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Environmental Significance Statement

The study aims to understand heavy metal pollution in the West Dongting Lake (Ramsar Site) 
and to assess ecological hazards to humans, wildlife and even ecosystems. Comparing to the 
soil quality criteria in China, the concentration of total Hg and Cd were over the China’s risk 
screening values for soil contamination of agricultural land of these metals by 103.9 and 2.1 
times, respectively. According to this study, we found that West Dongting Lake is at high 
ecological risk of heavy metal pollution, and the major contaminant, mercury, may come from 
continuous pollutant anthropogenic activities such as regional industrial activities within Yuan 
River and Li River watershed.
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27 Abstract 

28 The protection of Dongting Lake is important because it is an overwintering and 

29 migration route for many rare and endangered birds of East Asia and Australasia, but an 

30 assessment of heavy metal contamination in West Dongting Lake is lacking. A total of 75 

31 sediment samples (five sites x three sediment depths x five repeats) were collected in West 

32 Dongting Lake in January 2017 to assess the spatial distribution and ecological risk of 

33 heavy metal in West Dongting Lake. Heavy metal values varied by sediment depth 

34 including As, Cd, Zn, and Cu, with depth giving an indication of recent vs. historical 

35 deposition. The major input of Hg, Cu, Ni may come from continued anthropogenic 

36 activities related to regional industrial activities within Yuan River and Li River whereas, 

37 the major sources of spread Cd pollution may be from agricultural fertilizers.

38

39 Key words

40 West Dongting Lake, Floodplain, Heavy metals, Spatial distribution

41
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42 1. Introduction

43 West Dongting Lake it is a key biodiversity hotspot in China and designated as a 

44 Ramsar Key Wetland because of its unique aquatic ecosystem and rich biodiversity.  It 

45 also is the main resource of industrial and agriculture water for millions of residents in the 

46 region (e.g., Changde City). Thus, poor water quality and potential effects on biota have 

47 received increased attention in this region during recent years (1-4). Heavy metal 

48 contamination exists in Dongting Lake, but studies did not explore the connection of the 

49 delta of the lake to the tributaries feeding it (Li and Yuan River). For example, Jiang et al. 

50 sampled the entire lake (Jiang et al. 2008), but not the tributaries flowing into the lake. 

51 Other studies have found higher levels of contamination coming from the Yuan vs. the Li 

52 River entering West Dongting Lake but do not sample in various places along these rivers, 

53 using the same methodology (5-7). One of the objectives of our research was to sample 

54 these river gradients from up to downstream into the delta area where these tributaries meet, 

55 to better track potential sources of heavy metals on the Dongting Lake floodplains (Figure 

56 1).

57 Heavy metal pollution has toxic effects on the human body causing headaches, muscle 

58 and joint aches, confusion and other symptoms (8, 9). Arsenic can promote cancers and 

59 cadmium can attack kidney, liver, bone and the female reproduction system, also lead and 

60 mercury are neurotoxins, which can be consumed via seafood, vegetables and rice (8-10). 

61 Especially in countries with developing industries, industrial effluent, atmospheric 

62 deposition and sewage, polluted rivers are more likely to discharge heavy metals into the 

63 aquatic ecosystems (5, 11-16). Besides, heavy metals are persistent and have complex 

64 ecological effects on livestock, birds, and human beings (17-21). Various forms of heavy 
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65 metals and their interactions can have complex ecological effects on organisms (22). These 

66 toxins are also carried by streams and influenced by the sedimentation condition, for 

67 example, in the middle-reach of the Yangtze River (4, 23, 24). Moreover, the remediation 

68 methods of soil heavy metal various might be accomplished using plant species that 

69 hyperaccumulate these toxins (25), burial by sediment,or remediation via the application 

70 of biochar (26, 27). 

71 Our objective was to determine the contamination level of heavy metals in the soils of 

72 tributaries feeding the deltaic floodplains of Dongting Lake at various depths. This study 

73 is helpful for wildlife conservation, especially for migratory waterfowl, and environmental 

74 policies regarding fisheries in the lake.

