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BOKEI: Bayesian Optimization Using Knowledge of Correlated Tor-
sions and Expected Improvement for Conformer Generation

Lucian Chan,a Geoffrey R. Hutchison,b and Garrett M. Morris∗a

A key challenge in conformer sampling is finding low-energy conformations with a small number
of energy evaluations. We recently demonstrated the Bayesian Optimization Algorithm (BOA) is
an effective method for finding the lowest energy conformation of a small molecule. Our approach
balances between exploitation and exploration, and is more efficient than exhaustive or random
search methods. Here, we extend strategies used on proteins and oligopeptides (e.g. Ramachandran
plots of secondary structure) and study the correlated torsions in small molecules. We use bivariate
von Mises distributions to capture correlations, and use them to constrain the search space. We
validate the performance of our new method, Bayesian Optimization with Knowledge-based Expected
Improvement (BOKEI), on a dataset consisting of 533 diverse small molecules, using (i) a force field
(MMFF94); and (ii) a semi-empirical method (GFN2), as the objective function. We compare the
search performance of BOKEI, BOA with Expected Improvement (BOA-EI), and a genetic algorithm
(GA), using a fixed number of energy evaluations. In more than 60% of the cases examined, BOKEI
finds lower energy conformations than global optimization with BOA-EI or GA. More importantly,
we find correlated torsions in up to 15% of small molecules in larger data sets, up to 8 times
more often than previously reported. The BOKEI patterns not only describe steric clashes, but also
reflect favorable intramolecular interactions such as hydrogen bonds and π-π stacking. Increasing
our understanding of the conformational preferences of molecules will help improve our ability to find
low energy conformers efficiently, which will have impact in a wide range of computational modeling
applications.

1 Introduction
Many molecules can adopt multiple geometrically-distinct con-
formers. Considerable effort has been devoted to understand-
ing the influence of structure on function, notably in the fields
of protein folding, and protein-ligand binding1–3. Finding the
energetically-lowest conformation of a small molecule is a com-
mon task in computational chemistry4,5. Here, we introduce a
new search method that extends our previously proposed search
strategy, Bayesian Optimization Algorithm, BOA6, by incorporat-
ing prior knowledge of correlated adjacent pairs of torsional an-
gles.

We recently showed BOA tends to find the lowest energy con-
formation of small to medium organic molecules more efficiently
than both an exhaustive systematic search, Confab7, and a uni-

a Address, Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1
3LB, UK.; E-mail: garrett.morris@stats.ox.ac.uk
b Address, Department of Chemistry and Chemical Engineering, University of Pitts-
burgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA.;E-mail: geoffh@pitt.edu
† Electronic Supplementary Information (ESI) available: All the data and
code will be available online and GitHub https://github.com/lucianlschan/
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form random search, when evaluated using a “fixed-rotor approx-
imation” and the MMFF94 force field6. BOA required an order of
magnitude fewer energy evaluations than these methods to find
the lowest energy conformation. Drawing from statistical me-
chanics, BOA begins with an initial estimate of the probability of
likely dihedral angles (e.g. 60◦, 120◦, 180◦, etc.) and updates
these probabilities by evaluating a new point on the potential en-
ergy surface (PES). In this way, BOA “learns” the most likely di-
hedral angles of a molecule from all previous observations, and
determines the next query point based on the model’s uncertainty.
This approach balances exploration and exploitation, and prevents
the search from being trapped in local minima. However, BOA
suffers from two limitations: one is that it tends to unnecessar-
ily sample high energy regions of the potential energy surface.
A second is that the Gaussian Process (GP) regression is used
as a surrogate model, which is well-known to have high com-
putational complexity, although recent studies8 have shown the
asymptotic complexity of the exact GP inference can be reduced
to O(N2), where N is the total number of energy evaluations.
Here, we introduce a new knowledge-based acquisition function
to address the first issue. Although GP has high computational
complexity, we still use it as the surrogate model in this work. Its
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well-calibrated model of uncertainty is heavily used to guide the
sampling on the PES in this work.

