

Spatial distribution of heavy metals in the West Dongting Lake floodplain, China

Journal:	Environmental Science: Processes & Impacts
Manuscript ID	EM-ART-11-2019-000536.R1
Article Type:	Paper

Environmental Significance Statement

The study aims to understand heavy metal pollution in the West Dongting Lake (Ramsar Site) and to assess ecological hazards to humans, wildlife and even ecosystems. Comparing to the soil quality criteria in China, the concentration of total Hg and Cd were over the China's risk screening values for soil contamination of agricultural land of these metals by 103.9 and 2.1 times, respectively. According to this study, we found that West Dongting Lake is at high ecological risk of heavy metal pollution, and the major contaminant, mercury, may come from continuous pollutant anthropogenic activities such as regional industrial activities within Yuan River and Li River watershed.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
11 12 13 14 15 16 17	
14	
15	
16	
17	
18	
19	
20	
∠∪ 21	
21	
22	
21 22 23	
24	
25	
25	
26 27	
27	
28	
29	
30	
31	
32	
52	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
ΕO	

Spatial distribution of heavy metals in the West Dongting Lake floodplain,

- China
- Dong Peng^{1,2} (1), Zivu Liu¹ (2), Xinyue Su¹ (2), Yaqian Xiao^{1,3} (3), Yuechen Wang¹(4),
- Beth A Middleton⁴, Ting Lei^{1,*}
- **Corresponding author email: Leiting@bjfu.edu.cn.*
- ¹ Address: Beijing Forestry, School of Nature Conservation, 35 Tsinghua East Road Haidian
- Distinct, Beijing 100083, P.R. China;
- ² pengdong@bjfu.edu.cn
- ³ Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R.
- China

- ⁴ U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard,
- Lafayette, LA 70506 USA; middletonb@usgs.gov
- **Corresponding author.*

[Predecisional information for manuscript submission only] This draft manuscript is distributed solely for purposes of scientific peer review. Its content is deliberative and predecisional, so it must not be disclosed or released by reviewers. Because the manuscript has not vet been approved for publication by the U.S. Geological Survey (USGS), it does not represent any official USGS finding or policy. [This is removed from the final version after it is accepted by the journal].

27 Abstract

The protection of Dongting Lake is important because it is an overwintering and migration route for many rare and endangered birds of East Asia and Australasia, but an assessment of heavy metal contamination in West Dongting Lake is lacking. A total of 75 sediment samples (five sites x three sediment depths x five repeats) were collected in West Dongting Lake in January 2017 to assess the spatial distribution and ecological risk of heavy metal in West Dongting Lake. Heavy metal values varied by sediment depth including As, Cd, Zn, and Cu, with depth giving an indication of recent vs. historical deposition. The major input of Hg, Cu, Ni may come from continued anthropogenic activities related to regional industrial activities within Yuan River and Li River whereas, the major sources of spread Cd pollution may be from agricultural fertilizers.

39 Key words

40 West Dongting Lake, Floodplain, Heavy metals, Spatial distribution

1. Introduction

West Dongting Lake it is a key biodiversity hotspot in China and designated as a Ramsar Key Wetland because of its unique aquatic ecosystem and rich biodiversity. It also is the main resource of industrial and agriculture water for millions of residents in the region (e.g., Changde City). Thus, poor water quality and potential effects on biota have received increased attention in this region during recent years (1-4). Heavy metal contamination exists in Dongting Lake, but studies did not explore the connection of the delta of the lake to the tributaries feeding it (Li and Yuan River). For example, Jiang et al. sampled the entire lake (Jiang et al. 2008), but not the tributaries flowing into the lake. Other studies have found higher levels of contamination coming from the Yuan vs. the Li River entering West Dongting Lake but do not sample in various places along these rivers, using the same methodology (5-7). One of the objectives of our research was to sample these river gradients from up to downstream into the delta area where these tributaries meet, to better track potential sources of heavy metals on the Dongting Lake floodplains (Figure 1).

Heavy metal pollution has toxic effects on the human body causing headaches, muscle and joint aches, confusion and other symptoms (8, 9). Arsenic can promote cancers and cadmium can attack kidney, liver, bone and the female reproduction system, also lead and mercury are neurotoxins, which can be consumed via seafood, vegetables and rice (8-10). Especially in countries with developing industries, industrial effluent, atmospheric deposition and sewage, polluted rivers are more likely to discharge heavy metals into the aquatic ecosystems (5, 11-16). Besides, heavy metals are persistent and have complex ecological effects on livestock, birds, and human beings (17-21). Various forms of heavy

65 metals and their interactions can have complex ecological effects on organisms (22). These 66 toxins are also carried by streams and influenced by the sedimentation condition, for 67 example, in the middle-reach of the Yangtze River (4, 23, 24). Moreover, the remediation 68 methods of soil heavy metal various might be accomplished using plant species that 69 hyperaccumulate these toxins (25), burial by sediment,or remediation via the application 70 of biochar (26, 27).

Our objective was to determine the contamination level of heavy metals in the soils of tributaries feeding the deltaic floodplains of Dongting Lake at various depths. This study is helpful for wildlife conservation, especially for migratory waterfowl, and environmental policies regarding fisheries in the lake.

