commercial KBES which develops QSTR models and evaluates the structural features for non-

congeneric molecules and identifies the substructures responsible for the response. Predictive models 

for blue gill, FHM, rainbow trout, red killifish are available. 180 modules covering various areas of 

toxicology and pharmacology endpoints including skin sensitization, retinoids, developmental toxicity 

under FDA/TERIS and developmental toxicants in FDA teratogenicity are available.

OASIS

& TIMES336

Laboratory of 

Mathematical Chemistry,

University “As Zlatarov”,

OASIS is commercial software uses the response-surface approach for modelling acute toxicity for two 

types of toxico-chemical domains: reversible acting chemicals and irreversible bioreactive chemicals. 

Interspecies correlations for acute toxicity to 17 aquatic species, such as fish, snail, tadpole, hydrozoan, 
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Bourgas, Bulgaria crustacean, insect larvae and bacteria have been developed. The Tissue MEtabolism Simulator (TIMES) 

platform is used to predict the individual and interspecies models for acute aquatic toxicity.

OECD

(Q)SAR 

Toolbox337

OECD A platform allows the user to develop categories and perform read-across, QSTR and trend analyses. A 

platform that will allow chemical information management, similarity searches and toxicological 

profiling.

OncoLogic338 US FDA/CDER A desktop computer program that evaluates the probability that a chemical may induce cancer. 

OncoLogic predicts cancer-causing potential by applying the rules of structure-activity relationship 

(SAR) analysis, mimicking the decision logic of human experts, and incorporating knowledge of how 

chemicals cause cancer.

OSIRIS

property

explorer339

Actelion Pharmaceuticals 

Ltd., Allschwil, 

Switzerland

OSIRIS is an on-line system, which predicts reproductive effects on the basis of structural fragments 

which developed from the analysis of 3570 compounds with reproductive effects listed in Registry of 

Toxic Effects of Chemical Substances (RTECS).

PASS340 Institute of Biomedical 

Chemistry of the Russian 

Academy of Medical 

Sciences, Moscow

PASS assesses the similarity of molecules to those with known activity and predicts over 30 endpoints 

relevant to reproductive toxicity. The employed endpoints are abortion inducer, alkylator, carcinogenic, 

DNA intercalator, DNA repair enzyme inhibitor, DNA synthesis inhibitor, DNA topoisomerase ATP 

hydrolyzing Inhibitor, DNA topoisomerase inhibitor, DOPA decarboxylase inhibitor, embryotoxic, 
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oestradiol 17β-dehydrogenase stimulant, ER modulator, oestronesulphatase inhibitor, 

oestronesulphotransferase stimulant, fertility enhancer, menopausal disorders treatment, mutagenic etc.

SARET341 MRC “MEDTOXECO”, 

Department of

General Hygiene, Russia 

and IBMC RAMS, Russia

SARET base and SARET model are used as computer programs for the computation of descriptors 

(properties). SARET base includes the information on more than 190 characteristics for 8500 

substances: chemical structure, physicochemical properties (density, boiling and melting points, logKow 

etc.), adverse effect doses and concentrations for acute and chronic exposure. The SARET model is 

prepared for statistical analysis of data and calculation of unknown parameters of substances on the 

basis of (Q)SARs. The application of SARET provides the information essential to assess the hazard of 

chemicals and to approximate their unknown characteristics.

TerraQSTR-

FHM342

TerraBase Inc., Hamilton, 

Ontario,

Canada

Commercial software and a standalone neural network-based program to compute the acute toxicity of 

organic chemicals to the FHM using a proprietary neural network algorithm.

TIMES-SS343 LMC University “As 

Zlatarov”, Bourgas, 

Bulgaria

TIMES-SS is hybrid expert system, can encode structure-toxicity and structure metabolism relationships 

through a number of transformations simulating skin metabolism (mimics metabolism using 2D 

structural information) and interaction of the generated reactive metabolites with skin proteins. The 

covalent reactions with proteins are described by 47 alerting groups.
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TOPKAT344 BIOVIA TOPKAT is a statistical commercial expert system in which QSTR models developed from a huge 

number of heterogeneous databases of toxicological information using sub-structural fragments and 

(electro)-topological indices. Developmental toxicity potential is taken from FDA/TERIS. The program 

uses a range (Q)SAR models for assessing acute toxicity to FHM and Daphnia. The TOPKAT LD50 

(acute oral toxicity) modelling approach has been used by the Danish EPA in their project to develop 

QSTR models for evaluation of dangerous properties of around 47,000 organic substances on the 

EINECS list.

Toxmatch345 EU Reference 

Laboratory for alternatives 

to animal testing

The open-source computer program of Joint Research Centre (EC) that encodes several chemical 

similarity indices in order to facilitate the grouping of chemicals, thereby supporting the development of 

chemicals and the application of read-across between analogues.

Table 5 Representative list of test species for the modeling of PPCPs ecotoxicity.

Test 

batteries

Species Description Test Guidelines

Algae Chlorella vulgaris

Chlorella pyrenoidosa

Unicellular fresh-water green micro algae comprising a major part 

of phytoplankton to study the toxic action of organic compounds.

OECD 201: Freshwater Alga and 

Cyanobacteria, Growth Inhibition Test; 
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Pseudokirchneriella 

subcapitata,

Selenastrumcapricorn

utum

Perfect test organisms for ecotoxicity evaluation through their 

growth rate inhibition.

Scenedesmus obliquus A type of Chlorophyta and a common cosmopolitan green alga, 

occurring as almost a pure culture in fresh water plankton. It can 

grow in industrial wastewaters of different origins showing good 

adaptation ability and very versatile microalgae as a test endpoint.

Scenedesmus 

vacuolatus

Green algaof the Chlorophyceae family, which is colonial and 

non-motile in nature; has been used in the prediction of 

photoinduced toxicity of polycyclic aromatic hydrocarbons and 

the ecotoxicity of ionic liquids (ILs).

OPPTS 850.4500: Algal Toxicity; OPPTS 

850.4550: Cyanobacteria Toxicity.

Bacterium Escherichia coli A Gram-negative, facultative anaerobic, rod-shaped bacterium of 

the genus Escherichia is used as a model organism in ecotoxicity. 

A good number of studies are performed to evaluate metal oxide 

nanoparticles cytotoxicity.

OECD 471: Bacterial Reverse Mutation 

Assay; OECD 472: E. coli, Reverse 

Mutation Assay; EU Method B.13/14: 

Mutagenicity, Reverse Mutation Test 
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A. fischeri,

Vibrio natriegens

Gram-negative rod-shaped bacterium having bioluminescent 

properties and found principally in symbiosis with different 

marine species. Majorly employed in the research of microbial 

bioluminescence, quorum sensing along with ecotoxicity testing.

Bacillus A genus of gram-positive, rod-shaped bacteria and member of the 

phylum Firmicutes. Chlorophenols toxicity is tested on bacillus 

species.

Pseudomonas 

fluorescens

P. fluorescens has a versatile metabolism. Generally found in the 

soil and water. According to the literature, it is employed for 

modeling of antibiotics toxicity and resistance studies.

Using Bacteria; EPA OPPTS 870.5100: 

Bacterial Reverse Mutation Test; EPA 

OPPTS 870.5265: Salmonella 

typhimurium Bacterial Reverse Mutation 

Test; EPA OPPTS 870.5500: Bacterial 

DNA Damage or Repair Tests; EPA OTS 

798.5100: Escherichia coli WP2 and 

UVRA Reverse Mutation Test; EPA OTS 

798.5500: Bacterial DNA Damage or 

Repair Tests.

Daphnia  ambigua, 

Daphnia  magna, 

Daphnia melanica 

Daphnia  pulex 

Small aquatic crustaceans commonly called water flea. As an 

invertebrate species in aquatic food webs, D. magna has been 

used as a representative test species for ecotoxicological 

evaluation of organic chemicals using immobilization test.

Crustaceans

Thamnocephalusplaty

urus

A family of crustaceans with a wide distribution 

including Western Australia and Southern Africa. The 24 hours 

EU Method C.2: Acute Toxicity for 

Daphnia; EPA OPP 72-2: Aquatic 

Invertebrate Acute Toxicity Test; OPPTS 

850.1010: Aquatic invertebrate acute 

toxicity, test, freshwater daphnids; OECD 

211: Daphnia magna Reproduction Test; 
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toxicity test is employed for screening of pure compounds, 

effluents, sediments, surface and ground waters, wastewaters, and 

biotoxins.

Chironomus sp

(C. riparius, C. dilutus 

and C. yoshimatsui)

Used to assess the effects of prolonged exposure of chemicals to 

the sediment-dwelling larvae of the freshwater. In assay, 

Chironomid emergence and development rate is measured at the 

end of the test.

Gammarus fasciatus, 

G. pseudolimnaeus, 

and 

G. lacustris

Gammarids can be cultured in the laboratory or collected from 

natural sources. If collected, they must be held in the laboratory 

for at least 14 days prior to testing.

Mysidopsisbahia Mysidopsisbahia is the organism specified for aquatic toxicity 

test. Juvenile mysids, ≤ 24–h old, are to be used to start the test.

OPPTS 850.1300 Daphnid chronic toxicity 

test; OPPTS 850.1790: Chironomid 

sediment toxicity test; OPPTS 850.1020: 

Gammarid acute toxicity test; OPPTS 

850.1025: Oyster acute toxicity test (shell 

deposition); OPPTS 850.1035: Mysid 

acute toxicity test; OPPTS 850.1350: 

Mysid chronic toxicity test; OECD 218: 

Sediment-Water Chironomid Toxicity 

Using Spiked Sediment (OECD TG 219); 

EPA OPPTS 850.1020/ EPA OTS 

795.1200: Gammarid Acute Toxicity Test.

Duckweed/P

lant

Lemna minor

Lemna gibba

One form of aquatic vascular plant floats on the surface of the 

water. Lemna minor is mostly employed in modeling of 

phytotoxicity of ILs and growth inhibition test of duckweeds 

OECD 221: Lemna sp. Growth Inhibition 

Test; OPPTS 850.4400: Aquatic Plant 

Toxicity Test Using Lemna sp.; OPPTS 
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where Lemnagibba is used in testing the phytotoxicity of 

pesticides and other environmental chemicals to higher plants.

850.4450: Aquatic Plants Field Study.

Enzyme Acetylcholinesterase Acetylcholinesterase plays the most important role in autonomic 

nervous system function which catalyses the hydrolysis of 

acetylcholinesters with a relative specificity for acetylcholine. 