Various knowledge-based methods9–12 have been proposed for
(diverse) conformer generation. These methods utilize the tor-
sional preferences in guiding conformer sampling and the torsion
rules are typically derived from databases of experimental X-ray
crystal structures, such as the Protein Data Bank (PDB)13 and
the Cambridge Structural Database (CSD) 14, although they can
also be derived from computed structures. Context and nearest
neighbour effects are generally ignored in the torsion rules: each
dihedral is treated as an independent free rotor1.

Structural information about adjacent and proximal rotatable
bonds can, however, be crucial for conformer generation, as these
torsion angles are naturally constrained. This can help to reduce
steric clashes, retain π-conjugation, align intramolecular hydro-
gen bonds, or preserve other similar non-covalent interactions.
For instance, Fig. 1b shows the computed MMFF94 potential en-
ergy surface for 5-phenylthioquinazoline-2,4-diamine, with light
blue indicating conformations with low energies. Due to steric
clashes, the neighboring dihedral angles are clearly correlated
and thus the conformational search can be greatly focused on the
most favorable regions of the state space by incorporating this
information. Even in a simpler molecule such as ortho- 1,1′:2′,1′′-
terphenyl, there are correlations between non-neighboring dihe-
dral angles due to steric clashes (Fig. 1d).

In this work, we examine the distributions of correlated torsions
in (i) X-ray crystal structures; (ii) the lowest-energy conforma-
tions from MMFF94; and (iii) the lowest energy conformations
from an approximate quantum method, GFN2. We analyze the
distributions of the correlated torsions in the lowest-energy con-
formations computed first by MMFF94, and then by GFN2, and
use these distributions to constrain the search space in Bayesian
optimization using a modified acquisition function. We show that
this significantly improves the efficiency of the search for low-
energy conformations. We also show that correlated dihedral an-
gles are common in organic small molecules.

2 Material and Methods

2.1 Knowledge-based Method
Guba et al. 15 derived a set of rotatable bond SMARTS patterns
that are used in RDKit’s16 Experimental-Torsion Distance Ge-
ometry with basic Knowledge (ETKDG) algorithm17, and also
in BOA6, the predecessor of our new method, BOKEI. This li-
brary only considered substructures consisting of a single rotat-
able bond. We expanded this set of patterns to consider corre-
lated torsions in substructures consisting of two adjacent rotat-
able bonds.

2.1.1 Correlated Torsion Rules

We enumerated all possible pairs of rotatable bond SMARTS pat-
terns as defined in the library of Guba et al. 15, and counted the
frequencies of the corresponding pairs of torsion angles observed
in ligands having five or fewer rotatable bonds in the Crystal-
lography Open Database (COD)18,19. We excluded pair patterns

(a)

N

N

NH2

NH2S

(b)

(c) (d)

Fig. 1 (a) 5-Phenylthioquinazoline-2,4-diamine. (b) MMFF94 poten-
tial energy landscape for 5-Phenylthioquinazoline-2,4-diamine. (c) ortho-
1,1′:2′,1′′-terphenyl. (d) MMFF94 potential energy landscape for ortho-
1,1′:2′,1′′-terphenyl. The areas in light blue show the lowest-energy re-
gions. Torsion angles are measured in radians. The correlated torsions
in the molecules are highlighted in red.

with fewer than 100 observations, resulting in 19 correlated tor-
sion patterns, including one SMARTS pattern suggested by Cole
et al. 9 (see Appendix 1 Table S1). The remaining substructures
defined by Cole et al. were discarded due to insufficient observa-
tions in our dataset. Future work will expand on this initial set as
discussed below.