76 2. Materials and methods

77 2.1 Study area

Dongting Lake is the largest freshwater lake of Hunan Province and the second largest in China. The western portion of Dongting Lake (West Dongting Lake, 30044 ha) connects the Yangtze River with South Dongting Lake and collects water from both the Yuan and Li Rivers. West Dongting Lake was designated as a Ramsar Wetland of International Importance in 2002 (https://rsis.ramsar.org/ris/1154). Therefore, this complex river system is crucial to the storage of flood water and the irrigation of farmland in the region (28). Yuan and Li River, which have mining industries and vast farmland along the river, are in the upper reaches of West Dongting Lake. Thus, many pollutants enter into the lake by the river. The sedimentation in the western part of the lake is the highest in Dongting Lake (24). The research sites including Taiyangcha (YnUp, upper reaches of Yuan River), Guanceta (YnMd, middle reaches of Yuan River), Liuzu (YnLiDelta, downstream reaches of Yuan and Li River) were placed in the flow direction of the Yuan River. Dabatai (LiUp, upper reaches of Yuan River), Dalianzhang (LiMd, middle reaches of Yuan River; in the delta) and Liuzu (YnLiDelta, downstream reaches of Yuan and Li River) were along the Li River; YnLiDelta near the intersection of the two rivers (Figure 1).

93 2.2 Sample Collection

A total of 75 sediment samples were collected in West Dongting Lake to evaluate the spatial distributions of heavy metals in January 2017. Each at 3 depths (0-10, 10-20, 20-30 cm were collected and marked as surface sediment, medium sediment and deep sediment, respectively, in all five sites with five samples within plots of 10 \times 10 m (see in Table 1). Each of the 75 samples were collected with a spade (20 \times 20 \times 10 cm), and were packed in

99 re-closable bags and transported to the laboratory at room temperature (0 $^{\circ}$ C to 8 $^{\circ}$ C) 100 within 24 hours.

2.3 Laboratory Analysis

The samples were air dried at room temperature (0 $^{\circ}$ C to 8 $^{\circ}$ C) for five days in the laboratory. Air dried sediment samples were ground using a ceramic mortar and pestle, sieved through a 100-mesh nylon sieve (29), and placed into plastic bags at room temperature. Following this, every powdered samples (0.5 g) was digested by various acids (HNO₃, HClO₄, HF; analytical reagent grade, produced from Beijing Chemicals Factory, Beijing, China) and heated in a 100 ml polyfluoroethylene-crucible with lid at 220 °C *1h+280 $^{\circ}$ C until dry. All dry digestion products were dissolved by 5 ml 50% HNO₃ in a 50 ml volumetric flask. The digested solutions were stored in 25 ml centrifuge tubes (30, 31).

All elemental analysis work was done by Beijing Forestry University Public Analysis
Center. Concentrations of total Hg, Pb, Cd, Ni, Zn and As were analyzed with Inductively
Coupled Plasma Mass Spectrometry (ICP-MS, optima 8X00, USA). Cu was analyzed
using an Atomic Absorption Spectrometer (AAS, SPECTRAA-220, Australia). Initial
calibration verification and reagent blanks were used for quality control.

2.4 Statistical method

To assess the differences of heavy metals concentration at various sediment depths and sample sites, two-way ANOVA analysis was performed and data were appropriately log transformed to meet statistical assumptions. Two-way ANOVA were used to test treatment differences, using SNK to test differences in specific means (SPSS 19.0, 2018). Principal Components Analysis was applied used to explore the relationships of heavy

 metals in floodplain sediments of the West Dongting Lake. Normally, a source of pollution
contains various kinds of heavy metal contamination. For example, the waste water
discharged by industry would have many different heavy metal pollutants. Principle
Components Analysis (PCA) was used to assess if certain metals occurred together at the

same sites to suggest if these may have come from a similar source using R (R 3.5.0, 2018).

3 Results

129 3.1 Metal concentrations in sediments

In West Dongting Lake, the concentrations of Ni, As, Cd, Hg, Pb, Zn, Cu varied from 131 13.23 to 71.55 mg/kg, not detected (ND) to 14.59 mg/kg, ND to 2.65 mg/kg, 149.00 mg/kg 132 to 323.19 mg/kg, ND to 5.50 mg/kg, 28.85 to 118.40 mg/kg, 12.80 to 54.00 mg/kg, 133 respectively, with mean concentrations of 26.95, 0.97, 0.64, 249.25, 0.14, 78.09, 41.55 134 mg/kg, respectively (Table 2).

3.2 Differences between sites and depths

Except Pb, the other heavy metals showed significant differences between sample sites (Table 3). Only As, Cd and Zn showed significant difference at different sediment depths. The concentration of As in difference depths from highest to lowest included: surface sediment > medium sediment > deep sediment: the concentration of Cd was ranked as: medium sediment > deep sediment > surface sediment. The concentration of Zn was ranked as: deep sediment > medium sediment > surface sediment. Sample sites locator and sediment depths did not interact (p > 0.05). The concentration of As in LiUp was higher than other sample sites. In addition, the concentration of Cd in YnMd and LiUp were higher than YnUp. LiMd and YnLiDelta.