Responses like (a) enzyme inhibition data of the 

acetylcholinesterase from electric eel (Electrophorus electricus), 

(b) the AMP deaminase and (c) the antioxidant enzyme system of 

mouse liver are important for toxicity prediction andmodeling.

OECD 419: Delayed Neurotoxicity of 

Organophosphorus Substances: 28-day 

Repeated Dose Study.

Channel Catfish Ovary 

(CCO)

CCO is the cell line of choice for the propagation and diagnosis of 

Channel Catfish Virus (CCV) and is the standard for diagnosing 

Channel Catfish Virus Disease (CCVD) in farm reared Channel 

Catfish. Prediction of ILs has been performed by using this 

endpoint according to many literatures.

Fish

Fathead minnow

(Pimephales promelas)

EPA recommended vertebrate species for freshwater chronic 

toxicity tests (test of survival and weight of the larvae). It is 

OECD 210, OPPTS 850.1400: Fish Early-

life Stage Toxicity test; EPA OPP 72-3: 

Estuarine/Marine Fish, Mollusk, Acute 

Toxicity Test; OECD 236: Fish Embryo 

Acute Toxicity test; OECD 212: Fish, 

Short-term Toxicity Test on Embryo and 

Sac-Fry Stages; OECD 215: Fish Juvenile 
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studied to investigate the effects of these waste materials on the 

aquatic life and effects induced by progestins.

Rainbow trout 

(Oncorhynchus 

mykiss)

Rainbow trout is a streamlined, salmonid form fish.  

Oncorhynchus mykiss is one of the important endpoints for study 

aquatic toxicity as well as an alternative model for studying the 

inhibition of aromatase (CYP 19).

Zebrafish

(Danio rerio)

A tropical freshwater fish belonging to the family Cyprinidae. It 

plays an important role in ecotoxicology as a prominent model 

vertebrate. It is standardized under the OECD and is employed to 

test chemicals, pharmaceuticals as well as industrial effluents.

Growth Test; OPPTS 850.1075 Fish acute 

toxicity test, freshwater and marine; 

OPPTS 850.1085 Fish acute toxicity 

mitigated by humic acid; OECD 204: Fish 

Prolonged Toxicity Test, 14-Day Study; 

OECD 230: 21-day Fish Assay; OECD 

229: Fish Short Term Reproduction Assay; 

OECD 234: Fish Sexual Development 

Test; OPPTS 850.1500 Fish life cycle 

toxicity.

Human keratinocyte 

cell line (HaCaT)

Naturally immortalized human keratinocyte line is utilized for 

studies of skin biology and cytotoxicity assessment of metal 

oxide.

Mammalian 

cells

CaCo-2 Heterogeneous human epithelial colorectal adenocarcinoma cells. 

Permeability coefficients across the cellular membranes of Caco-2 

cells are generally employed for modeling.

OPPTS 870.5300: In Vitro Mammalian 

Cell Gene Mutation Test; OPPTS 

870.5550 Unscheduled DNA Synthesis in 

Mammalian Cells in Culture; OECD 

473:In Vitro Mammalian Chromosomal 

Aberration Test; OECD 476: In Vitro 
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HeLa A prototypical cell of the human epithelium derived from cervical 

cancer cells and mostly employed for anticancer activity.

Prostate cancer cell 

line (PC3)

Human prostate cancer cell lines employed in modeling of 

prostate cancer inhibitors.

Human malignant 

melanoma (Fem-X) 

Derived from a lymph node metastasis of a melanoma patient and 

used for modeling of anticancer drugs.

HT-29 A human colorectal adenocarcinoma cell line with epithelial 

morphology and mostly sensitive to the chemotherapeutic drugs 

used in colorectal cancer modeling.

Rat cell line - IPC-81 Promyelotic leukemia rat cell line IPC-81 is employed in 

cytotoxicity assays of ILs.

Mammalian Cell Gene Mutation Test 

using the Hprt and xprt genes; OECD 

Guideline 479: Genetic Toxicology, In 

Vitro Sister Chromatid Exchange Assay in 

Mammalian Cells; OECD 487: In vitro 

Mammalian Cell Micronucleus Test; 

OECD 490: In Vitro Mammalian Cell 

Gene Mutation Tests Using the Thymidine 

Kinase Gene.

Protozoa Tetrahymena 

thermophila

Tetrahymena 

pyriformis

Free-living unicellular ciliated protozoa and one of the most 

popular endpoints for environmental toxicity assessment.

OECD 244: Protozoan Activated Sludge 

Inhibition Test.

Tadpoles American bullfrog One of the largest frog species in North America, this can grow to OPPTS 850.1800: Tadpole/sediment 
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(Lithobatescatesbeian

us or Rana 

catesbeiana

a length of 8 inches (Tadpoles 6.75) or more and weigh up to 1.5 

pounds. Due to its size and fast growth considered for aquatic 

ecotoxicity.

Bufo vulgaris 

formosus, Rana 

japonica

A common and sensitive species; the larva of the frogs, are typical 

amphibious bridging the gap between aquatic and terrestrial 

animals. Recurrently used for toxicity testing purposes and risk 

assessments and have been recommended by the EU-TGD.

subchronic toxicity test; OECD 231: 

Amphibian Metamorphosis Assay.

Yeast Saccharomyces 

cerevisiae

One form of budding yeasts and one of the most popular studied 

eukaryotic model organisms in molecular and cell biology. Small 

in size, accessible, reproduction time quick and potentially 

economic. Considered as important species for ecotoxicity 

prediction.

OECD 480: Gene Mutation Assay; OECD 

481: Mitotic Recombination Assay; EU 

Method B.16: Mitotic Recombination test; 

EPA OPPTS 870.5575/798.5575: Mitotic 

Gene Conversion assay
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Table 6 A comprehensive list of publicly available databases comprises of information of the 

ecotoxicity due to PPCPs.

Database Description

ACToR347

A database by US EPA National Center for Computational Toxicology (NCCT), consisting 

of chemical structure, physicochemical values, and provides in vitro and in vivo toxicology 

data for over 500,000 environmental chemicals.

BDSM348
Birth Defects Systems Manager (BDSM) database dealing with developmental toxicity and 

developed by University of Louisville.

CCRIS349

Chemical carcinogenesis research information system (CCRIS) created by the National 

Cancer Institute (NCI). It contains carcinogenicity, mutagenicity, tumor promotion, and 

tumor inhibition test results for over 8,000 chemicals.

ChEMBL350
Containing data for over 12 million activities and 1 million assays for over 1.36 million 

chemicals.

ChemSpider35

1

Database of more than 30 million unique structures, providing physico-chemical 

information and toxicological data from various species and different routes of 

administration.

COSMOSdb35

2

It consists of two datasets (US FDA PAFA and RepeatToxDB) that hold information for 

12,538 toxicological studies across 27 endpoints for 1,660 compounds.

CPDB353

The Carcinogenic potency database, developed by the University of California, Berkeley 

and the Lawrence Berkeley National Laboratory, analyses animal cancer tests used in 

support of cancer risk assessments for human. It includes 6,540 chronic, long-term animal 

cancer tests from the literature as well as from the NCI and the National Toxicology 
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Program (NTP).

CTD354

Comparative Toxicogenomics Database (CTD) contains manually curated data describing 

cross-species chemical-gene/protein interactions and chemical- and gene-disease 

relationships. The results provide insight into the molecular mechanisms underlying 

variable susceptibility and environmentally influenced diseases.

Danish 

(Q)SAR355

Database includes estimates for more than 200 (Q)SARs from free and commercial 

platforms and related to physicochemical properties, ecotoxicity, environmental fate, 

ADME and toxicity. Developed by the National Food Institute, Technical University of 

Denmark, with support from the Danish EPA, the Nordic Council of Ministers and the 

European Chemicals Agency.

DART356
DART provides more than 400,000 journal references covering teratology and other 

aspects of developmental and reproductive toxicology.

DevTox357
Developmental toxicity data and control database for various strains of common laboratory 

animals.

Drugs@FDA3

58

Complete information related to US FDA-approved drugs are available.

DSSTox359

Distributed Structure-Searchable Toxicity (DSSTox) database developed by NCCT, US 

EPA. It provides downloadable, structure-searchable, standardized chemical structure files 

associated with chemical inventories or toxicity data sets of environmental relevance.

ECOTOX360
Database for single chemical toxicity information for aquatic and terrestrial life, developed 

by US EPA.

ESIS361 European Chemical Substances Information system (ESIS) provides information on 
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chemicals related to risk and safety.

eTox362 A drug safety database from pharmaceutical industry consists of toxicology reports and 

public toxicology data.

Fraunhofer 

RepDose363

A database containing more than 3100 studies on subacute to chronic toxicity within a 

variety of routes of administration for about 930 chemicals. 

GAC364

Genetic Alterations in Cancer (GAC) is a database that quantifies specific mutations found 

in cancers induced by environmental chemicals developed by US National Institutes of 

Health (NIH) and National Institute of Environmental Health Sciences (NIEHS).

GAP365

Genetic Activity Profile (GAP) database under US EPA and International Agency for 

Research on Cancer Monograph (IARC); provides quantitative genotoxicity results of ≈ 

500 chemicals to support hazard classification of human carcinogens.

Gene-Tox366
GENE-TOX provides genetic toxicology (mutagenicity) data for more than 3,000 

chemicals from the US EPA.

HESS367 The Hazard Evaluation Support System (HESS) database supports the evaluation of 

repeated dose toxicity and has two databases. One is a toxicity knowledge database which 

contains information on repeated dose toxicity and toxicity mechanisms. The other is a 

metabolism knowledge database containing rat metabolism maps and information on 

ADME in rats and humans. 

HSDB368

Hazardous Substances Data Bank (HSDB) focuses on the toxicology of potentially 

hazardous chemicals. It provides information on human exposure, industrial hygiene, 

emergency handling procedures, environmental fate, regulatory requirements, 

nanomaterials, and related areas.
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IARC 

Monograph369

IARC is developed by World Health Organization (WHO) which identifies environmental 

factors (include chemicals, complex mixtures, occupational exposures, physical agents, 

biological agents) that can increase the risk of human cancer.

IRIS370

Integrated Risk Information System (IRIS) is under National Center for Environmental 

Assessment (NCEA), US EPA. It is a compilation of reports on 540 environmental 

chemical substances and their potential to cause human health effects.

ISSCAN371
ISSCAN is a database on chemical carcinogens (long-term carcinogenicity bioassay on 

rodents) created by IstitutoSuperiore di Sanità, Italy.