For molecules that contain any matches of the derived SMARTS
patterns, we calculated the lowest energy conformation and
recorded the corresponding torsion angles. We performed the cal-
culations with two energy functions: (i) a force field, MMFF9420,
and (ii) a semi-empirical method, GFN221,22. We then modeled
the observed torsion distribution with bivariate von Mises mixture
models for all three sources of structure (X-ray crystal structure,
MMFF94, and GFN2) separately. Details of the calculations and
models can be found in Appendix 2. The bivariate von Mises dis-
tribution has been used to model torsion angles in protein struc-
tures23–25. There are two advantages of using this distribution
for correlated torsions: (i) it can model correlated torsions that
cannot be described by a simple clash term; and (ii) it can be eas-
ily integrated with existing conformer sampling schemes, such as
distance geometry26.

2.2 Bivariate von Mises Distribution and Mixture Models
The bivariate von Mises distribution is a probability distribution
that can be used to jointly model two angular variables (θ1 and
θ2). It can be thought of as an analogue of the bivariate normal

2 | 1–9Journal Name, [year], [vol.],

Page 2 of 10Physical Chemistry Chemical Physics



distribution on a torus. In particular, we used the cosine variant
of the von Mises distribution, which is as follows:

f (θ1,θ2) ∝ exp(κ1 cos(θ1−µ)+κ2 cos(θ2−ν)

−κ3 cos(θ1−µ−θ2 +ν))

(1)

where the parameters (µ, ν) and (κ1, κ2) in the model represent
the mean, and concentrations respectively. (κ3) is a parameter
controlling the correlation.

The bivariate von Mises distribution can be unimodal or bimodal
under different conditions (see Appendix 2). A single bivarate
von Mises distribution is not sufficient to capture the multimodal-
ity of the torsional preferences. We used mixture models (Eq.
2) to describe the torsional preference entirely; the probability,
P(θ1,θ2) of observing the pair of torsion angles, θ1 and θ2, is given
by:

P(θ1,θ2) =
K

∑
i=1

wi fi(θ1,θ2) (2)

where K is the number of components in the model, and wi is
the weight of each component. The estimation procedure of the
parameters of the mixture models are explained in Appendix 2.

We should note that the bivariate von Mises mixture model re-
quires sufficient data to accurately describe torsional preferences,
so cases with small numbers of observations were excluded in this
work. This limits the current performance of our algorithm, and
we discuss some potential solutions in Section 3.7.

2.3 Bayesian Optimization
The general idea of Bayesian optimization is to construct a sur-
rogate model that approximates a black box objective function,
f (x), and exploit this model to decide which points to evaluate
next. The sampling strategy is determined by the choice of acqui-
sition function, such as Expected Improvement (EI) and Lower
Confidence Bound (LCB). Gaussian Process is commonly used as
the surrogate model. For more detail about the Gaussian Pro-
cess and a review of Bayesian optimization, see Rasmussen and
Williams 27, Brochu et al. 28 and Shahriari et al. 29

EI(θ) = σ(θ)(z(θ)Φ(z(θ))+φ(z(θ)) (3)

LCB(θ) = µ− γσ(θ) (4)

Here, z(θ) = f (θbest )−µ(θ)
σ(θ)

, where θbest , µ(θ), and σ2(θ) are the
best current value, predictive mean, and predictive variance re-
spectively; while Φ(·) and φ(·) are the cumulative distribution
function and probability density function, respectively; and γ is a
parameter to balance exploration against exploitation. We should
note that the acquisition functions (Eq. 3 and 4) take model un-
certainty into account when selecting next query points, but it
is still possible to select points in regions with steric clashes. In
this work, we therefore define a new acquisition function that
makes use of our domain knowledge, namely Knowledge-based
Expected Improvement (KEI), to address this problem.