145 3.3 Principal Component Analysis, PCA

Using three axes in the Principal Component Analysis, 70% of the data variance could be
explained (Table 4, Figure 2). Hg, Cu, Ni, Zn and Pb were all related to the first principal
component (RC1) (proportion variance = 0.28). Cd, Cn and As were related to the the
second axis (RC2) (proportion variance = 0.25). Pb and As were related to the third axis
(RC3) (proportion variance =0.16).

151 3.4 Spatial distribution analyze and sources identify of heavy metals

In general, Yuan River may carry more pollutants into the lake than the Li River (Figure 3). LiMd shows a lower concentration of Ni, Cd, Hg, Zn and Cu than LiUp, suggesting that deposition may be occurring upstream. In contrast, YnMd shows a higher concentration of Ni, Hg and Cu than YnUp. There was obvious pattern of soil heavy metal pollution along the two rivers. In YnMd, the flow and relative position of the river show a balance and then relatively high concentrations of Hg are found in the middle reaches of this river. The reason why LiMd shows a lower concentration of pollutant may be because is the site is not quite close to theoff the main channel of the river. And tThe concentration of As, Ni, Cd and Zn show highest value inare highest in the YnLiDelta. This may indicate that the pollutants carried by the two rivers have an additive effect on each other at the junction and the main pollutants were cameoriginated from upstream sources on the Yuan River (Figure 3).

Usually, the surface sediment contains more heavy metals of Cd and Zn, but, the highest level of As is the middle sediment (Figure 4). The significant differences of As, Cd and Zn along sediment depths suggested that As, Cd and Zn pollution may come from annual human activities or seasonal human activities such as fisheries aquaculture. Other heavy metal such as Hg pollution had no significant difference between sediment depth. So, its input came from continuous human activities and it may be more related to regional industrial activities, and could enter the wetlands via air or water (32, 33).

According to the PCA analysis, Hg, Cu, Ni contamination sources are related, and may enter the wetland from the same way. From 2008 to 2017, previous research suggested that the mercury concentration in Dongting Lake was stable and continuous (3, 34, 35) and

usually the major input of these metals are related to human activities (36, 37). Thus, the major input of Hg, Cu, Ni may come from continued anthropogenic activities related to regional industrial activities within Yuan and Li River Watershed. The concentration of Cd is affected by sample location and sediment depths (Figure 3, 4). The natural occurred Cd levels are extremely low (9, 38) with the major source of spread Cd pollution are often from agricultural fertilizers (29, 39), therefore the PCA group related to Cd, Zn may come from agriculture activities. The irrigation and parent sediments or rock erosion are main sources of the contaminations of lead and arsenic (10, 40-42). In contrast, there was no groundwater irrigation going on in the region and there is little difference between the concentration of Pb and the early geochemical concentration of Pb, so Pb and As may come from sediment parental materials.

4 Discussion

Compared to the heavy metal pollution status in the other regional wetlands in China or elsewhere (Table 5), such high levels of contamination of Hg in West Dongting Lake is rare in other parts of the world. The concentration of Ni, As and Pb were significantly lower than other those of other lakes. The concentrations of several other metals (i.e., Cd, Zn and Cu) in West Dongting Lake areis similar to that of other wetlands exclude the high Cu pollution in Hindon River . The mercury pollution in West Dongting Lake is much higher than other wetlands including Poyang Lake, Dongping Lake, Yellow River, Yangtze River, Huludao Fresh River in China and Hindon River, Awash River Basin, Nemrut Bay, Candarli Gulf, Shur River, Tigris River in developing country and Esaro in developed country. Other heavy metals pollution is not as serious as Hindon River, Esaro river, Awash River Basin, Nemrut Bay and Tigris River.

Heavy metals contamination is a critical problem in the Yangtze River basin (6) and Dongting Lake (34). Dongting Lake is one of the most polluted lakes in China, possibly due to the nonferrous mining, metallurgy, and manufacturing industries in Hunan Province (43). In Dongting Lake, the background values(44) of Ni, As, Cd, Hg, Pb, Zn, Cu are 21.2 mg/kg. 12mg/kg. 0.33mg/kg, 0.047mg/kg, 23.3mg/kg, 83.3mg/kg, 33.3mg/kg, respectively. Other values were reported by Jiang et al. (34) for Ni, As, Cd, Hg, Pb, Zn, Cu and varied from 18.8-60.5mg/kg, 6.03-34.78mg/kg, 0.06-3.65mg/kg, 0.053-1.08mg/kg, 22.4-118.6mg/kg, 63-189mg/kg, 12.9-83.1mg/kg, respectively. China's Sediment Environmental Quality Risk Control Standard for sediment contamination of agricultural land (45) was updated by the Chinese government in 2018 to adopt the new regulation. The detail of the risk screening values and risk intervention values of the standard are given in

Table 6. The pH of the sediments in West Dongtin Lake are between 6.5 and 7.5. The floodplain sediments of Dongting Lake show the following results: At first, levels of Ni, As, Pb, Zn, Cu in sediments were lower than the risk screening values for sediment contamination of agricultural land, and the minimum concentration of Cd, As, Pb were too low to detect. The mean concentrations of Cd were higher than its risk screening values for sediment contamination of agricultural land and the concentration of Hg was much higher than its risk intervention values for sediment contamination of agricultural land. Also, the mean concentrations of Cd and Hg exceeded 2.1 and 103.9 times their risk screening values for sediment contamination of agricultural; the mean concentration of Hg was as high as 62.3 times its risk intervention values for sediment contamination of agricultural land.