ITER372

International Toxicity Estimates for Risk (ITER) is developed by TERA (Toxicity 

Excellence for Risk Assessment), consists of human health risk values and cancer 

classifications for over 680 chemicals of environmental concern.

IUCLID373

International Uniform ChemicaL Information Database (IUCLID) is a software application 

to capture, store, maintain and exchange data on intrinsic and hazard properties of chemical 

substances.

JECDB374
A Toxicity Database by Japanese Ministry of Health, Labour and Welfare which contains 

toxicity test reports of environmental chemicals.

JRC QSTR375 European Commission, Joint Research Centre’s database of REACH relevant to QSARs.

KATE376

KAshinhou Tool for Ecotoxicity (KATE) is created by Japanese National Institute for 

Environmental Studies (NIES) which uses structural domain named C-judgement and 

performs categorization of chemicals as potential hazards.

KemI377 This database is prepared by the Swedish Chemicals Inspectorate which consists of risk 

associated data for environment and health contaminants.
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LAZAR378 It is a Structure-Activity Relationships database that provides QSTR predictions for liver 

toxicity, mutagenicity, and carcinogenicity.

Leadscope379
It is a commercial database containing over 400,000 data covering acute, (sub-) chronic, 

carcinogenicity, genotoxicity, and reproductive toxicity for around 180,000 chemicals.

MDL380

Commercially available structure-searchable database containing data from both in vitro 

and in vivo studies covering acute, carcinogenicity, mutagenicity and reproductive toxicity 

studies for over 150,000 chemicals along with information from RTECS.

NTP381
National Toxicology Program initiated by US NIH/NIEHS. NTP testing status and 

information of agents registered in the US of public health interest.

OECD 

eChemPortal3

82

Access to information on physicochemical properties, environmental fate and toxicity of 

hazardous chemicals for the environment.

OECD 

HPV383

Data includes acute aquatic toxicity necessary to determine a potential hazard.

OEHHA384 Toxicity Criteria Database of chronic reference exposure levels for State of California.

OSIRIS385 Data on aquatic toxicity, carcinogenicity, mutagenicity and repeat dose toxicity.

RAIS386 Risk Assessment Information System (RAIS) deals with chemical-specific toxicity values 

sponsored by the U.S. Department of Energy (DOE), Office of Environmental 

Management, Oak Ridge Operations (ORO) Office through a contract between Bechtel 

Jacobs Company LLC and the University of Tennessee.

RITA387
Registry of Industrial Toxicology Animal-data (RITA) is generated by Fraunhofer Institute 

of Toxicology and Experimental Medicine (ITEM) Hannover for comparing and 
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interpreting rodent carcinogenicity studies and tumor data.

Tox21388 US EPA Tox21 is currently screening over 10,000 chemicals at the NIH using the ToxCast 

HTS assays to provide risk assessors with data for use when making decisions about 

protecting human health and the environment.

ToxCast389 US EPA is using various HTS assays to measure changes in biological activity. Currently 

ToxCast has evaluated over 2,000 chemicals within over 700 high throughput assay 

covering roughly 300 signaling pathways.

TOXLINE390
TOXLINE is a bibliographic database provides references covering the biochemical, 

pharmacological, physiological, and toxicological effects of drugs and chemicals.

TOXNET391

US National Library of Medicine Toxicology Data Network is a group of databases 

covering chemicals and drug, environmental health, occupational safety, risk assessment 

and regulations, and toxicology.

TOXMAP392
Environmental Health Maps provides searchable, interactive maps of EPA Toxics Release 

Inventory (TRI) and Superfund data, plus US Census and NCI health data.

ToxRefDB393

Contains information of in vivo study results including acute, (sub-)chronic, developmental 

and reproductive endpoints for 474 chemicals ToxRefDB also links with both ACToR and 

ToxCast databases.

Toxtree394
Open-source application that places chemicals into categories and predicts various kinds of 

toxic effects by applying decision tree approaches.

TRI395
Toxics Release Inventory with information about annual environmental releases of over 

600 toxic chemicals by U.S. facilities.

TSCATS396 Toxic Substances Control Act Test Submissions (TSCATS) is an online database of 
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chemical testing results and adverse effects of chemicals on health and ecological systems 

constructed by U.S. Department of Commerce National Technical Information Service 

Alexandria, Virginia. The collection currently exceeds 25,000 titles of studies that are 

submitted to the US EPA by U.S. Industry under several section of the TSCA.

US FDA 

CERES397

US FDA Chemical Estimation Risk Evaluation System (CERES) is a centralised, 

sustainable data management, and storage system that will provide support in decision 

making for both pre- and post-market safety assessment for food ingredients.

USGS398
US Geological Survey (USGS) is developed by the Columbia Environmental Research 

Center for the aquatic acute toxicity tests.

VITIC 

Nexus399

VITIC Nexus is a database provides information for a variety of toxicological endpoints 

including carcinogenicity, mutagenicity, and hepatotoxicity.

WikiPharma40

0

Database of effects caused by pharmaceuticals on non-target organisms developed within 

the Swedish research program MistraPharma (www.mistrapharma.se). Itcontains basic 

information for 831 APIs representing 35 different drug classes. Effect data have been 

identified and included for 116 of these substances and ecotoxicity test data have been 

extracted from 156 different sources.

13. CRITICAL ANALYSIS OF SAR AND QSAR STUDIES FOR 

ECOTOXICOLOGICAL ASSESSMENT OF PPCPs

It is estimated that up to 30 animal studies are needed for characterizing one substance.401,402 

Hence, environmental regulatory use of (Q)SAR including both QSARs and SARs (structure-

activity relationships without quantified predictions) is goal-driven support for decision making 

and policy development in accordance with obligations in the 3R’s strategy to reduce the use of 
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animals in toxicity testing most OECD countries have signed. (Q)SARs are used in the lower 

tiers of the risk assessment process and have traditionally been used for priority setting rather 

than actual risk assessment.403 (Q)SARs may be developed to have either high sensitivity and low 

specificity thus yielding an elevated number of false positives - or with low sensitivity and high 

specificity, thus yielding an elevated number of false negatives.  This represents the general 

optimization dilemma for development of (Q)SARs.  Another general dilemma is the risk of 

over-fitting models and decreasing transparency of the model with increased sophistication e.g. 

in neural network models – it is important to avoid QSARs used as a “black-box” and ensure 

their proper use in a regulatory setting.404 However, currently most of the regulatory 

environmental toxicity (Q)SAR used in, e.g., the OECD QSAR tool box, identifies substructures 

of the target compound that appear mostly in active molecules and may therefore be responsible 

for toxicity. They generally initially start by identifying possible linear relation between octanol-

water partition coefficient (KOW) and observed toxicity (baseline narcosis), explained by its 

lipophilicity (narcosis effect).  Bradbury405 found that approximated 70% of all industrial organic 

chemicals are estimated to act via baseline and polar narcosis modes of action in acute exposures 

(1-14 days).  Octanol is not an optimal surrogate for biological membranes, hence models are 

being developed with other descriptors.  The ideal (Q)SAR should have a well-defined and 

measurable endpoint based on a diverse data set, and a statistical method that needs to be 

transparent and appropriate to the toxicity endpoint data.  It should consider an adequate number 

of chemicals for sufficient statistical representation and reasonable distribution of active and 

inactive chemicals.  A wide range of quantified toxic potency should be present in the training 

set, and the model should provide a mechanistic toxicity explanation. The data sets should be 
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curated to a high quality and must meet the basic requirements underlying the statistical 

procedure used to develop the (Q)SAR model.404

Specifically, for PCPs, there is a concern that baseline toxicity might not be appropriate due to 

the pharmacodynamic nature of the compounds and the known conservation of receptor targets 

across species.406 Moreover, the concern regarding receptor-mediated toxicity is typically more 

relevant for chronic effects rather than acute ditto. Sanderson and Thomsen407 have shown that 

for the majority of PCPs, narcosis based QSAR results with the accepted extrapolation factor 

could accurately predict PCP toxicity relative to the GHS classification system, and that their 

acute toxicity for the most part (70%) were narcotic. This shows that novel models and 

approaches are needed to demonstrate more accurately the toxicity PCPs may represent.408 He et 

al.409 provide an example of QSAR development for prediction of endocrine disruption in fish, 

similar developments are needed to demonstrate the role of QSARs in an Adverse Outcome 

Pathway (AOP) context for PCPs.408 The previously mentioned regulatory development and use 

criteria by Walker et al.404 still apply to the novel QSARs and tools, that need to be developed to 

support assessment and decision-making regarding PCPs in the environment. The most 

prominent limitation is lack of access to good chronic data to provide sound statistical models as 

well as appropriate elucidation of key molecular interactions between the compound and the 

receptors and the relevance of this interaction for the organism.

13.1 Models for PPCPs

13.1.1 Ecotoxicity models of PPCPs for diverse test species

Page 81 of 156 Green Chemistry



82

Sanderson et al.58 ranked 2986 PPCPs into 51 classes relative to their hazards toward daphnia, 

algae, and fish using the EPIWIN software, especially the ECOSAR program, available from the 

US EPA site (http://www.uoguelph.ca/~hsander/) for assessing toxicity to the aquatic 

environment and to provide a baseline to fill the screening data regarding the environmental 

toxicity of APIs. The study suggested that modifying additives were the most toxic classes 

whereas gastrointestinal drugs, cardiovascular, anxiolytics, hypnotics, sedatives, antivirals, 

antipsychotics, thyroid, and corticosteroid pharmaceuticals were predicted under most perilous 

therapeutic classes. The global relative order of vulnerability was assessed to be daphnia > fish > 

algae. The authors ranked logKow data for all 51 classes which is an important indicator for the 

potential to bioaccumulate in the ecosystem. The authors evaluated overall hazard ranking for all 

51 classes based on the mean predicted toxicity as a function of the frequency of the predicted 

toxicity within each class. The overall hazard ranking defined as mean HQ*percent HQ > 1; 

where HQ is a hazard quotient and expressed as the ratio of PEC and PNEC. The relative ranking 

of top 20 therapeutic classes based on logKow and overall hazard ranking of top 15 therapeutic 

classes to algae, daphnia and fish are reported in Figure 20. Considering the combined effects of 

all results, the authors found that 16% of the classes would exceed a HQ of 1 even without the 

assessment factor of 1000. The cardiovascular drugs, sedatives, anxiolytics, antipsychotics and 

hypnotics, and gastrointestinal drugs were predicted to be the most hazardous therapeutics for all 

three species. Sex-hormones, sunscreen agents, antimalarials and antifungals are predicted to be 

the most frequent hazardous therapeutic pharmaceuticals (% HQ < 1). Among the personal 

PCPs, modifying additives (paraffins and surfactants) were the most toxic, followed by 

pesticides and repellants, nutritional agents and vitamins as per the study. The obtained 

hazardous effect trend of all PPCPs is quite similar with the relative ranking of logKow.  
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Figure 20 Top left: The relative ranked log Kow for top 20 classes of PPCPs; The overall hazard 

raking for top 15 classes of PPCPs to algae (top right), daphnia (bottom left), fish (bottom 

right). 