2.3.1 Knowledge-based Expected Improvement

Knowledge-based Expected Improvement (KEI) can be consid-
ered as a modified expected improvement (EI) acquisition func-
tion that offers improvement only when a set of torsion con-
straints are satisfied:

aKEI(θ) = EI(θ)
M

∏
m=1

Pm(θm,1,θm,2) (5)

where M is the total number of correlated torsions found in the
molecule, Pm(θm,1, θm,2) is the mixture model of the torsion angle
pairs in pattern, m. We assume independence between each pair
of correlated torsions. The idea of KEI is similar to the method
of expected improvement with Boolean constraints suggested by
Griffiths and Hernández-Lobato, and Gelbart et al., with a user-
specified minimum confidence of the constraints.30,31 Instead of
Boolean constraints, we derived separate distributions of the cor-
related torsions from the lowest energy conformations found by
MMFF94, and GFN2. These were encapsulated by bivariate von
Mises mixture models, which are used to constrain the search.

2.3.2 Covariance Function

Since potential energy is known to be periodic with respect to
dihedral angle, a locally periodic kernel, kLP, which is a product
of a periodic kernel and a squared exponential kernel, was used:

kLP(θ ,θ
′) = σ

2 exp(
−
∥∥θ −θ ′

∥∥2

2l2 )exp(
−2sin2 (π|θ −θ ′|/p)

l2 ) (6)

where l, p, and σ2 are the length-scale, periodicity, and variance,
respectively. The periodicity is determined by torsional potentials
corresponding to the rotatable bond SMARTS patterns. Note that
for missing patterns that did not match a specific type of rotatable
bond, i.e. did not match a SMARTS pattern, we assigned general
values for the periodicity based on the atomic hybridization of the
two atoms in the central rotatable bond, i.e. sp2− sp2, sp2− sp3,
or sp3−sp3. Boundary constraints were added to the length-scale
in the kernel for numerical stability.

2.4 Data
We used two datasets, the Platinum dataset,3 and a dataset as-
sembled by Ebejer et al. 32, to benchmark the performance of the
search algorithms. Duplicated molecules in the two datasets were
removed based on their InChI Key. Molecules with 2 to 18 rotat-
able bonds, and containing two adjacent rotatable bonds match-
ing the set of rotatable bond-SMARTS patterns, were selected for
the study, giving a set of 533 unique molecules.

We extracted small molecules with matching rotatable bonds
from the Crystallography Open Database (COD), and removed
duplicate molecules from the COD set that were present in both
the validation set and COD based on their InChI Key. We recorded
the torsional preferences in these crystal structures. In addition,
we calculated the lowest energy conformations of these molecules
using MMFF94 and GFN2, and recorded the resultant calculated
torsional preferences for each. We then derived bivariate von
Mises mixture models from the torsional preferences found in X-
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ray crystal structures, and calculated by the MMFF94 and GFN2
methods.

2.5 Evaluation
2.5.1 Energy function

Previously6, we computed a single-point MMFF94 force field en-
ergy while keeping the small molecule’s bond lengths and bond
angles fixed. Here, we relaxed the framework and evaluated the
energy of the fully-optimized molecule, i.e. the energy value at a
given set of dihedral angles was a result of a short (50 steps)
MMFF94 energy minimization, with a concomittant change in
bond lengths and bond angles, while the torsion angles remained
fixed during geometry optimization. We used the MMFF94 im-
plementation in Open Babel 2.4.133. The configurations in the
benchmark datasets were used as the initial structures.

In addition, we performed single-point energy calculations with a
more accurate semi-empirical method, namely GFN221,22. Simi-
larly, the configurations in the benchmark datasets were used as
initial structures. The bond length, bond angles and other param-
eters were inherited from the input structures.

2.5.2 Comparison

Three global optimization conformational search methods were
compared using the same, fixed number of energy evaluations:
(i) a Genetic Algorithm (GA), and our Bayesian Optimization Al-
gorithm, BOA, with two different acquisition functions: (ii) our
previous expected improvement (EI) method,6, and (iii) the new
knowledge-based expected improvement (KEI) strategy. The im-
plementations are described below.