5 Conclusion

Surface sediment of the West Dongting Lake floodplain accumulates by sediment deposition during flooding. A change in heavy metal concentration at different sediment depths can reflect a change in heavy metal pollution over time. Also, the Yuan River and Li River show different pattern on heavy metal input which is Yuan River brings more pollutant to the main lake rather than Li River. Based on the sediment accumulation rate (in press) in the region, five sample sites were collected at three sediment depths to access the heavy metals (Ni, As, Cd, Hg, Pb, Zn, Cu), and In particular, the concentration of total Hg in West Dongting Lake is much higher than its risk intervention values for sediment contamination of agricultural land in the China's sediment quality criteria. These heavy metals enter the wetland ecosystem via industry, mines and domestic sewage discharged directly or by surface runoff into Yuan and Li River, which feed into West Dongting Lake. Additionally, the lower water levels in West Dongting Lake after the construction of the Three Gorges Dam may cause polluted sediments to become exposed to air and subsequently enter the food chain via plant absorption and the high concentration of heavy metals indicated that the high contamination exceed acceptable standards and show huge potential ecological risk. Therefore, the high heavy metals contamination in particular may seriously impact the health of humans and wildlife in this region, especially threats to the health of migratory birds in the area. The specific toxicity of high contamination mercury in sediment is unknown because mercury absorbed by the organism in the form of methyl mercury (33), which is we are going to do. Nevertheless, the control of the industrial emission discharged into aquatic ecosystem and use fertilizer properly may be helpful to reduce heavy metal contaminations input into West Dongting Lake.

1	
2 3	
4	
5 6	
7	
8 9	
10	
11 12	
13	
14 15	
16	
17 18	
19	
20	
22	
23 24	
24 25	
26 27	
19 20 21 22 23 24 25 26 27 28	
29 30	
31 32	
32 33	
34	
35 36	
37	
38 39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
54 55	
56	
57 58	
59	
60	

243 Acknowledgments

We thank Peng Lingli, Chen Mingzhu, Staff of West Dongting Lake National Nature
Reserve and my classmates in Beijing Forestry University for assistance with field and lab
work. We thank anonymous reviewers for comments on earlier versions of the manuscript.
Also thanks to the USGS Ecosystems Program.

248

249 Funding: This work was supported by the National Key R&D Program of China (No.

250 2018YFC0507200) and the National Training Program of Innovation and Entrepreneurship

251 for Undergraduates (No. 201710022069), under the US-China EcoPartnership program and

252 Beijing Forestry/U.S. Geological Survey Technical Agreement (TAA-15-3921).

253

254 Data Availability Statement (DAS)

The data used to support the findings of this study are available from the correspondingauthor upon request.

257 Literature Cited

1 2 3

4 5

6

7

8

9

10

11

12

13

Xie Y-h, Yue T, Xin-sheng C, Feng L, Zheng-miao D. The impact of Three Gorges Dam on the
downstream eco-hydrological environment and vegetation distribution of East Dongting Lake. Ecohydrology.
2015;8(4):738-46.

261
2. Yao X, Niu Y, Li Y, Zou D, Ding X, Bian H. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China. Environ Sci Pollut Res. 2018;25(20):20003-11.

Zhang Y, Tian Y, Shen M, Zeng G. Heavy metals in soils and sediments from Dongting Lake in China:
occurrence, sources, and spatial distribution by multivariate statistical analysis. Environ Sci Pollut Res.
2018;25(14):13687-96.