Kar and Roy59 developed one of the first interspecies QSAR models to correlate the ecotoxicity 

of structurally diverse 77 pharmaceuticals to Daphnia magna and fish. The  (aasC) 

fragment and keto group are predominantly accountable for higher toxicity of pharmaceuticals to 

D. magna (Figure 21). Again, along with the keto group, structural fragments like X=C=X, R–

C(=X)–X, and R–C X are significant features for the high toxicity values to fish (Figure 22). 

The interspecies QSAR models were further implemented to predict fish toxicity of 59 
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pharmaceuticals (where experimental Daphnia toxicity present) and Daphnia toxicity of 30 

pharmaceuticals (where experimental fish toxicity present). The models demonstrated an 

enhanced and comprehensive risk assessment of pharmaceuticals where toxicity data is missing 

for a specific species. 

Figure 21 Mechanistic interpretation of pharmaceuticals toxicity to D. magna.
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Figure 22 Mechanistic interpretation of pharmaceuticals toxicity to fish.

Sangion and Gramatica60 developed quantitative activity–activity relationship (QAAR) models 

with a good correlation between toxicity of PPCPs towards invertebrate Daphnia magnaand 

towards two fish species namely Pimephales promelasand Oncorhynchus mykiss with single 

theoretical molecular descriptor which helped to explore the relationship between toxicities in 

invertebrate-fish species.  The authors developed interspecies models employing three datasets: 

D. magna-O. mykiss (51 PPCPs, case 1), D. magna–P. promelas (44 PPCPs, case 2) and P. 

promelas–O. mykiss (36 PPCPs, case 3 and 4). MLR by the ordinary least squares (MLR-OLS) 

technique was applied by using the QSARINS software.61 The study demonstrated importance of 

autocorrelation descriptors in interspecies correlations. The developed QAAR models can fill the 

data gap and are helpful tools for the prioritization of the hazardous PPCPs. The models are able 

to decrease the requirement of more complex experimental tests on upper trophic organisms also 
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saving animal lives. The most significant conclusion provided the by authors are the followings: 

a) daphnia toxicity could serve as a surrogate for fish toxicity and b) the fish–fish 

intercorrelations could be applied for assessing toxicity data when experimental information is 

unavailable. Major obtained mechanistic interpretation of toxicity towards each studied species is 

illustrated in Figure 23.

Figure 23 Mechanistic interpretation of toxicity towards D. magna, O. mykiss and P. promelas.

Acute toxicity (48-h concentration causing 50% mortality) of 55 PPCPs towards the freshwater 

planarian Dugesia japonica were modeled with the QSTR tool by Önlü and Saçan.410 Like 

majority toxicity modeling studies, the authors found hydrophobicity as one of the important 

parameters to model the aquatic toxicity for the mentioned species and found a correlation 

coefficient value of 0.58. To improve the model’s quality, the authors computed DRAGON 

descriptors and generated the final QSTR model employing MLR-OLS. The five descriptor 
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QSTR equation including hydrophobicity explained more than 80% variance of the toxicity. The 

positive coefficients of all descriptors appearing in the QSTR equation contribute to D. japonica 

toxicity positively (Figure 24). Log Kow or hydrophobicity seemed to be the most imperative 

feature for the toxicity because of simple perturbation of membrane function. The second 

important identified feature is GATS7p, which signifies higher atomic polarizability in a 

chemical  resulting in the toxicity. SpMaxA_G/D defines the folding degree of a molecule whose 

value leads to 1 for linear chemical and decreases along with the branching, suggesting the 

changes in molecular size and shape whichhas a positive contribution towards the toxicity. The 

reason behind this is quite clear as chemicals with higher number of flexibile fragments can fit 

better within the interacting proteins and show stronger binding afinity with the toxicity causing 

amino acid residues. The descriptor Mor31s signifies molecule depiction of structures based on 

electron diffraction calculated upon the scattering para-meter and weighted by the intrinsic state 

(I-state). The I-state of an atom can be interpreted the probable partitioning of the effect of non-σ 

electrons throughout the σ bonds. Thus, the less partitioning of the electron impact can be 

attributed to the valance electrons followed by the intermolecular interactions, resulting in higher 

toxicity to the studied species. The fifth and the last identified descriptor is CATS2D_08_DL, 

which designates the presence of a hydrogen bond donor and a lipophilic center at 8-bond 

topological distance, and it increases the toxicity. To apply a QSTR equation for data gap filling 

of untested compounds’ toxicity for the D. japonica, the authors employed 792 industrial 

chemicals including 317 designated HPV chemicals according to OECD. The AD study 

suggested reliable prediction of 85% of the total number of chemicals. The authors also 

developed the i-QSTR to predict the toxicity to D. japonica for 266 chemicals which have 
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experimental data for D. magna. The QTTR model reliably predicted 259 chemicals within the 

AD which is 97% of the total number of modeled compounds.

Figure 24 Mechanistic interpretation of QSTR and QTTR models for D. japonica and D. magna.

Khan et al.411 developed ecotoxicological QSTR models for 260 pharmaceuticals spanning over 

diverse therapeutic classes on three trophic level species like green algae Scenedesmus 

subspicatus (134), crustacean Daphnia magna (209) and fish Brachydanio rerio (192) employing 

the PLS approach using simple 2D descriptors. Followed by the development of QSTR models, 

the authors reported i-QSTR models using GA-MLR statistical tool to identify relationships 

among the toxicity values across the hierarchy of genetics in different taxonomical classes. 

Utilizing the respective i-QSTR models, the toxicity data of 103 pharmaceuticals were predicted 

for fish and algae where daphnia data were present, 86 pharmaceuticals were predicted for 

daphnia and algae where fish data were present, and 28 pharmaceuticals were predicted for fish 

and daphnia where algae data were present. Most importantly, the authors successfully utilized 

all i-QSTR models to fill the data gaps for 260 pharmaceuticals, where experimental data were 
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missing for at least one of the endpoints. The authors testified hydrophobic property to play the 

maximum contribution towards the toxicity of the considered pharmaceuticals irrespective of 

species followed by contributions of structural fragments like tertiary amines, carboxamide, 

carboxylate, allyl functionalities etc. which are also responsible to the toxicity of 

pharmaceuticals towards diverse aquatic species. A complete summary and findings of the study 

are demonstrated in Figure 25. Khan et al.411 suggested that if pharmacophoric prerequisite 

demands a hydrophobic group for pharmacodynamic effects, then a substitution with higher 

polarity should be preferred while such developed molecules may be less active systemically.  

Further, individual QSTR models were utilized for prioritizing 7106 pharmaceuticals without 

having experimental data using predicted response values, and ranking of pharmaceuticals was 

reported to provide the toxicity threshold for each species. The authors projected top 30, 13 and 

25 top toxic pharmaceuticals based on their study from the modeled dataset, drug-like molecule 

dataset, and Interbioscreen dataset, respectively. 
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Figure 25 Mechanistic interpretation from obtained QSTR and i-QSTR models for D. magna, S. 

subspicatus and B. rerio (+ and – before the features showed the contribution of the features).

Önlü and Saçan62 developed one of the first QSTR models to predict the cytotoxicity of PPCPs 

on the rainbow trout (Oncorhynchus mykiss) liver cell line RTL-W1. The models were developed 

by employing cytotoxicity data obtained from the 5-carboxyfluorescein diacetate acetoxymethyl 

ester (CFDA-AM) and Alamar Blue (AB) assays. The authors found a strong correlation (R = 

0.986; p < 0.01) between the two cytotoxicity endpoints (pEC50, CFDA-AM and pEC50, AB). 

For both endpoints, two common properties encoded the relationship between structure and 

cytotoxicity which measure the metabolic activity and membrane integrity, respectively. The 

first feature is nRCOOH, a simple, one-dimensional functional molecular descriptor representing 

the number of aliphatic carboxylic acid present in the molecule of interest. The negative 

contribution of nRCOOH signifies that cytotoxicity decreases along with the increase in a 

number of aliphatic carboxylic acid functional groups in a compound. The authors claimed that 

the hydrophilic and polar nature, as well as the hydrogen bond forming capability, make 

compounds with the carboxylic group more water-soluble followed by increasing the metabolism 

and eventually preferring their elimination. The second important descriptor is EHOMO, the 

highest energy level containing electrons in the compound which gives information about 

reactivity/stability of specific fragment of compounds and capable to measure the nucleophilicity 

of a molecule. Molecules with a high EHOMO value can donate their electrons more easily 

compared to molecules with a low EHOMO value, and hence are more reactive. The positive 

influence of this feature suggests that cytotoxicity and EHOMO are directly proportional. The 

authors suggested that cytotoxicity increases with increasing nucleophilicity and reactivity of the 
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studied compounds. The authors applied the QSTR model to predict the cytotoxicity of 101 

chemicals including PPCPs and industrial chemicals on RTL-W1 cell line with 91% structural 

coverage. Based on the external set prediction (pEC50, AB values), they concluded that 

antibacterial chemicals are relatively the least cytotoxic, whereas antipsychotic pharmaceuticals 

are relatively the most cytotoxic. Further, the authors explored a good correlation between in 

vivo fish acute toxicity (pLC50 for 96 h) and in vitro cytotoxicity (pEC50, AB). 