(i) Bayesian Optimization with EI (BOA-EI)6. GPyOpt34 was
used for the Bayesian optimization and Pybel35 was used to
drive the torsion angles of the molecules and energy minimiza-
tion. Note that torsion constraints were used in the geometry
optimization step (i.e., minimization of all other degrees of free-
dom, bonds, angles, etc. with fixed dihedral angles). Expected
improvement was used as the acquisition function. Five initial
random samples were generated to begin a Gaussian Process re-
gression. We also added boundary constraints to the length-scale
parameter for the sake of numerical stability. The lowest energy
conformation calculated from all iterations returned as the final
output structure.

(ii) Bayesian Optimization with KEI (BOKEI). The implementa-
tion was the same as the standard Bayesian optimization in (i),
except a knowledge-based acquisition function, KEI, was used.

(iii) Genetic Algorithm (GA). The implementation in Open Ba-
bel33 for GA was used. The GA search terminated when ei-
ther the maximum number of energy evaluations was reached
or three identical generations were observed; all other GA pa-
rameters were left as their default values. Note that no torsion
constraints were added in the energy minimization step as the
surrogate model was not required.

2.6 Search Space
The search space for each molecule is determined by its set of
freely-rotatable bonds. The search space for the Bayesian opti-
mization and its variant was defined by the hypercube [−π,π)d ,
where d is the number of rotatable bonds. A discrete grid space
was used for GA.

2.6.1 Search Budget

The number of energy evaluations was determined by the num-
ber of rotatable bonds in the molecule (see Table 1). Since five
initial samples were used to fit a Gaussian process in Bayesian
optimization, only K−5 conformations were sampled after initial
sampling. For accurate statistical comparisons of these stochastic
methods, five runs were performed for each algorithm.

Table 1 Sample size versus number of rotatable bonds

Number of rotatable bonds Number of conformers (K)
2-3 25
4-5 50
6-7 100
≥8 200

2.6.2 Analysis

Energy difference (∆E) between the lowest energy conformation
obtained by other methods and that from BOA-EI was calculated.
The average energy difference was used to evaluate the perfor-
mance of the search methods. The average energy difference is
calculated as follows:

∆EKEI =
1
N

N

∑
i=1

(EKEI,i−EEI,i) (7)

∆EGA =
1
N

N

∑
i=1

(EGA−EEI,i) (8)

where N is the number of runs. EEI,i and EKEI,i are the lowest
energy found by EI and KEI in i-th run respectively. EGA is the
lowest energy conformation found in all runs (do not depend on
i-th run). The lowest energy conformation found by BOA-EI was
used as reference in both cases. Since same initialization was
used in both BOKEI and BOA-EI, i.e. five initial samples were the
same, we could directly compare the performance between them
in each run. In GA, We compared its best performance to each
run in BOA-EI. Two different energy functions were used in the
context and we denote ∆EMMFF94 and ∆EGFN2 to be the average
energy difference in MMFF94 and GFN2 respectively.

Wilcoxon signed-rank test was used to test whether the proposed
method, BOKEI, finds lower average energy conformations than
BOA-EI and GA, i.e. one-sided test. We tested it across a varying
number of rotatable bonds with both MMFF94 and GFN2 energy
functions.

Furthermore, we calculated the frequency of BOKEI in finding
lower energy conformations than BOA-EI and GA. We also com-
puted the pattern frequency of our derived torsions pattern across
three datasets, namely Platinum dataset3, COD, and ChEMBL
2536, and compared to that of the correlated torsion patterns de-
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fined in CSD Conformer Generator9.

Lastly, we performed run time analysis on BOA-EI and BOKEI,
using a desktop running Fedora 30 with an Intel Core i7-6700
operating at 3.40 GHz, and 32 GB of RAM. Single core was used
to read molecule, drive torsions and write conformers to disks.
All cores were used in the GPyOpt operations. The time included
reading input molecules and writing the conformers to disk. Fif-
teen molecules with two to six rotatable bonds, three for each,
were sampled. We repeated the search with four times for each
molecule.