75
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76 2. Materials and methods

77 2.1 Study area 

78 Dongting Lake is the largest freshwater lake of Hunan Province and the second largest 

79 in China. The western portion of Dongting Lake (West Dongting Lake, 30044 ha) connects 

80 the Yangtze River with South Dongting Lake and collects water from both the Yuan and 

81 Li Rivers. West Dongting Lake was designated as a Ramsar Wetland of International 

82 Importance in 2002 (https://rsis.ramsar.org/ris/1154). Therefore, this complex river system 

83 is crucial to the storage of flood water and the irrigation of farmland in the region (28). 

84 Yuan and Li River, which have mining industries and vast farmland along the river, are in 

85 the upper reaches of West Dongting Lake. Thus, many pollutants enter into the lake by the 

86 river. The sedimentation in the western part of the lake is the highest in Dongting Lake 

87 (24). The research sites including Taiyangcha (YnUp, upper reaches of Yuan River), 

88 Guanceta (YnMd, middle reaches of Yuan River), Liuzu (YnLiDelta, downstream reaches 

89 of Yuan and Li River) were placed in the flow direction of the Yuan River. Dabatai (LiUp, 

90 upper reaches of Yuan River), Dalianzhang (LiMd, middle reaches of Yuan River; in the 

91 delta) and Liuzu (YnLiDelta, downstream reaches of Yuan and Li River) were along the 

92 Li River; YnLiDelta near the intersection of the two rivers (Figure1). 

93 2.2 Sample Collection

94 A total of 75 sediment samples were collected in West Dongting Lake to evaluate the 

95 spatial distributions of heavy metals in January 2017. Each at 3 depths (0-10, 10-20, 20-30 

96 cm were collected and marked as surface sediment, medium sediment and deep sediment, 

97 respectively, in all five sites with five samples within plots of 10 ×10 m (see in Table 1). 

98 Each of the 75 samples were collected with a spade (20×20×10 cm), and were packed in 
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99 re-closable bags and transported to the laboratory at room temperature (0 ℃  to 8 ℃) 

100 within 24 hours.

101 2.3 Laboratory Analysis

102 The samples were air dried at room temperature (0 ℃ to 8 ℃) for five days in the 

103 laboratory. Air dried sediment samples were ground using a ceramic mortar and pestle, 

104 sieved through a 100-mesh nylon sieve (29), and placed into plastic bags at room 

105 temperature. Following this, every powdered samples (0.5 g) was digested by various acids 

106 (HNO3, HClO4, HF; analytical reagent grade, produced from Beijing Chemicals Factory, 

107 Beijing, China) and heated in a 100 ml polyfluoroethylene-crucible with lid at 220℃

108 *1h+280℃ until dry. All dry digestion products were dissolved by 5 ml 50% HNO3 in a 

109 50 ml volumetric flask. The digested solutions were stored in 25 ml centrifuge tubes (30, 

110 31).

111 All elemental analysis work was done by Beijing Forestry University Public Analysis 

112 Center. Concentrations of total Hg, Pb, Cd, Ni, Zn and As were analyzed with Inductively 

113 Coupled Plasma Mass Spectrometry (ICP-MS, optima 8X00, USA). Cu was analyzed 

114 using an Atomic Absorption Spectrometer (AAS, SPECTRAA-220, Australia). Initial 

115 calibration verification and reagent blanks were used for quality control.

116 2.4 Statistical method

117 To assess the differences of heavy metals concentration at various sediment depths 

118 and sample sites, two-way ANOVA analysis was performed and data were appropriately 

119 log transformed to meet statistical assumptions. Two-way ANOVA were used to test 

120 treatment differences, using SNK to test differences in specific means (SPSS 19.0, 2018).