Khan et al.412 developed QSAR models for ecotoxicity of pharmaceuticals collected from the 

ECOTOX database413 along with other literature on four aquatic species Pseudokirchneriella 

subcapitata, Daphnia magna, Oncorhynchus mykiss and Pimephales promelas employing G/PLS 

statistical tool and 2D descriptors. The authors employed hydrophobicity parameters for 

modeling purpose due to the known dependence of toxicity on logP terms. The major toxicity 

contributing features were the size and bulk of molecules, polarity, hydrophobicity. The authors 

mentioned that molecules having highly polar groups with complex and rigid core structures 

showed higher toxicity against algae suggesting the idea of polar narcosis. Organometallic 

compounds and molecules with macrocyclic ring tend to show more toxicity towards aquatic 

species. The features contributing positively and negatively for each species are described in 

detail in Figure 26. Further, the developed consensus models were employed to predict acute 

toxicity of 9188 pharmaceuticals and drug-like compounds from the DrugBank which have no 

experimental toxicity data for all four species. Additionally, the ECOSAR software413 was used 

for parallel prediction for comparison and check the reliability of predictions from consensus 

models followed by prioritization of toxic pharmaceuticals for each species considering 
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predictions from the developed models and ECOSAR. Finally, a prioritized list of 500 most toxic 

pharmaceuticals and drug-like compounds had been reported.412

Figure 26 Critical features responsible for toxicity towards D. magna, O mykiss, P. subcapitata 

and P. promelas.

Sangion and Gramatica414 developed MLR-OLS based QSTR models employing 1267 human 

and veterinary pharmaceuticals collected from the ECOTOX database360 to predict acute toxicity 

in four species (D. magna, P. subcapitata, P. promelas, O. mykiss) spanning from three main 

aquatic trophic levels. In case of P. subcapitata, electrotopological state of the H atom bonded to 

sp2 hybridized carbons accounting for electronic perturbations of the near substituents and the 

availability of a bond to be attacked by atoms in intermolecular interactions features contributed 

in decreasing the toxicity. On the other hand, the presence of multiple bonds in relation to their 

length helps in increasing the toxicity. For D. magna, lipophilicity contributes significantly as 

discussed in earlier literature. The models for O. mykiss suggested that the molecular size, more 
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branching and ring closure influence the toxicity positively whereas higher possibility of forming 

hydrogen bonds may decrease the toxicity. The hybridization ratio i.e. the fraction of sp3 C to sp2 

C discriminates the aromatic structures from the non-aromatic ones which are inversely related 

to the toxicity. This clearly suggested that the presence of double bonds or aromatic rings in 

chemical structure has a positive impact on toxicity. In case of P. promelas, the spatial density of 

atoms in a molecule and van der Waals volume have positive effects on the toxicity. A higher 

value of these features increases the toxicity. On the contrary, the number of hydrogen bond 

acceptor atoms have a negative impact on the toxicity (Figure 27). Thereafter, the constructed 

models were applied to predict acute toxicity of huge number of APIs without having 

experimental data employing PCA approach. Further,  individual APIs were ranked based on 

toxicity and “Aquatic Toxicity Index (ATI)” was generated which will be highly helpful for 

toxicity data gap filling followed by ERA.
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Figure 27 Mechanistic interpretation from the obtained QSTR models for all four species. 

(Features colored in red text and blue text denote positive and negative contribution to toxicity, 

respectively.) 

Hossain and Roy415 reported QSTR models employing 75 CECs including pharmaceuticals, 

surfactants, UV filters, hormones, preservatives and organophosphates to predict aquatic 

ecotoxicity towards freshwater planarian (D. japonica) employing the PLS statistical tool. The 

most significant features and fragments responsible for higher and lower toxicity are illustrated 

in Figure 28 as identified from all five cumulative PLS models. Out of 75 CECs in the D. 

japonica data set, 47 had their reported toxicity values against D. magna and 19 for fish (P. 

promelas), and that is why the author's developed i-QSTR models for both species with D. 

japonica. The i-QSTR model between D. japonica and D. magna explored two important 

features for better correlations, and they are B08[C-O] and B09[N-O]. B08[C-O] represents the 

topological distance 8 between C and O atoms in a specific molecule and has a positive 

contribution suggesting that the presence of this fragment in a compound will increase the 

toxicity. Among the studied molecules 17-α-ethinylestradiol, 17-β-estradiol, diethyl-stilbesterol 

possess this fragment and comparatively showed more aquatic toxicity than others. The second 

significant fragment is B09[N-O] which indicates the topological distance (the number of 

consecutive bonds) 9 between atoms N and O which has a negative contribution on the toxicity 

as it has H-bond donating capability which makes the molecules hydrophilic and offers 

resistance to penetrate through a biological membrane. Antibiotics like chlortetracycline, 

tetracycline, ofloxacin, trimethoprim comprising this fragment exhibit less toxicity. Again, the 

interspecies model between D. japonica and fish explored two imperative features for improved 

correlations, and they are C-006 and H-052. The C-006 descriptor defines the number of CH2RX 
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fragments, where X is a hetero atom (O, N, S, P, Se or halogens) and R is any group linked 

through carbon, having a positive contribution to the toxicity, and thus signifying that the 

molecule with this specific fragment will be more toxic. Compounds like propranolol, sodium 

dodecyl sulfate, chlorpyrifos, glyphosate etc. comprising of this fragment showed higher aquatic 

toxicity. The authors proposed that CH2RX influences the size of a molecule due to the number 

of CH2 groups and electronegativity due to the number of X atoms which could be the reason for 

toxicity. The second atom-centered fragment H-052 encrypts the number of hydrogens attached 

to sp3 hybridized C 

with one hetero atom at the β position. The negative contribution of this fragment suggests that it 

makes molecules less toxic to aquatic species. The developed QSTR and i-QSTR models were 

utilized to predict acute toxicity of ECOTOX database consisting of 99 CECs (daphnia toxicity 

present) and 51 CECs (with fish toxicity present) for the toxicity against D. japonica. The 

interspecies models for fish and daphnia showed 80% and 91% prediction coverage, 

respectively.
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Figure 28 Mechanistic interpretation of toxicity to D. japonica, D. magna and P. promelas from 

developed QSTR and i-QSTR models.

Khan and Roy416 reported ecotoxicological QSTR model for PCPs on three aquatic organisms 

namely Daphnia magna (134 PCPs), Pseudokirchneriella subcapitata (30 PCPs), and 

Pimephales promelas (74 PCPs) employing the PLS statistical tool following the OECD 

guidelines. The obtained models highlight the structural requirements and molecular properties 

essential to design safer cosmetics. The obtained models suggested that with an increase in log P, 

molecular size, polarizability, a higher number of branching and rotatable bonds as well as the 

presence of sulphuratoms, the toxicity of PCPs increases. The individual model-specific features 

can be checked in Figure 29 with a complete workflow employed by authors. The authors then 

compared their predicted results with the ECOSAR software outcome which is generally 

employed for risk assessment approach by regulatory agencies. Predictions obtained from the 
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QSTR models and ECOSAR tools were used to rank the PCPs based on their average scaled 

aquatic toxicity values. Further, for ranking of an entire external set of 596 compounds, all three 

obtained QSTR models as well as ECOSAR software were applied by authors to predict the 

toxicity values of the entire dataset against respective endpoints. Interestingly, the ranking of 

PCPs was done purely based on the average scaled scores, without taking into consideration any 

structural class of chemicals or functional groups. Khan and Roy418 listed top 100 chemicals 

comparing the model and ECOSAR based predictions where Phthalate, UV-filter, fragrance, and 

antimicrobials are in the top 20 toxic PCPs. 

Figure 29 Mechanistic interpretation of toxicity of PCPs towards D. magna, P. subcapitata and 

P. promelas.

13.1.2 Models for miscellaneous toxicity due to PPCPs
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The environmental behavior of PCPs needs to be examined; data on persistence, 

bioaccumulation, and toxicity (PBT) are very rare for the majority of PCPs. Cassani and 

Gramatica63 investigated the possible cumulative PBT behavior of 534 PCPs consisting of 393 

fragrance and flavoring agents, 66 UV filters/sunscreen agents, 38 phthalates, 27 hair-dye 

ingredients, 8 parabens, and 2 antimicrobial agents employing two modeling tools: the Insubria 

PBT Index, a QSAR model under the QSARINS software, and the USEPA PBT Profiler. The 

screening allowed to identify the most hazardous PCPs, which are predicted as potential PBTs by 

both methods, in a consensus approach. The PBT Index prediction allows classifying PCPs into 

non-PBT, “medium” PBT and PBT chemicals considering a preset arbitrary threshold. The 

authors considered the threshold at PBT Index ≥1.5, to highlight the PBT and very persistent 

very bioaccumulative (vPvB) chemicals while remaining PCPs that are predicted with a PBT 

Index <1.5 are considered non-PBT. A priority list of the potentially most hazardous PCPs was 

reported in agreement by both the modeling tools. Only eight PCPs (7 of them are UV-filters) 

were prioritized by consensus as for the most hazardous considering the PBT behavior, while the 

majority (472 out of 534 studied PCPs) are predicted as potential non-PBTs (Figure 30). The 

linear OLS model consists of four molecular descriptors which are independent of the molecular 

conformation. The descriptor nX defines a number of halogen atoms, and nBondsM suggests the 

number of multiple bonds or the unsaturation degree, which counts the total number of bonds 

that have bond order greater than one. Due to the positive sign, both features are helping to 

increase the cumulative PBT behavior. The third feature nHBDon_Lipinski defines a number of 

hydrogen bond donors using Lipinski’s definition which characterizes the prospect to form 

hydrogen bonds with water, increasing its solubility, while MAXDP2, maximal electro-

topological positive variation encrypts for the distribution of electronic features and polarity. 
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Interestingly both features have negative signs as soluble and more polar PCPs have, in general, 

lower cumulative PBT behavior. This study strongly suggested that the PBT Index could be an 

effective tool to identify instantly from the molecular structure safer and more environmentally 

sustainable chemicals even before synthesis to avoid high failure rate and monetary expense.

Figure 30 Eight potential PCPs as per reported PBT Priority list by the consensus approach 

along with the developed QSTR model.

The endocrine disrupting activity of perfluoroalkyl substances (PFASs) is modeled employing 

regression and classification based QSTR models followed by docking studies to understand 

important structural fragments responsible for higher and lower toxicity profiles by Kar et al.64 A 

combination of ligand and structure-based modeling conclude that carbon chain length has a 

major role to play in determining the toxicity potency. The following significant observations 

(Figure 31) are reported by authors:
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 The studied PFASs containing acid functional groups are highly toxic with the carbon 

chain length between 6 and 10 (example: 7H-Perfluoroheptanoic acid, Perfluorohexanoic 

acid). On the contrary, lower toxicity is observed when PFASs consist of C chain length 

greater than 10 or below 6 (examples: Perfluorotetradecanoic acid, Perfluorododecanoic 

acid). 

 PFASs consisting of sulfonate or sulfinate functional groups are toxic ones (examples: 

Perfluorohexane sulfonate, Perfluorooctane sulfinate). Compounds will be of lower 

toxicity if the carbon chain length is over 8 (Example: perfluorodecane sulfonate). 