3 Results and Discussion

3.1 Example
Two molecules were sampled to illustrate the strengths and
the weaknesses of the BOKEI algorithm, using the geometry-
optimized MMFF94 energy (see Appendix 3 for more examples
with GFN2). Ten runs were performed for each molecule. From
Fig.2, we can see BOKEI is able to find lower energy conforma-
tion consistently using same number of iterations. The energy
gap between BOKEI and BOA-EI decreased as the number of it-
erations increased, since both methods should converge to the
same global minimum. We should note that the performance of
BOKEI was worse than BOA-EI in this example 2b, which was a
result of under-estimation of the correlated torsion distribution.
Insufficient sampling or biased selection of molecules gave rise
to the incomplete prior information, and led to the inferior per-
formance. Using additional data to improve the correlated dis-
tributions, even in this case, the performances became similar, as
discussed in Section 3.7.

We revisited the example, 5-Phenylthioquinazoline-2,4-diamine,
and studied the effect of the new acquisition function on the pos-
terior. Fig.S5 in Appendix 2 shows that the posterior of BOA-EI
and BOKEI after twenty iterations (25 observations in total, with
five initial samples). GFN2 energy function was used in this ex-
ample. The posterior mean showed a coarse boundary between
high and low energy regions. The observations in BOKEI were
more closely packed in the low energy region, compared to that
in BOA-EI. Only a small number of observations were sampled in
medium or high energy region, the posterior standard deviations
thus remained high.

3.2 Dataset Summary
For a broader comparison, 533 molecules ranging from 2–18 ro-
tatable bonds were used to validate the performance. In GFN2,
we benchmarked the performance with molecules up to 13 rotat-
able bonds only. The number of matches for each pattern in the
validation set is summarized in Appendix 3 Fig. S7. Five cor-
related SMARTS patterns are frequently found, with frequency
greater than 100. Note that there were nine molecules (five in
MMFF94 and four in GFN2) excluded from analysis due to early
stopping in one of the five runs (see Appendix 4 Table S8 and S9).
This was manifested by a non-positive definite kernel error.

(a)

(b)

Fig. 2 The red line and the blue line in the convergence plots repre-
sents average rate of the BOKEI and BOA-EI in finding lower energy
conformations respectively, with ±1 sample standard deviation (shaded
region). The corresponding molecule and the correlated torsion is high-
lighted in red. Geometry-optimized MMFF94 energy function was used
in both cases. More examples with GFN2 energy function can be found
in Appendix 3 Fig.S4. (a) BOKEI consistently finds lower energy confor-
mations than BOA-EI in early stage and the energy gap reduces as the
number of iterations increased. (b) Unusually, BOKEI performs worse
than BOA-EI, which is a result of under-estimation of the correlated
torsion.

3.3 MMFF94
Fig. 3a shows that BOKEI consistently finds lower energy confor-
mation than BOA-EI and GA. A Wilcoxon signed rank test shows
that energy difference between BOKEI and BOA-EI is statistically
significant (p << 0.01, see Appendix 3 Table S4) across all rotat-
able bonds. On the other hand, we can see that the GA outper-
forms BOKEI and BOA-EI for molecules with more than twelve
rotatable bonds. This is because the small number of samples
(200 energy evaluations) may not be sufficient for the BOA-EI or
BOKEI models to learn the most likely dihedral angles in high di-
mensional problems. Fig. S6a in Appendix 3 shows that BOKEI
frequently (> 63% and > 70%) finds lower energy conformations
than BOA-EI and GA for molecules with fewer than eleven rotat-
able bonds respectively. Fig. S8a in Appendix 3 also shows that
BOKEI gives a lower variation in energy than BOA of the output
conformations in all five runs.