121 Principal Components Analysis was applied used to explore the relationships of heavy 
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122 metals in floodplain sediments of the West Dongting Lake. Normally, a source of pollution 

123 contains various kinds of heavy metal contamination. For example, the waste water 

124 discharged by industry would have many different heavy metal pollutants. Principle 

125 Components Analysis (PCA) was used to assess if certain metals occurred together at the 

126 same sites to suggest if these may have come from a similar source using R (R 3.5.0, 2018). 

127
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128 3 Results

129 3.1 Metal concentrations in sediments

130 In West Dongting Lake, the concentrations of Ni, As, Cd, Hg, Pb, Zn, Cu varied from 

131 13.23 to 71.55 mg/kg, not detected (ND) to 14.59 mg/kg, ND to 2.65 mg/kg, 149.00 mg/kg 

132 to 323.19 mg/kg, ND to 5.50 mg/kg, 28.85 to 118.40 mg/kg, 12.80 to 54.00 mg/kg, 

133 respectively, with mean concentrations of 26.95, 0.97, 0.64, 249.25, 0.14, 78.09, 41.55 

134 mg/kg, respectively (Table 2). 

135 3.2  Differences between sites and depths

136 Except Pb, the other heavy metals showed significant differences between sample sites 

137 (Table 3). Only As, Cd and Zn showed significant difference at different sediment depths. 

138 The concentration of As in difference depths from highest to lowest included: surface 

139 sediment > medium sediment > deep sediment; the concentration of Cd was ranked as: 

140 medium sediment > deep sediment > surface sediment. The concentration of Zn was ranked 

141 as: deep sediment > medium sediment > surface sediment. Sample sites locator and 

142 sediment depths did not interact (p > 0.05). The concentration of As in LiUp was higher 

143 than other sample sites. In addition, the concentration of Cd in YnMd and LiUp were higher 

144 than YnUp, LiMd and YnLiDelta.

145 3.3 Principal Component Analysis, PCA 

146 Using three axes in the Principal Component Analysis, 70% of the data variance could be 

147 explained (Table 4, Figure 2). Hg, Cu, Ni, Zn and Pb were all related to the first principal 

148 component (RC1) (proportion variance = 0.28). Cd, Cn and As were related to the the 

149 second axis (RC2) (proportion variance = 0.25). Pb and As were related to the  third axis 

150 (RC3) (proportion variance =0.16).
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151 3.4 Spatial distribution analyze and sources identify of heavy metals

152 In general, Yuan River may carry more pollutants into the lake than the Li River (Figure 

153 3). LiMd shows a lower concentration of Ni, Cd, Hg, Zn and Cu than LiUp, suggesting 

154 that deposition may be occurring upstream. In contrast, YnMd shows a higher 

155 concentration of Ni, Hg and Cu than YnUp. There was obvious pattern of soil heavy metal 

156 pollution along the two rivers. In YnMd, the flow and relative position of the river show 

157 a balance and then relatively high concentrations of Hg are found in the middle reaches 

158 of this river. The reason why LiMd shows a lower concentration of pollutant may be 

159 because is the site is not quite close to theoff the main channel of the river. And tThe 

160 concentration of As, Ni, Cd and Zn show highest value inare highest in the YnLiDelta. 

161 This may indicate that the pollutants carried by the two rivers have an additive effect on 

162 each other at the junction and the main pollutants were cameoriginated from upstream 

163 sources on the Yuan River (Figure 3).    

164  Usually, the surface sediment contains more heavy metals of Cd and Zn, but, the 

165 highest level of As is the middle sediment (Figure 4). The significant differences of As, 

166 Cd and Zn along sediment depths suggested that As, Cd and Zn pollution may come from 

167 annual human activities or seasonal human activities such as fisheries aquaculture. Other 

168 heavy metal such as Hg pollution had no significant difference between sediment depth. 

169 So, its input came from continuous human activities and it may be more related to regional 

170 industrial activities, and could enter the wetlands via air or water (32, 33). 