 PFASs substituted with an alcohol functional group are lower or non-toxic, regardless of 

their carbon chain length (Example: 2-Perfluorohexyl ethanol, 2-Perfluorooctyl ethanol).

 PFASs consisting of sulfonamide functional groups are toxic when C chain length equal 

to 8 (Perfluorooctane sulfonamide). On the other hand, substitution of sulfonamide 

groups with alkyl or alcohol group leads to lower or non-toxic regardless of their carbon 

chain length (N-methyl perfluorooctane sulfonamide, N-ethyl perfluorooctane 

sulfonamide). 
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Figure 31 Critical features related to endocrine disruptions of PFASs.

Kar et al.417 developed statistically robust QSTR models employing single and mixture 

halogenated molecules using a weighted descriptors approach for developmental toxicity on 

zebrafish (Danio rerio) embryos. The developed model further implemented to predict two 

external test sets of halogenated compounds (16) and PFASs (2324) after checking the AD of the 

studied molecules. The first external test set consists of binary and tertiary mixtures used to 

check their possible threshold and mode of toxicity for future risk assessment; and the PFAS 

dataset consists of single (24), binary (276) and tertiary (2024) mixtures of PFASs. Based on a 

complete study, the authors concluded that chemicals in mixtures exhibited concentration 

addition (dose addition) of a specific chemical signifying a similar mode of toxic action and non-

interaction. Additionally, mixtures of halogenated compounds including PFASs showed less 

toxicity than their single counterparts, and the observed toxicity trend is Single >Binary 
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mixture> Tertiary mixture. The predicted values of a huge external set of mixtures can be useful 

as a toxicity profile repository due to the huge scarcity of mixture toxicity data of PFASs. How 

the toxicity values are changing from single to binary and tertiary mixtures is demonstrated in 

Figure 32 taking results for three studied chemicals as examples.

Figure 32 How toxicity trend is changing from single molecule to mixture.

Jean et al.418 generated a statistically significant and predictive QSAR model for 67 

environmental chemicals including good number of PCPs [alcohols, polychlorinated 

dibenzodioxins (PCDDs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic 

hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs)] employing the experimental data 

of adipose/blood partition coefficient for mammals. The reported model identifies that chemicals 

with higher octanol-water partition coefficients displayed higher adipose/blood partition 

coefficients. On the contrary, molecules with lipophilic or hydrophobic feature showed higher 

adipose/blood partition coefficients (Figure 33). Followed by the AD check, the best QSAR 

model was employed by the authors to predict adipose/blood partition coefficient of 513 PCBs, 
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PCDDs, PBDEs, and PAHs from the US EPA website for environmental risk assessment 

analysis and data gap filling which would be helpful for pharmacokinetic as well as toxicokinetic 

profiling of these chemicals in near future. Analyzing the results, it can be confirmed that 

presence of higher number of halogens (~ 6 to 10) in the studied chemicals resulted in high 

octanol-water partition coefficient followed by the high value of adipose/blood partition 

coefficient 

Figure 33 Features responsible for the high and low value of logP(adipose/Blood) for the studied 

alcohols, PCBs, PBDEs, PCDDs, and PAHs.

Endocrine disruption toxicity was modeled for 144 chemicals including various PPCPs 

employing QSTR and i-QSTR approaches for 14 species covering four trophic levels across all 

spheres of environmental compartments by Khan et al.419 to explore crucial features responsible 

for toxicity to individual species. The obtained GA-PLS models summarized following common 
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conclusion for all species: chemicals consisting of sulphur, phosphorus and halogens highly 

impact the toxicity along with hydrophobicity as suggested by logP terms like XlogP and 

ALOGP2. On the contrary, hydrophilic moieties like aliphatic ethers, esters, branching in 

molecule and increased O atom contents reduce the toxicity. The major features for each species 

are depicted in Figure 34.

Figure 34 Critical structural fragments accountable for endocrine disruption toxicity against 

various species.

13.2 Imperative features responsible for ecotoxicity and fate 
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Comprehensive introspection of the discussed models as well as other literatures58-64,410-434 help 

us to understand the major physicochemical properties and structural fragments related to 

intrinsic chemical reactivity followed by chemical’s environmental fate, transformation and 

toxicity as demonstrated in Table 7.58-64,410-434 Here aquatic, biota, terrestrial and air toxicity are 

summarized in a single term i.e. ‘ecotoxicity’; and fate and biotransformation are classified into 

biodegradation, bioaccumulation and bioconcentration for the simplification of discussion under 

Table 7. Identifying these important features will help chemists for designing of PPCPs with 

reduced ecotoxicity, better biodegradability followed by reduced bioconcentration and 

bioaccumulation.

Table 7. Major intrinsic properties and structural fragments related to PPCPs toxicity, fate and 

transformation.

Property Role/How it works

Physical 

Properties for 

ecotoxicity

Freezing point, boiling point, melting point, molecular weight, viscosity, and density 

are directly associated with environmental fate and health effects. 

Molecular size and weight increases, bioavailability and aquatic toxicity decrease. At 

MW > 1000 Da, bioavailability is negligible. Caution must be taken, however, to 

consider possible breakdown products that may have MW < 1000 Da and exert 

toxicity.424

Solvation 

properties for 

ecotoxicity

Phase partitioning/Partition coefficient: 

 LogP/logKow is the ratio of concentrations of a given compound across two mixed, 

immiscible phases at equilibrium where one solvent is water or an aqueous phase 

and the second is organic and hydrophobic, such as 1-octanol (i.e., octanol/water 
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partition coefficient [Kow] represented by P). Molecular hydrophobicity or 

lipophilicity (often referred as logP) is one of the most significant parameters for 

toxicity of PPCPs towards different species of environment. For nonionic organic 

chemicals that operate though narcosis, acute and chronic toxicity increases 

exponentially with increases in logP up to a value of ∼5. For those whose logP> 5, 

bioavailability decreases along with acute toxicity, but bioaccumulation also 

increases. Minimal toxicity is likely with logP < 1.425 Considering LogP/logKow, 

cardiovascular, sedatives anxiolytic antipsychotics and hypnotics, and 

gastrointestinal were predicted to be the most hazardous therapeutics for Daphnia 

magna, fish and algae.59,60,410-412,414

 LogD is defined as the ratio of the concentration of compound in the lipid phase to 

the concentration of all species (ionized and un-ionized) in an aqueous phase at a 

given pH. This ratio is directly affected by the pH of the system; thus, noted as 

logDpH. Ionizable compounds with logD7.4 < 1.7 have been shown to have 

increased probability of being safe to freshwater fish than those with logD7.4 > 

1.7.426

 LogD for acids/bases can be readily calculated from logP when pKavalues are 

known. pKa values provide insights into the lipophilicity and solubility of ionizable 

compounds which can be used to better anticipate and predict the compound’s 

toxicokinetic behavior for processes such as membrane permeability, protein 

binding, gastrointestinal absorption, and metabolic transformations.427

Solubility: Refers to the ability of the solute to dissolve in a solvent. The primary 
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measurement of interest in chemical alternatives assessment is solubility in water. In 

case of aquatic toxicity solubility of a chemical play huge role to toxicity.428

Aqueous solubility: It is a direct measure of the hydrophobicity of a substance. The 

solubility equation developed by Ran and Yalkowsky429 can be used to estimate 

intrinsic water solubility at 25oC (logS) for structurally diverse organic substances. 

This equation uses regression-derived correlation with logP and melting point (MP) 

for solids:

𝑙𝑜𝑔𝑆 = 0.8 ― 𝑙𝑜𝑔𝑃 ― 0.01(𝑀𝑃 ― 25)

Compounds with higher logP have lower water solubility. Very poorly water-soluble 

chemicals (<1 ppb) generally have low bioavailability and are less toxic.428

Aqueous solubility also dependent on temperature and pressure which are not 

considered here.

Salinity or salting-out indicates that above equation is not suitable to use for high-

melting, non-ionic solids.427

Colligative properties: Colligative properties are properties of solutions that are not 

dependent on the chemical but instead on the ratio of the number of solute particles 

to the number of solvent molecules in a solution. Examples of colligative properties 

include lowering of vapor pressure, elevation of boiling point, and depression of 

freezing point which play important role in transformation and biodegradation of 

chemicals.

Molecular 

Attributes for 

Molecular attribute is used to describe properties related to molecular shape and size. 

 Electronic parameters like frontier orbital energies (Highest Occupied Molecular 
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ecotoxicity Orbital [HOMO], Lowest Unoccupied Molecular Orbital [LUMO), and the energy 

gap [∆E] between the HOMO and LUMO orbitals) dipole moments (μ), 

polarizabilities (α) of molecules that affect chemical reactivity with biological 

targets. In many instances, electronic properties have been shown to be helpful in 

identifying chemicals of high toxicity.427

 EHOMO is the energy of the highest energy level molecular orbital containing 

electrons capable of measuring the nucleophilicity of a molecule. Molecules with a 

high EHOMO value can donate their electrons more easily compared to molecules 

with a low EHOMO value, and hence are more reactive. The positive influence of this 

feature suggests that cytotoxicity and EHOMO are directly proportional.62

 LUMO energies > 2 eV have shown to be associated with chemicals that are not 

toxic to Pimephales promelas. This is rationalized by the reduced electrophilicity 

of chemicals in this groups; the higher the LUMO energy of a chemical, the less 

likely it is to be a strong electrophile.430

 The HOMO–LUMO gap (∆E), which is a known measure of kinetic stability and 

responsible for high acute aquatic toxicity.426

 Atomic polarizability in a chemical might cause an interaction resulting in toxicity, 

especially for daphnids.410,418

 Properties that describe molecular size and shape include solvent accessible surface 

area, molecular volume, globularity, and ovality, and they can be related to 

bioavailability and reactivity. 