- 267 4. Yin HF, Liu GR, Pi JG, Chen GJ, Li CA. On the river-lake relationship of the middle Yangtze reaches.
 268 Geomorphology. 2007;85(3-4):197-207.
- 162695.Song YX, Ji JF, Mao CP, Yang ZF, Yuan XY, Ayoko GA, et al. Heavy metal contamination in17270suspended solids of Changjiang River environmental implications. Geoderma. 2010;159(3-4):286-95.
- 271 6. Yi Y, Yang Z, Zhang S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut. 2011;159(10):2575-85.
- 274 7. Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environ Pollut. 2009;157(5):1533-43.
 276 8. Jarup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68(1):167-82.
- 23 276 8. Jarup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68(1):167-82.
 24 277 9. Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. The International Journal of Biochemistry & Cell Biology. 2009;41(8-9):1665-77.
- 280
 280
 281
 281
 282
 281
 282
 281
 282
 281
 282
 281
 282
 281
 281
 282
 281
 282
 281
 282
 282
 282
 283
 284
 284
 284
 285
 285
 286
 287
 287
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
- 29 283
 283 11. Zheng N, Wang QC, Liang ZZ, Zheng DM. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ Pollut. 2008;154(1):135-42.
 285 12. Yu GB, Liu Y, Yu S, Wu SC, Leung AOW, Luo XS, et al. Inconsistency and comprehensiveness of rick assessments for heavy metals in urban surface sediments. Chamachere 2011;85(6):1080.7
- ³² 286 risk assessments for heavy metals in urban surface sediments. Chemosphere. 2011;85(6):1080-7. ³³ 287 13 Woitke P. Wellmitz I. Helm D. Kube P. Lenom P. Litheraty P. Analysis and assessment of h
- 287
 288
 288
 288
 288
 289
 280
 13. Woitke P, Wellmitz J, Helm D, Kube P, Lepom P, Litheraty P. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere. 2003;51(8):633-42.
 280
 281
 282
 283
 284
 284
 285
 285
 286
 286
 287
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 2003;51(8):633-42.
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 288
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 209
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
 298
- 289
 36
 290
 37
 291
 14. Singh KP, Malik A, Mohan D, Sinha S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - a case study. Water Research. 2004;38(18):3980-92.
- 292 15. Sakan SM, Dordevic DS, Manojlovic DD, Predrag PS. Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management. 2009;90(11):3382-90.
 40 294 16. Hang XS. Wang HY. Zhou JM. Du CW. Chen XO. Characteristics and accumulation of heavy metals
 - Hang XS, Wang HY, Zhou JM, Du CW, Chen XQ. Characteristics and accumulation of heavy metals
 in sediments originated from an electroplating plant. Journal of Hazardous Materials. 2009;163(2-3):922-30.
- 41 295 in sediments originated from an electroplating plant. Journal of Hazardous Materials. 2009;163(2-3):922-30.
 42 296 17. Bryan GW, Langston WJ. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut. 1992;76(2):89-131.
- 298
 44
 298
 45
 299
 48. Chen CW, Kao CM, Chen CF, Dong CD. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere. 2007;66(8):1431-40.
- 300 19. Guan QY, Wang L, Pan BT, Guan WQ, Sun XZ, Cai A. Distribution features and controls of heavy metals in surface sediments from the riverbed of the Ningxia-Inner Mongolian reaches, Yellow River, China. Chemosphere. 2016;144:29-42.
- 303 20. Li ZG, Feng XB, Li GH, Bi XY, Zhu JM, Qin HB, et al. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environ Pollut. 2013;182:408-16.
 305 206 2013;182:408-16.
- 308 309
 55 309
 56 309
 57 310
 56 309
 57 310
 56 309
 57 310
 58 309
 59 310
 59 310
 50 2017;47(16):1528-53.
- 56 57
- 58
- 59

2		
3	311	23. Hu Q, Feng S, Guo H, Chen G, Jiang T. Interactions of the Yangtze river flow and hydrologic processes
4	312	of the Poyang Lake, China. Journal of Hydrology. 2007;347(1-2):90-100.
5	313	24. Yang G, Zhang Q, Wan R, Lai X, Jiang X, Li L, et al. Lake hydrology, water quality and ecology
6	314	impacts of altered river-lake interactions: advances in research on the middle Yangtze river. Hydrology
7	315	Research. 2016;47(S1):1-7.
8	316	25. Reeves RD, Baker AJM, Jaffre T, Erskine PD, Echevarria G, van der Ent A. A global database for plants
9	317	that hyperaccumulate metal and metalloid trace elements. New Phytologist. 2018;218(2):407-11.
10	318	26. Ye S, Yan M, Tan X, Liang J, Zeng G, Wu H, et al. Facile assembled biochar-based nanocomposite
11	319	with improved graphitization for efficient photocatalytic activity driven by visible light. Applied Catalysis
12	320	B: Environmental. 2019;250(March):78-88.
13	321	27. Ye S, Zeng G, Wu H, Liang J, Zhang C, Dai J, et al. The effects of activated biochar addition on
14	322	remediation efficiency of co-composting with contaminated wetland soil. Resources, Conservation and
15	323	Recycling. 2019;140(October 2018):278-85.
16	324	28. Huang Q, Sun Z, Lai X, Jiang J. Changes of the flood regulation capacity at Lake Dongting since 1950s
17	325	(in Chinese). Journal of Lake Sciences. 2016;28(3):676-81.
18	326	29. Wang YQ, Yang LY, Kong LH, Liu EF, Wang LF, Zhu JR. Spatial distribution, ecological risk
19	327	assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong,
	328	East China. Catena. 2015;125:200-5.
20	329	30. Dong-gen H, Liao S, Zhang X, Tong Y. Analysis of 6 elements in rice field soil by ICP-MS (in Chinese).
21	330	Environmental Monitoring in China. 2005;03:31-4.
22	331	31. da Silva YJAB, do Nascimento CWA, Cantalice JRB, da Silva YJAB, Cruz CMCA. Watershed-scale
23	332	assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and
24	333	coastal zone of Brazil. Environmental Monitoring and Assessment. 2015;187(9):558.
25	334	32. Drevnick PE, Cooke CA, Barraza D, Blais JM, Coale KH, Cumming BF, et al. Spatiotemporal patterns
26	335	of mercury accumulation in lake sediments of western North America. Science of The Total Environment.
27	336	2016;568:1157-70.
28	337	33. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: Sources,
29	338	pathways, and effects. Environmental Science and Technology. 2013;47(10):4967-83.
30	339	34. Jiang J, Sun Z, Huang Q, Wang H, Zhou Y. Character and assessment of heavy metals in the sediments
31	340	from Lake Dongting (in Chinese). Journal of Lake Sciences. 2008;04:477-85.
32	341	35. Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, et al. Spatial risk assessment and sources identification
33	342	of heavy metals in surface sediments from the Dongting Lake, Middle China. Journal of Geochemical
34	343	Exploration. 2013;132:75-83.
35	344	36. Krabbenhoft DP, Wiener JG, Brumbaugh WG, Olson ML, DeWild JF, Sabin TJ, editors. A national
36	345	pilot study of mercury contamination of aquatic ecosystems along multiple gradients. In: Morganwalp, D.W.,
37	346	Buxton, H.T., (Eds.), U.S. Geological Survey Toxic Substances Hydrology Program–Proceedings of the
38	347	Technical Meeting, Charleston, South Carolina, March 8–12, 1999. Contamination of Hydrologic Systems
	348	and Related Ecosystems: US Geological Survey Water-Resources Investigations Report 99-4018B; 1999;
39	349	Charleston, South Carolina.
40	350	37. Boening DW. Ecological effects, transport, and fate of mercury: a general review. Chemosphere.
41	351	2000;40(12):1335-51.
42	352	38. Kabata-Pendias A. Soil-plant transfer of trace elements—an environmental issue. Geoderma.
43	353	2004;122(2-4):143-9.
44	354	39. Chen W, Chang AC, Wu L. Assessing long-term environmental risks of trace elements in phosphate
45	355	fertilizers. Ecotoxicology and Environmental Safety. 2007;67(1):48-58.
46	356	40. Ettler V, Mihaljevič M, Šebek O, Molek M, Grygar T, Zeman J. Geochemical and Pb isotopic evidence
47	357	for sources and dispersal of metal contamination in stream sediments from the mining and smelting district
48	358	of Příbram, Czech Republic. Environ Pollut. 2006;142(3):409-17.
49	359	41. Caurant F, Aubail A, Lahaye V, Van Canneyt O, Rogan E, López A, et al. Lead contamination of small
50	360	cetaceans in European waters - The use of stable isotopes for identifying the sources of lead exposure. Marine
51	361	Environmental Research. 2006;62(2):131-48.
52	362	42. Bai J, Cui B, Chen B, Zhang K, Deng W, Gao H, et al. Spatial distribution and ecological risk assessment
53	363	of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling.
54	364	2011;222(2):301-6.
55	365	43. Ma Z, Chen K, Yuan Z, Bi J, Huang L. Ecological Risk Assessment of Heavy Metals in Surface
56	366	Sediments of Six Major Chinese Freshwater Lakes. Journal of Environment Quality. 2013;42(2):341
50 57	500	•
57 58		16
59		