171 According to the PCA analysis, Hg, Cu, Ni contamination sources are related, and may 

172 enter the wetland from the same way. From 2008 to 2017, previous research suggested that 

173 the mercury concentration in Dongting Lake was stable and continuous (3, 34, 35) and 
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174 usually the major input of these metals are related to human activities(36, 37). Thus, the 

175 major input of Hg, Cu, Ni may come from continued anthropogenic activities related to 

176 regional industrial activities within Yuan and Li River Watershed. The concentration of Cd 

177 is affected by sample location and sediment depths (Figure 3, 4). The natural occurred Cd 

178 levels are extremely low (9, 38) with the major source of spread Cd pollution are often 

179 from agricultural fertilizers (29, 39), therefore the PCA group related to Cd, Zn may come 

180 from agriculture activities. The irrigation and parent sediments or rock erosion are main 

181 sources of the contaminations of lead and arsenic (10, 40-42). In contrast, there was no 

182 groundwater irrigation going on in the region and there is little difference between the 

183 concentration of Pb and the early geochemical concentration of Pb, so Pb and As may come 

184 from sediment parental materials.

185
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186 4 Discussion

187 Compared to the heavy metal pollution status in the other regional wetlands in China 

188 or elsewhere (Table 5), such high levels of contamination of Hg in West Dongting Lake is 

189 rare in other parts of the world. The concentration of Ni, As and Pb were significantly lower 

190 than other those of other lakes. The concentrations of several other metals (i.e., Cd, Zn and 

191 Cu) in West Dongting Lake areis similar to that of other wetlands exclude the high Cu 

192 pollution in Hindon River .The mercury pollution in West Dongting Lake is much higher 

193 than other wetlands including Poyang Lake, Dongping Lake, Yellow River, Yangtze River, 

194 Huludao Fresh River in China and Hindon River, Awash River Basin, Nemrut Bay, 

195 Candarli Gulf, Shur River, Tigris River in developing country and Esaro in developed 

196 country. Other heavy metals pollution is not as serious as Hindon River, Esaro river, Awash 

197 River Basin, Nemrut Bay and Tigris River.

198 Heavy metals contamination is a critical problem in the Yangtze River basin (6) and 

199 Dongting Lake (34). Dongting Lake is one of the most polluted lakes in China, possibly 

200 due to the nonferrous mining, metallurgy, and manufacturing industries in Hunan Province 

201 (43). In Dongting Lake, the background values(44) of Ni, As, Cd, Hg, Pb, Zn, Cu are 21.2 

202 mg/kg, 12mg/kg, 0.33mg/kg, 0.047mg/kg, 23.3mg/kg, 83.3mg/kg, 33.3mg/kg, 

203 respectively. Other values were reported by Jiang et al. (34) for Ni, As, Cd, Hg, Pb, Zn, Cu 

204 and varied from 18.8-60.5mg/kg, 6.03-34.78mg/kg, 0.06-3.65mg/kg, 0.053-1.08mg/kg, 

205 22.4-118.6mg/kg, 63-189mg/kg, 12.9-83.1mg/kg, respectively. China’s Sediment 

206 Environmental Quality Risk Control Standard for sediment contamination of agricultural 

207 land (45) was updated by the Chinese government in 2018 to adopt the new regulation. The 

208 detail of the risk screening values and risk intervention values of the standard are given in 
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209 Table 6. The pH of the sediments in West Dongtin Lake are between 6.5 and 7.5. The 

210 floodplain sediments of Dongting Lake show the following results: At first, levels of Ni, 

211 As, Pb, Zn, Cu in sediments were lower than the risk screening values for sediment 

212 contamination of agricultural land, and the minimum concentration of Cd, As, Pb were too 

213 low to detect. The mean concentrations of Cd were higher than its risk screening values for 

214 sediment contamination of agricultural land and the concentration of Hg was much higher 

215 than its risk intervention values for sediment contamination of agricultural land. Also, the 

216 mean concentrations of Cd and Hg exceeded 2.1 and 103.9 times their risk screening values 

217 for sediment contamination of agricultural; the mean concentration of Hg was as high as 

218 62.3 times its risk intervention values for sediment contamination of agricultural land. 