Structural  Keto group is predominantly accountable for higher toxicity of pharmaceuticals to 
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Attributes for 

ecotoxicity

D. magna and fish.59

 Structural fragments like X=C=X, R–C(=X)–X, and R–C X are significant 

features for the high toxicity value to fish59

 Organometallic compounds are toxic to fish like Oncorhynchus mykiss and 

Pimephales promelas412

 Molecules with macrocyclic rings showed higher toxicity to Pseudokirchneriella 

subcapitata412

 Molecules having highly polar groups with complex and rigid core structures 

showed higher toxicity against algae suggesting the idea of polar narcosis62,411

 Large size molecules and too much branching with hydrogen bond donor and 

acceptor tend be to higher toxic62,410-412

 Molecules with sulphur atom tends to show high first ionization potential to show 

high toxicity418

 Increase steric hindrance lowers the aquatic toxicity418

Structural 

Attributes that 

Enhance 

Biodegradation

Factors are combined from literatures:431-433

 Minimal number of strong electrons withdrawing substituents, like F and Cl. The 

biodegradability highly hampered if more than three Cl/F present

 Minimal chemical branching is good, but avoid quaternary carbons. Exception: 

Vitamin A, Cholesterol

 Avoid heterocyclic residues. For example, aliphatic ether, imidazole etc. except 

ethoxylates

 Minimal number of tertiary amines, nitro, nitroso, azo, and arylamino groups.
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 Minimal number of polycyclic residues (especially more than three fused rings).

 Avoid chlorine atom on phenyl ring as it become less susceptible to attack by 

oxygenase enzymes

 Presence of esters (including phosphonates) which are susceptible to enzymatic 

hydrolysis

 Presence of oxygen atoms in form of hydroxyl, aldehyde, carboxylic acid, ketone 

groups. 

 Presence of short linear alkyl chains (< 4 C) or phenyl rings that can act as sites for 

oxygenase enzyme activity.

 MW should be <1000

 Decrease steric hindrance at active site increases availability of biodegradation 

enzymes

 Avoid bulky ortho substitutions help in accessibility of biodegradation enzymes

Structural 

Attributes that 

minimizing 

Bioaccumulation/

Bioconcentration

Factors are combined from literatures:428,430,434

 logP/logKow (for aquatic environment), logKd (phase partition coefficient in soil 

and water, more likely to absorb in soil), logKw/g (phase partition coefficient in 

water and air) provide insight into environmental partitioning of the molecule and 

the potential for bioaccumulation in specific environment. Bioaccumulation 

directly proportional with the partition coefficient and that’s why its value should 

be low.

 Bioaccumulation generally is considered very high when logPexceeds 5 to 6 and 

generally considered low when the logP< 2. It should be noted, however, that a 
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compound with a high logP value may be rapidly metabolized or degraded, and in 

these cases, would not bioaccumulate. 

 Poorly lipid-soluble chemicals, those that are highly lipophillic (logP > 8), or 

chemicals with a molecular weight > 700 Da will generally not bioconcentrate.

 Chemical’s physical state is very important to check in which compartment (air, 

water, sediment, biota, soil) the chemical will partition. Physical state can be 

predicted employing boiling point, melting point, and vapor pressure

 Highly volatile chemicals will escape from soil or water and primarily be present 

in the air. Conversely, chemicals with a high propensity to sorb onto organic 

carbon or move into lipid phases are likely to remain in soils or sediments or move 

into biota, respectively.

14. CHALLENGES 

14.1 Ecotoxicity due to PPCP mixtures 

The real challenge in risk assessment for the environment is mixtures of chemicals belonging to 

different chemical classes acting through diverse MOA in a specific species/organism/system. 

Most of the time, researchers deal with single chemical toxicity for ERA. Not only that, 

industries, regulatory authorities provide chemical toxicity data for a definite species and 

environmental compartment. On the contrary, the real scenario is completely different, as risk 

exposure occurs through mixtures rather than single chemicals. Thus, assessment of single 

chemical toxicity may not display the real toxicity information.435 Another important point is that 

similar chemical mixtures with different ratios may show changed toxicity responses. So, 

evaluation of the toxicity of mixtures is quite complex experimentally as well as 
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computationally. In case of computational modeling of mixtures, the challenge is daunting one, 

as rational mathematical relationship between the experimental toxicity and the molecular 

descriptors of the structure is dependent on multiple activity assessment hypothesis, which is in 

most cases proficiently accomplished for single chemicals.436 The reasons are the followings:

a) toxicity response varies with diverse combination/ratio of similar chemical mixture, 

b) interaction among chemicals is the reason for multifaceted and noteworthy changes in 

the apparent response of the components,

c) the form of exposure is also important along with nature of the environment 

compartment, 

d) assessment of the composition of each chemical in a mixture is also difficult and 

sometime present in NOEC

To formulate the toxicity data for computational modeling purpose, one has to follow the steps 

mentioned below:437

(i) Evaluation of dosage response curves for mixture: A dosage response (DR) curve needs to be 

prepared for each chemical employing the model organism with the variation of concentrations.

(ii) Checking the effect of the chemical mixture: The effect of a chemical mixture to the model 

organism requires to be checked in presence and absence of the chemical mixture 

experimentally. It is important to mention that one should quantity a dilution series of the 

mixture which will permit to achieve wide-ranging dose response curve of the mixture. 

(iii) Hypothesis identification for modeling: The components in a mixture can observe additive 

behavior of effects or may show either amplified (synergistic) or reduced (antagonistic) effects. 

Thus, identification of MOA hypothesis is very much vital before modeling to attain a practical 
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mathematical relationship through computational approach (See Table 8). The most commonly 

acceptable hypothesis recognition of all present chemicals and their concentration in a mixture is 

also important for this step. 

Table 8 The MOA assessment hypothesis for mixtures.

Hypothesis Description

Concentration 

addition (CA)

The hypothesis assumes that chemicals act via similar MOA to produce an effect, 

thus one chemical acts as a dilution of the other and can be replaced at a persistent 

quantity for the other. The CA model can be explained by Loewe additivity 

equation. For instance, the equation for binary mixture of compounds A and B:

𝐶𝐴

𝐸𝐶𝑥𝐴
+

𝐶𝐵

𝐸𝐶𝑥𝐵
= 1

where CA and CB are the specific concentrations of the compounds A and B 

creating the mixture, which results an effect x, and ECxA and ECxB signify the 

corresponding effect concentrations of the individual compounds A and B that 

alone would generate the same response x as the mixture. The combined effect or 

sum of cA and cB is x. The sum of equation is always equal to 1 for the CA 

modeling.

Independent 

action (IA)

Chemicals act independently, and they have different MOA. The collective effect 

is computed employing the effects of components and their interactions in the 

mixture. The IA modeling can be explained through following formula: 

𝐸 = 1 ― ((1 ― 𝑒𝐴)(1 ― 𝑒𝐵)(⋯))

E is the outcome of the mixture at an explicit concentration; eA is the effect of 
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compound A at that definite concentration and same for chemical B i.e. eB. The 

equation can be expanded from binary mixtures to more component’s mixtures.

Synergistic 

and 

antagonistic 

actions

Toxicity of synergistic action is superior to the individual response of components, 

while the antagonistic act has lower effects than the response of individual 

components. Considering the Loewe additivity equation, when the sum is higher 

than 1 (>1), it suggests that higher total concentration is required to produce the 

same effect which assumes an antagonistic effect (infra-additive). If the value is 

lower than 1 (<1), then it is a synergistic effect (supra-additive). 

Generalized 

concentration 

addition 

(GCA) 

models

The CA and IA models are not valid for chemicals that have high potency but low 

efficacy. Thus, a generalized concentration addition (GCA) model was created by 

Howard and Webster to eliminate these limitations. The GCA considers the 

cumulative effect of a mixture by means of the efficacy and potency of the 

mixture’s constituents. The GCA model can be explained by following equation:

𝐸 =

max 𝑒𝑓𝑓𝑒𝑐𝑡 𝑙𝑒𝑣𝑒𝑙𝑋[𝑋]
𝐸𝐶50𝑋

+
max 𝑒𝑓𝑓𝑒𝑐𝑡 𝑙𝑒𝑣𝑒𝑙𝑌[𝑌]

𝐸𝐶50𝑌
+ ⋯

1 +
[𝑋]

𝐸𝐶50𝑋
+

[𝑌]
𝐸𝐶50𝑌

+ ⋯

E is the effect of the mixture at a definite concentration. Here, ‘max effect level X’ 

is the maximal effect level of chemical X, [X] is the concentration of X in the 

mixture at an explicit mixture concentration, EC50X is the EC50 value of X. 

Similarly, meaning for all notations related to chemical Y etc can be interpreted. 

(iv) Modeling for toxicity prediction and mechanistic interpretation: A good number of in silico 

methods exist but most successful and fruitful tool in mixture toxicity is QSTR.437 Boeijeaet 
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al.438 developed QSTR models of alcohol ethoxylate mixtures with a correlation coefficient of 

95% for three ecotoxicological species, i.e., Pimephales promelas, Daphnia magna, and 

mesocosms. Wang et al.439 generated highly predictive QSTR models employing forward 

stepwise-MLR and nonlinear radial basis function neural networks (RBFNNs). Kar et al.416 

performed QSTR modeling using mixture toxicity data of halogenated chemicals mixtures on 

zebrafish embryos and identified that the studied chemicals in mixtures exhibited dose addition 

or concentration addition of each chemical which explain for similar MOA and non-interaction 

among chemicals. The important factors of these modeling works are identification of best 

possible hypothesis for MOA followed by calculation of descriptors for QSTR modeling. The 

details about descriptor calculation and the validation protocol exclusive for mixtures are 

discussed below.

(a) Descriptors for mixtures: Mixture descriptors can be computed primarily based on 

two approaches.440,441 The first one is unweighted descriptor method where the mixture consists 

of one descriptor vector and has only one property value. In a simple term, this is the general 

average of the numerical value for each component in a mixture for respective descriptors. The 

second approach is weighted descriptors where descriptor vectors and property depend on the 

composition of mixtures’ components. Figure 40 demonstrates how descriptors are calculated 

for mixtures. Here for better understanding, binary mixture is considered.442

(b) Validation protocol: Traditional external validation procedure where the compounds 

are arbitrarily placed in the external set is undesirable in case of mixture models due to the 

overestimation of the prediction exclusively when mixtures of the similar chemicals with diverse 

ratios exist multiple times in the modeled dataset.442 Certainly, if both training and external/test 

sets contain compounds corresponding to the similar mixture, then true prediction of a model 
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will not be assessed. Three acceptable strategies are illustrated in Table 9 for rigorous external 

validation:

Figure 35 Hypothesis to calculate descriptors of mixtures for in silico modeling.

Table 9 External validation strategies for QSTR modeling of mixtures.