1		
2		
3	367	44. Qian X, Li X. The geochemical background value of sediment in Dongting Lake (in Chinese). Chinese
4	368	Science Bulletin. 1988(06):458-62.
5	369	45. China-MEE. Soil environmental quality Risk control standard for soil contamination of agricultural land.
6	370	(in Chinese). Beijing: Ministry of Ecological Environment of the People's Republic of China; 2018.
7	371	46. Dai L, Wang L, Li L, Liang T, Zhang Y, Ma C, et al. Multivariate geostatistical analysis and source
8	372	identification of heavy metals in the sediment of Poyang Lake in China. Science of The Total Environment.
9	373 374	2018;621:1433-44.
10	375	47. Yang Z, Wang Y, Shen Z, Niu J, Tang Z. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of Hazardous
11 12	376	Materials. 2009;166(2-3):1186-94.
12 13	377	48. Chabukdhara M, Nema AK. Assessment of heavy metal contamination in Hindon River sediments: A
13	378	chemometric and geochemical approach. Chemosphere. 2012;87(8):945-53.
15	379	49. Dirbaba NB, Yan X, Wu H, Colebrooke LL, Wang J. Occurrences and ecotoxicological risk assessment
16	380	of heavy metals in surface sediments from Awash River Basin, Ethiopia. Water (Switzerland). 2018;10(5).
17	381	50. Protano C, Zinnà L, Giampaoli S, Spica VR, Chiavarini S, Vitali M. Heavy metal pollution and potential
18	382	ecological risks in rivers: A case study from Southern Italy. Bulletin of Environmental Contamination and
19	383	Toxicology. 2014;92(1):75-80.
20	384	51. Esen E, Kucuksezgin F, Uluturhan E. Assessment of trace metal pollution in surface sediments of
21	385 386	Nemrut Bay, Aegean Sea. Environmental Monitoring and Assessment. 2010;160(1-4):257-66.
22	380 387	52. Pazi I. Assessment of heavy metal contamination in Candarli Gulf sediment, Eastern Aegean Sea. Environ Monit Assess. 2011;174(1-4):199-208.
23	388	53. Karbassi AR, Monavari SM, Nabi Bidhendi GR, Nouri J, Nematpour K. Metal pollution assessment of
24	389	sediment and water in the Shur River. Environmental Monitoring and Assessment. 2007;147(1):107.
25	390	54. Varol M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using
26	391	pollution indices and multivariate statistical techniques. Journal of Hazardous Materials. 2011;195:355-64.
27	392	
28	• • -	
29	393	
30	0,0	
31		
32		
33		
34		
35		
36 27		
37		
38 39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56 57		
57 58		17
20		

Tables

Table 1 Locations and abbreviation names of sample sites and sampled at three depths (0-

10, 10-20 and 20-30 cm) using three replications at each site.