219
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220 5 Conclusion

221 Surface sediment of the West Dongting Lake floodplain accumulates by sediment 

222 deposition during flooding. A change in heavy metal concentration at different sediment 

223 depths can reflect a change in heavy metal pollution over time. Also, the Yuan River and 

224 Li River show different pattern on heavy metal input which is Yuan River brings more 

225 pollutant to the main lake rather than Li River. Based on the sediment accumulation rate 

226 (in press) in the region, five sample sites were collected at three sediment depths to access 

227 the heavy metals (Ni, As, Cd, Hg, Pb, Zn, Cu), and In particular, the concentration of total 

228 Hg in West Dongting Lake is much higher than its risk intervention values for sediment 

229 contamination of agricultural land in the China’s sediment quality criteria. These heavy 

230 metals enter the wetland ecosystem via industry, mines and domestic sewage discharged 

231 directly or by surface runoff into Yuan and Li River, which feed into West Dongting Lake. 

232 Additionally, the lower water levels in West Dongting Lake after the construction of the 

233 Three Gorges Dam may cause polluted sediments to become exposed to air and 

234 subsequently enter the food chain via plant absorption and the high concentration of heavy 

235 metals indicated that the high contamination exceed acceptable standards and show huge 

236 potential ecological risk. Therefore, the high heavy metals contamination in particular may 

237 seriously impact the health of humans and wildlife in this region, especially threats to the 

238 health of migratory birds in the area. The specific toxicity of high contamination mercury 

239 in sediment is unknown because mercury absorbed by the organism in the form of methyl 

240 mercury (33), which is we are going to do. Nevertheless, the control of the industrial 

241 emission discharged into aquatic ecosystem and use fertilizer properly may be helpful to 

242 reduce heavy metal contaminations input into West Dongting Lake. 
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395 Tables

396 Table 1 Locations and abbreviation names of sample sites and sampled at three depths (0-

397 10, 10-20 and 20-30 cm) using three replications at each site.

398

399

Site abbreviation  Latitude  Longitude

Taiyangcha YnUp 28°54′8″N 112°8′54.64″E 

Guanceta YnMd 28°53′35.96"N 112°9′22.68″E

Dabatai LiUp 28°55′10.63″N 112°12′56.45″E

Dalianzhang LiMd 28°53′9.36″N 112°12′53.04″E

Liuzu YnLiDelta 28°51′59.68″N 112°13′18.43″E
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400 Table 2 General characteristics by depth of the heavy metal concentration in sediments of the West Dongting Lake floodplain. 

401 The a, b, c in the table means different group by ANOVA.

402 ND means concentrations below the detection limit.

Depth (cm) Maximum (mg/kg) Minimum (mg/kg) Mean of all depths 
(mg/kg) S.D. (depth) Mean of all depths 

(mg/kg) S.D. Background value (mg/kg)

0-10 33.58 16.77 27.22a 4.09
10-20 34.23 14.75 26.46a 5.03Ni
20-30 71.55 13.23 27.18a 11.06

26.95 7.41 21.2

0-10 7.64 ND 0.47a 1.59
10-20 14.59 ND 2.02b 3.67As
20-30 2.71 ND 0.43a 0.86

0.97 2.48 12

0-10 2.49 ND 1.16a 0.79
10-20 2.65 ND 0.60b 0.74Cd
20-30 1.05 ND 0.16b 0.32

0.64 0.77 0.33

0-10 295.71 180.17 252.37a 31.34
10-20 323.19 149.10 250.38a 51.23Hg
20-30 316.95 149.00 244.99a 52.76

249.25 46.26 0.047

0-10 1.20 ND 0.05a 0.23
10-20 2.25 ND 0.16a 0.51Pb
20-30 5.50 ND 0.22a 1.08

0.14 0.71 23.3

0-10 112.50 48.15 94.68a 17.00
10-20 111.00 44.50 76.33b 20.70Zn
20-30 118.40 28.85 63.27c 22.01

78.09 23.81 83.3

0-10 54.00 12.80 44.28a 10.00
10-20 52.00 22.40 40.39a 8.94Cu
20-30 51.20 21.80 39.97a 10.08

41.55 9.88 33.3
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403 Table 3 Two-way ANOVA comparison of sample sites, soil depths, and the interaction of site × soil depth.