Strategy Description Interpretation

Points out Chemicals are arbitrarily placed in each fold of the external 

cross-validation set. Each mixture is present simultaneously 

in both the training and the external sets. But, among three 

strategies, this is the weakest validation protocol

Reflects the capability 

of models to predict 

present mixtures with 

original compositions 

Mixtures 

out

All data points corresponding to mixtures are composed of 

the identical constituents, but in dissimilar ratios, are 

simultaneously removed and placed in the same external 

fold. Thus, every mixture is present either in the training or 

in the external set, but never in both sets

Assesses the prediction 

quality of a model for 

new mixtures
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Compounds 

out

Pure compounds and their mixtures are simultaneously 

placed in the same external fold. Thus, every mixture in the 

external set contains at least one compound that is absent 

from the training set. This is the most rigorous strategy

Protocol does so for 

new compounds

Although the concept of mixture toxicity is quite old, the necessity of evaluation of mixtures 

toxicity evolved much later than the apprehensions for single chemical toxicity assessment. 

There is no doubt among toxicologists and regulatory authorities that to get a crystal-clear idea, 

one has to acquire comprehensive toxicity data for mixtures in different compartment of 

environment. Considering critical aspect of mixtures ecotoxicity assessment followed by 

management, we are suggesting following points for unproblematic future efforts: 

 Standardized protocol to identify the exposures, generation of biomarkers, and 

assessment of relevant mixtures hazardous to environment.

 Need to evaluate the mixture toxicity upto No-observed-adverse-effect level (NOAEL).

 Development of new techniques with a combination of experimental and computational 

methods as there is no single method which can address the multifaceted issue of mixture 

toxicity. Thus, more collaboration is expected between experimentalists and 

computational communities.

 Computational modeling is not possible without sufficient experimental data. The real 

problem for mixture’s ecotoxicity modeling is lack of experimental data. Thus, 

preparation of ecotoxicity database spanning over different compartment, multiple 

species and diverse experimental condition is the need of the hour.
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 Expert systems are advantageous for mixtures assessment, for predicting dose-dependent 

interactive effects along with prediction of untested and new mixtures in no time. 

 Hausdorff-like similarity (Hs) measure may be beneficial in modeling of mixtures.443 

Hausdorff similarity able to equally weigh both existing components in a mixture. To 

compute the diversity association between the two sets M and N, the Hausdorff formula 

can be expressed as following:

(7)𝑑𝐻𝑎𝑢𝑠𝑀𝑁 = 𝑚𝑎𝑥{ 𝑠𝑢𝑝
𝑚 ∈ 𝑀[ 𝑖𝑛𝑓

𝑛 ∈ 𝑁(𝑑𝑚𝑛)], 𝑠𝑢𝑝
𝑛 ∈ 𝑁[ 𝑖𝑛𝑓

𝑚 ∈ 𝑀(𝑑𝑚𝑛)]}
from which, the equivalent similarity measure can be calculated as:

(8)𝑠𝐻𝑎𝑢𝑠𝑚𝑛 = 𝑚𝑖𝑛{ 𝑠𝑢𝑝
𝑚 ∈ 𝑀[ 𝑖𝑛𝑓

𝑛 ∈ 𝑁(𝑠𝑚𝑛)], 𝑠𝑢𝑝
𝑛 ∈ 𝑁[ 𝑖𝑛𝑓

𝑚 ∈ 𝑀(𝑠𝑛𝑚)]}
Where, the signs s andd denote to the similarity and the distance measures, correspondingly. 

In case two sets M and N, the Hausdorff-like similarity can be expressed as following:

(9)𝐻𝑠𝑀𝑁 =
∑

𝑚 ∈ 𝑀
𝑚𝑎𝑥

𝑛 ∈ 𝑁 [𝑠𝑚𝑛] + ∑
𝑛 ∈ 𝑁

𝑚𝑎𝑥
𝑚 ∈ 𝑀 [𝑠𝑛𝑚]

𝑥𝑀 + 𝑥𝑁

Here,smn and snm are pair-wise similarity measures between the p-dimensional elements m and 

nof the sets M and N, correspondingly. xM and xN are number of components for both sets. The 

signs under numerator indicates the maximum similarity between the separate components for 

both sets. 

14.2 Transformation, metabolism and toxicity pathways

PPCPs are used as single chemicals or a combination of multiple chemicals. After occurrence in 

the different compartments of the environment by any means, they go through a series of 

transformations by metabolic pathways. As a chemical can experience manifold of metabolism, 
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thus every metabolic step can generate a new form of hazardous substance leading to diverse 

forms of toxicity. Interestingly, majority of risk assessment work oriented towards single 

chemical toxicity which offers only one directional toxicity measurement. Rather, the scenario is 

much more complex than what researchers observe. Multiple transformations through different 

metabolic pathways can exist for single chemicals.444 Subsequently, transformation rate data for 

chemicals for prioritization of competing pathways is necessary for the toxicity evaluation. The 

prioritization procedure necessitates the integration of consistent and precise transformation rate 

data. Thus, chemical fates, transformation, metabolism followed by respective toxicity due to 

metabolites are the real challenge in the risk assessment of PPCPs towards environment.445

The first and foremost step to fight the challenge is to create databases with metabolic and 

transformation rate constants, as the real issue is the absence of sufficient amount of data.444 

According to US EPA, following steps need to be followed for the acquiring of data:

(1) Generation of metabolic rate constants data by means of in vivo and in vitro experiment 

using advanced analytical tools. Once sufficient amount of experimental data are available, 

reliable and predictive computational model can be prepared and used. 

(2) When there is no data at all, it requires to use mechanistic QSTR models and rate 

constants derived from SPARC computer model from US EPA.

(3) Data mining from the literature and Program Offices of regulatory agencies. 

(4) Implication of exposure genomics (assessing gene expression profiles) can provide early 

indications of chemical exposure due to modification in gene expression which will be 

utilized to direct chemical fate and metabolism studies. The exposure genomics will offer 
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following information: (a) the minimum concentrations at which biological action observe; 

and (b) the recognition of toxicity expressive chemicals in mixtures. 

Along with the development of resourceful databases, there are few more areas where 

researchers need to focus and they are following: 

 Combination of databases and computational tools for the concurrent environmental fate 

and metabolism evaluation; 

 Accretion of crystal-clear idea about metabolic simulator to understand the complete 

metabolic pathway and rate of transformation; 

 Buildup of KBES to offer expansion and application of transformation and/or metabolic 

simulators.

 The study metabolomics is helpful to identify toxicity pathways and the measurement of 

metabolites in presence of certain physiological stimuli and/or genetic modification in a 

living system. To understand the changes in metabolic pattern of a chemical in association 

with certain modification (biofluids, different species) followed by toxicity response, 

application of metabolomics is imperative. Metabolic profiles can deliver a degree of the 

actual outcome of possible changes as the outcome of xenobiotic exposure.

 To determine the level of exposure of a chemical to specific organisms, the modeling of 

the fate and transport need to be done after its release into a definite environment.

 The developed metabolism model of the chemical should be prepared inside the target 

organisms as metabolite of the original stressor induces a biological response. In other 

cases, it may show false outcome.

Page 120 of 156Green Chemistry



121

Organizations like US EPA, Office of research and development (ORD), National exposure 

research laboratory (NERL), Ecosystems Research Division and Processes & Modeling branch 

are working on these challenging issues.444,446 ORD's and EPA's Computational Toxicology 

research (CompTox) Program is working efficiently in classifying chemicals and their 

metabolites in respect to toxicity pathway. But much more efforts are required not only from 

regulatory agencies but also from the producers of those compounds, i.e., industries which can 

provide sufficient information about the probably fate, transformation and metabolic pathway of 

individual PPCPs. 

15. OVERVIEW AND CONCLUSION

This review has dealt with the present status of computational modeling of ecotoxicity endpoints 

of PPCPs along with the evolving areas of molecular designing approach for toxicity and risk 

management. The integration of in silico techniques with the GC principles are needed not only 

for generating precise predictive models but also for designing as well as synthesizing less 

hazardous and possibly non-toxic PPCPs to prevent risksin the first place. The KBES is the most 

commonly employed predictive tool not only for toxicity prediction purpose but also for deriving 

design rulesfor less hazardous PPCPs nowadays. Without any doubt, no KBS can be considered 

as a universal system for prediction purpose, as all have their advantages and drawbacks, with 

varying specificity, sensitivity, and accuracy. Thus, the choice of KBS should depend on 

multifaced criteria. They include experimental condition, species, biological and toxicological 

pathway, metabolism of the studied compounds evaluated using mechanistically interpretable 

properties or descriptors in modeling. Accessing expert guidelines would be useful for chemists 

and environmentalists to have a priori knowledge of what the most apparent red flag 
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physicochemical properties and structural fragments are, so that they can integratethis knowledge 

into molecular design. Thus, a comprehensive analysis of imperative features responsible for 

ecotoxicity as well as strategies to reduce those toxicities were discussed.

The future directions for novel PPCP specific predictive models will rely on more receptor 

specific descriptors of chronic toxicity to elucidate the receptor mediate pharmacodynamics 

MoA of the compounds.447 The chronic effects can be related to a multitude of sublethal 

endpoints not only e.g. reproduction but also more subtle changes such as altered heart rate; 

behavior; metabolism, etc. Hence, to demonstrate these types of effects one requires application 

and development of AOP analysis in depth.448,449 The more widespread and systemic 

development of AOPs requires integration withHigh-Throughput Big Data generation e.g., as 

outlined in the ToxCast programme.450 This is in our view necessary to move forward. The 

Comparative Toxicogenomics Database (CTD)451 is an example of how Big Data can be 

combined and integrated in novel ways between databases and across geographies to allow 

prediction of toxicogenomic effects. Therefore, the present review provides vast collections of 

ecotoxicity databases and expert KBS to users so that one can integrate the required components 

basedon their analysis requirement. These tools can be combined in a Machine-Learning or 

Artificial Intelligence (A.I.) setting to allow more detailed assessments of PPCP receptor 

mediated chronic environmental toxicity prediction. The reader might ask is this still a QSAR? 

And the answer is no. This approach includes more information about the compound than 

structure-based descriptors. As such these are second-generation computational predictive tools 

of toxicity. The structural information is the initial information in establishing the Key initiating 

Event (KiE) of the AOP, but the computation power and analysis lays in the subsequent analysis 
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of AOP where different source of information and databases are connected as in e.g. CTD to 

deliver decision relevant toxicity outputs. This might still seem a bit like science-fiction to some 

- but the chemical and biological information is available in the terabits of data and the tools to 

access and combine the information to answer relevant questions about toxicity are being 

developed based on A.I. as the information is too big for humans to grasp. The question is how 

comfortable we as a society are with less-transparent high complex predictive tools and 

involvement of A.I. in decision making, and how well the models and outputs will be integrated 

in our regulatory frameworks and legislation – stay tuned time will tell. 
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