	Site abbreviation	Latitude	Longitude
Taiyangcha	YnUp	28°54′8″N	112°8′54.64″E
Guanceta	YnMd	28°53′35.96"N	112°9′22.68″E
Dabatai	LiUp	28°55′10.63″N	112°12′56.45″E
Dalianzhang	LiMd	28°53′9.36″N	112°12′53.04″E
Liuzu	YnLiDelta	28°51′59.68″N	112°13′18.43″E

400 Table 2 General characteristics by depth of the heavy metal concentration in sediments of the West Dongting Lake floodplain.

	Depth (cm)	Maximum (mg/kg)	Minimum (mg/kg)	Mean of all depths (mg/kg)	S.D. (depth)	Mean of all depths (mg/kg)	S.D.	Background value (mg/kg
	0-10	33.58	16.77	27.22 ^a	4.09			
Ni	10-20	34.23	14.75	26.46 ^a	5.03	26.95	7.41	21.2
	20-30	71.55	13.23	27.18 ^a	11.06			
	0-10	7.64	ND	0.47 ^a	1.59			
As	10-20	14.59	ND	2.02 ^b	3.67	0.97	2.48	12
	20-30	2.71	ND	0.43 ^a	0.86			
	0-10	2.49	ND	1.16 ^a	0.79			
Cd	10-20	2.65	ND	0.60 ^b	0.74	0.64	0.77	0.33
	20-30	1.05	ND	0.16 ^b	0.32			
	0-10	295.71	180.17	252.37 ^a	31.34			
Hg	10-20	323.19	149.10	250.38 ^a	51.23	249.25	46.26	0.047
	20-30	316.95	149.00	244.99 ^a	52.76			
	0-10	1.20	ND	0.05 ^a	0.23			
Pb	10-20	2.25	ND	0.16 ^a	0.51	0.14	0.71	23.3
	20-30	5.50	ND	0.22 ^a	1.08			
	0-10	112.50	48.15	94.68ª	17.00			
Zn	10-20	111.00	44.50	76.33 ^b	20.70	78.09	23.81	83.3
	20-30	118.40	28.85	63.27°	22.01			
	0-10	54.00	12.80	44.28 ^a	10.00			
Cu	10-20	52.00	22.40	40.39 ^a	8.94	41.55	9.88	33.3
	20-30	51.20	21.80	39.97 ^a	10.08			

401 The a, b, c in the table means different group by ANOVA.

402 ND means concentrations below the detection limit.

403 Table 3 Two-way ANOVA comparison of sample sites, soil depths, and the interaction of site \times soil depth.

Vari	able	Sample sites	YnUp	LiUp	YnLiDelta	YnMd	LiMd	Soil Depths	0-10cm	10-20cm	20-30cm	Sites × Depths
Ni	df F Sig	4 7.92 <0.001**						2 0.403 0.67				8 0.491 0.858
	Sig. Mean±S.E.	<0.001**	1.454±0.026b	1.376±0.026ab	1.477±0.026b	1.471±0.026b	1.310±0.026a	0.07	1.431±0.020a	1.416±0.020a	1.406±0.020a	0.838
	df	4						2	1 1 1			8
A -	F St-	7.83 <0.001**						4.826				1.707
As	Sig. Mean±S.E.	<0.001**	0.163±0.056ab	-4.163E- 17±0.056a	0.380±0.056b	0.015±0.056a	0.072±0.056a	0.011*	0.067±0.043a	0.235±0.043b	0.076±0.043a	0.115
	df	4						2	1 1 1			8
Cd	F	6.029						15.344	1 1 1			1.356
	Sig. Mean±S.E.	<0.001**	0.073±0.025ab	0.179±0.025c	0.160±0.025bc	0.039±0.025a	0.076±0.025ab	<0.001**	0.189±0.019a	0.081±0.019b	0.045±0.019b	0.235
	df	4						2	1 1 1			8
Hg	F	29.481						0.709	1 1 1			1.805
8	Sig. Mean±S.E.	<0.001**	2.407±0.014bc	2 369±0 014b	2.437±0.014cd	2.468±0.014d	2 266±0 014a	0.579	$2.399\pm0.011a$	2.390±0.011a	$2.380\pm0.011a$	0.32
	df	4		2.000 0.0110	2			2				8
	F	0.684						0.551				1.191
Pb	Sig.	0.606						0.579				0.32
	Mean±S.E.		0.023±0.025a	0.025±0.025a	0.049±0.025a	-2.082E- 17±0.025a	2.776E- 17±0.025a		0.003±0.015a	0.026±0.015a	0.030±0.015a	
	df	4						2	 			8
Zn	F	6.425						19.012				0.924
211	Sig.	<0.001**	1.965+0.02-	1 002 + 0 02 -1	1 007 0 021	1.960+0.02-		<0.001**		1 071 0 0221	1 770 + 0 022 -	0.503
	Mean±S.E. df	4	1.865±0.03a	1.893±0.03ab	1.987±0.03b	1.860±0.03a	1.777±0.03a	2	1.979±0.023a	1.871±0.023b	1.779±0.023c	8
	F	4 30.302						2.16	1 1 1			0.897
Cu	Sig.	<0.001**						0.124	1 1 1			0.525
	Mean±S.E.		1.655±0.02a	1.618±0.02a	1.646±0.02a	1.690±0.02a	1.409±0.02b		1.630±0.016a	1.594±0.016a	1.586±0.016a	

404 ** means significant differences.