Variable Sample 
sites YnUp LiUp YnLiDelta YnMd LiMd Soil 

Depths 0-10cm 10-20cm 20-30cm Sites × Depths

df 4 2 8
F 7.92 0.403 0.491
Sig. <0.001** 0.67 0.858Ni

Mean±S.E. 1.454±0.026b 1.376±0.026ab 1.477±0.026b 1.471±0.026b 1.310±0.026a 1.431±0.020a 1.416±0.020a 1.406±0.020a
df 4 2 8
F 7.83 4.826 1.707
Sig. <0.001** 0.011* 0.115As

Mean±S.E. 0.163±0.056ab -4.163E-
17±0.056a 0.380±0.056b 0.015±0.056a 0.072±0.056a 0.067±0.043a 0.235±0.043b 0.076±0.043a

df 4 2 8
F 6.029 15.344 1.356
Sig. <0.001** <0.001** 0.235Cd

Mean±S.E. 0.073±0.025ab 0.179±0.025c 0.160±0.025bc 0.039±0.025a 0.076±0.025ab 0.189±0.019a 0.081±0.019b 0.045±0.019b
df 4 2 8
F 29.481 0.709 1.805
Sig. <0.001** 0.579 0.32Hg

Mean±S.E. 2.407±0.014bc 2.369±0.014b 2.437±0.014cd 2.468±0.014d 2.266±0.014a 2.399±0.011a 2.390±0.011a 2.380±0.011a
df 4 2 8
F 0.684 0.551 1.191
Sig. 0.606 0.579 0.32Pb

Mean±S.E. 0.023±0.025a 0.025±0.025a 0.049±0.025a -2.082E-
17±0.025a

2.776E-
17±0.025a 0.003±0.015a 0.026±0.015a 0.030±0.015a

df 4 2 8
F 6.425 19.012 0.924
Sig. <0.001** <0.001** 0.503Zn

Mean±S.E. 1.865±0.03a 1.893±0.03ab 1.987±0.03b 1.860±0.03a 1.777±0.03a 1.979±0.023a 1.871±0.023b 1.779±0.023c
df 4 2 8
F 30.302 2.16 0.897
Sig. <0.001** 0.124 0.525Cu

Mean±S.E. 1.655±0.02a 1.618±0.02a 1.646±0.02a 1.690±0.02a 1.409±0.02b 1.630±0.016a 1.594±0.016a 1.586±0.016a

404 ** means significant differences.
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405 Table 4 Rotated component matrix for PCA loadings of heavy metals in West Dongting Lake. 

406

Component loadings
Elements

RC1 RC2 RC3

Ni 0.54 0.00 0.17

As -0.18 0.41 0.60

Cd 0.06 0.92 -0.10

Hg 0.83 0.21 0.10

Pb 0.21 -0.13 0.80

Zn 0.39 0.83 0.19

Cu 0.88 0.15 -0.22

SS loading 1.99 1.78 1.13

Proportion Var 0.28 0.25 0.16

Cumulative Var 0.28 0.54 0.70

407

408
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409 Table 5 Summaries of heavy metal concentration in sediments from lakes in China.

410 NA: not available

Metal concentration （mg/kg）
Name of the Wetlands Explain

Ni As Cd Hg Pb Zn Cu
Data from

West Dongting Lake, China Lake 26.95 0.97 0.64 249.25 0.14 78.09 41.55 This study

Dongting Lake, China Lake NA 29.71 4.65 0.157 60.99 185.25 47.48 (35)

East Dongting Lake, China Lake NA 4.5 0.82 NA 34.11 121.6 30.21 (3)

Poyang Lake, China Lake NA NA 0.7 NA 50.4 132.9 62 (46)

Dongping Lake, China Lake NA 25.3 0.285 0.055 35.5 100.5 52 (29)

Yellow River Riverbed, China River 28.5 NA NA NA NA 50.19 22.95 (19)

Mainstream 40.91 15.85 1.53 0.15 45.18 140.27 51.64

Tributaries 43.31 14.82 115.56 0.3 47.13 255 57.06Yangtze River catchment of Wuhan, 
China

Lakes 40.44 16.03 0.57 0.32 57.78 296.78 75.56

(47)

Yangtze River intertidal zone, China Coastal Wetland 31.8 NA 0.261 NA 27.3 94.3 30.7 (7)

Huludao Freshwater Rivers River 28.50 ± 
8.01 NA NA NA NA 50.19 ± 19.26 22.95 ± 

7.67 (11)

Hindon River, India River 13.90–
57.66 NA 0.29–6.29 NA 27.56–

313.57
22.22.50–
288.29

21.70–
280.33 (48)

Awash River Basin, Ethiopia River 89.46 15.87 2.6 0.17 13.53 382.73 79.43 (49)

Esaro, Italy River NA 20.9 0.22 0.044 13.1 NA NA (50)

Nemrut Bay, Turkey Coastal Wetland 18.1–63.4 14.4–20.2 0.005–0.25 1.70–9.60 22.3–89.4 75–271 9.6–43.7 (51)

Candarli Gulf, Turkey Coastal Wetland 7.6–100.3 11–35 NA 0.23–1.4 14.5–137.8 55–358 2.7–34.8 (52)

Shur River, Iran River NA NA 0.55 NA 32 187 26.2 (53)

Maden of Tigris River Turkey River 216.8 8.9 2.4 NA 393.9 530.5 1941.9 (54)
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411 Table 6 The risk screening values and risk intervention values of China’s Sediment 

412 Environmental Quality Risk Control Standard for sediment contamination of 

413 agricultural land, mg/kg

Type pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5

risk screening value 0.3 0.3 0.3 0.6
Cd

risk intervention value 1.5 2.0 3.0 4.0

risk screening value 1.3 1.8 2.4 3.4
Hg

risk intervention value 2.0 2.5 4.0 6.0

risk screening value 40 40 30 25
As

risk intervention value 200 150 120 100

risk screening value 70 90 120 170
Pb

risk intervention value 400 500 700 1000

risk screening value 50 50 100 100
Cu

risk intervention value - - - -

risk screening value 60 70 100 190
Ni

risk intervention value - - - -

risk screening value 200 200 250 300
Zn

risk intervention value - - - -

414

415
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416 Figure caption

417 Figure 1 Locations of sample sites in West Dongting Lake in China (A) Dongting Lake 

418 in China, (B) West Dongting Lake with Dongting Lake and Yangtze River, (C) Yuan 

419 River and Li River flow into Dongting Lake including Taiyangcha (YnUp), Guanceta 

420 (YnMd), and Liuzu (YnLiDelta) along the Yuan River and Dabatai (LiUp), 

421 Dalianzhang (LiMd) and Liuzu (YnLiDelta) along the Li River. The arrows indicate 

422 the flow direction of the rivers. Surrounding cities have many industries including auto 

423 parts and manufacturing. Areas directly adjacent to the river include farming and 

424 forestry activities.

425
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426

427 Figure 2 Principal Component Analysis loading plot showing heavy metal relationships 

428 in West Dongting Lake.

429

430
431
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432 Figure 3 Two-way ANOVA comparison of sample sites

433  
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436 Figure 4 Two-way ANOVA comparison of sample depths
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