	Component	loadings	
Elements	RC1	RC2	RC3
Ni	0.54	0.00	0.17
As	-0.18	0.41	0.60
Cd	0.06	0.92	-0.10
Hg	0.83	0.21	0.10
Pb	0.21	-0.13	0.80
Zn	0.39	0.83	0.19
Cu	0.88	0.15	-0.22
SS loading	1.99	1.78	1.13
Proportion Var	0.28	0.25	0.16
Cumulative Var	0.28	0.54	0.70

Name of the Wetlands	Metal concentration (mg/kg)									
	Explain	Ni	As	Cd	Hg	Pb	Zn	Cu	Data from	
West Dongting Lake, China	Lake	26.95	0.97	0.64	249.25	0.14	78.09	41.55	This study	
Dongting Lake, China	Lake	NA	29.71	4.65	0.157	60.99	185.25	47.48	(35)	
East Dongting Lake, China	Lake	NA	4.5	0.82	NA	34.11	121.6	30.21	(3)	
Poyang Lake, China	Lake	NA	NA	0.7	NA	50.4	132.9	62	(46)	
Dongping Lake, China	Lake	NA	25.3	0.285	0.055	35.5	100.5	52	(29)	
Yellow River Riverbed, China	River	28.5	NA	NA	NA	NA	50.19	22.95	(19)	
	Mainstream	40.91	15.85	1.53	0.15	45.18	140.27	51.64		
Yangtze River catchment of Wuhan, China	Tributaries	43.31	14.82	115.56	0.3	47.13	255	57.06	(47)	
	Lakes	40.44	16.03	0.57	0.32	57.78	296.78	75.56		
Yangtze River intertidal zone, China	Coastal Wetland	31.8	NA	0.261	NA	27.3	94.3	30.7	(7)	
Huludao Freshwater Rivers	River	$\begin{array}{c} 28.50 \pm \\ 8.01 \end{array}$	NA	NA	NA	NA	50.19 ± 19.26	22.95 ± 7.67	(11)	
Hindon River, India	River	13.90– 57.66	NA	0.29-6.29	NA	27.56– 313.57	22.22.50– 288.29	21.70– 280.33	(48)	
Awash River Basin, Ethiopia	River	89.46	15.87	2.6	0.17	13.53	382.73	79.43	(49)	
Esaro, Italy	River	NA	20.9	0.22	0.044	13.1	NA	NA	(50)	
Nemrut Bay, Turkey	Coastal Wetland	18.1–63.4	14.4-20.2	0.005-0.25	1.70–9.60	22.3-89.4	75–271	9.6–43.7	(51)	
Candarli Gulf, Turkey	Coastal Wetland	7.6–100.3	11–35	NA	0.23-1.4	14.5–137.8	55–358	2.7–34.8	(52)	
Shur River, Iran	River	NA	NA	0.55	NA	32	187	26.2	(53)	
	River	216.8	8.9	2.4	NA	393.9	530.5	1941.9	(54)	

411 Table 6 The risk screening values and risk intervention values of China's Sediment

412 Environmental Quality Risk Control Standard for sediment contamination of

413 agricultural land, mg/kg

	Туре	pH≤5.5	5.5 <ph≤6.5< th=""><th>6.5<ph≤7.5< th=""><th>pH>7.5</th></ph≤7.5<></th></ph≤6.5<>	6.5 <ph≤7.5< th=""><th>pH>7.5</th></ph≤7.5<>	pH>7.5
Cd	risk screening value	0.3	0.3	0.3	0.6
Cu	risk intervention value	1.5	2.0	3.0	4.0
Hg	risk screening value	1.3	1.8	2.4	3.4
iig	risk intervention value	2.0	2.5	4.0	6.0
As	risk screening value	40	40	30	25
AS	risk intervention value	200	150	120	100
Pb	risk screening value	70	90	120	170
ΓU	risk intervention value	400	500	700	1000
Cu	risk screening value	50	50	100	100
Cu	risk intervention value	-	-	-	-
Ni	risk screening value	60	70	100	190
111	risk intervention value	-	-	-	-
Zn	risk screening value	200	200	250	300
LII	risk intervention value	-	-	-	-

416 Figure caption

Figure 1 Locations of sample sites in West Dongting Lake in China (A) Dongting Lake in China, (B) West Dongting Lake with Dongting Lake and Yangtze River, (C) Yuan River and Li River flow into Dongting Lake including Taiyangcha (YnUp), Guanceta (YnMd), and Liuzu (YnLiDelta) along the Yuan River and Dabatai (LiUp), Dalianzhang (LiMd) and Liuzu (YnLiDelta) along the Li River. The arrows indicate the flow direction of the rivers. Surrounding cities have many industries including auto parts and manufacturing. Areas directly adjacent to the river include farming and forestry activities.

As

Cd