Furthermore, Fig. 2 highlights that BOKEI shows greater bene-
fit in the early stage of the search. Comparing the mean energy
difference between BOKEI and BOA-EI at different stages (40%,
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60% and 100% of the maximum number of energy evaluations),
the energy gap is indeed greater, and in favor of BOKEI, in the
early stages (see Appendix 3 Table S6). The gap diminishes when
more evaluations are used, since both methods converge to the
same global optimum. These results suggest that the information
about correlated torsions greatly helped the search in the early
stage, pointing the search towards favorable regions of the poten-
tial energy landscape.

3.4 GFN2
In GFN2, we used a single-point energy calculation, and excluded
GA in the analysis. Fig. 3b shows that BOKEI consistently finds
lower energy conformations than BOA-EI. Similarly, Wilcoxon
signed rank test shows the average energy difference between
BOKEI and BOA-EI is statistically significant (p << 0.01, see Ap-
pendix 3 Table S5). The energy gap is greater in the early stage
and the gap diminishes as more energy evaluations were used
(see Appendix 3 Table S7). In addition, Fig. S6b in Appendix
3 shows that BOKEI frequently (> 60%) finds lower energy con-
formations than BOA-EI across all rotatable bonds. Fig. S8b in
Appendix 3 shows that BOKEI gives a lower variation in energy
than BOA of the output conformations in all five runs.

(a)
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Fig. 3 (a): MMFF94 average energy difference from five runs. (b)
GFN2 average energy difference from five runs. The average energy of
the outputs from all runs found by BOA-EI is used as the reference point
(red line) in (a) and (b). BOKEI often finds lower energy conformations
than BOA-EI in both cases. The GA in MMFF94 outperforms BOKEI
and BOA-EI for molecules with eleven or more rotatable bonds.

3.5 Correlated Torsion
When adjacent rotatable bonds have correlated dihedral angles,
this is typically caused by unfavorable steric interactions — but
not always. Four of the nineteen patterns in our library arise be-
cause of favorable intramolecular interactions, such as hydrogen
bonds and π-π stacking. For example, in pattern 15, the lowest
energy conformations found by GFN2 often form intramolecular
hydrogen bonds between the N-H or O-H groups and the adjacent
carbonyl oxygen atoms in the esters (see Fig. 4a).

The thioamide functional group is a key part of patterns 2 and
16 (see Fig. 4b). The delocalization of the nitrogen lone pairs in
this group contributes to its overall planarity, but it could exist in
either the cis or trans form. The orientation of the aromatic ring
in pattern 2 is thus highly constrained. The cis/trans preference
is easily revealed by examining higher-order correlated torsions,
i.e. between three adjacent rotatable bonds. In particular, we
considered a specific thiourea derivative that is bonded to a car-
bonyl group (see Appendix 1 Table S2). This is always observed
to adopt the following conformation: (i) the C=S and C=O are
oriented in ‘opposite’ directions, while (ii) the thiourea adopts
the syn-anti37 conformation. This results in the formation of a
pseudo six-membered ring that is stabilized by a C=O - - H-N in-
tramolecular hydrogen bond (see for example, Fig. 4b). Fig. S3
in Appendix 3 shows these three torsion angles are highly con-
centrated around 0◦ in COD.

For pattern 17, π-π stacking is evident: when aromatic rings are
attached to both ends of the pattern, both rings prefer to interact
with one another (see Fig. 4c).

It should be noted that the CSD Conformer Generator9 also con-
siders 11 correlated torsions, but a simple clash term is used for
all other interactions. Here, we use a more flexible approach that
employs bivariate von Mises mixture models to fully describe the
correlated torsions. Both favorable intramolecular interactions
and unfavorable steric clashes can be described. It would also
possible to expand this to a multivariate case38, in order to cap-
ture higher-order correlations as mentioned earlier. Additionally,
the framework is easy to integrate with other conformer sampling
schemes, such as distance geometry17,26. We intend to integrate
with the ETKDG in RDKit in the future as the current implemen-
tation does not consider the correlated torsion.

In addition, the torsional preference of MMFF94 differs from the
one in GFN2 and crystal structures in pattern 1, 3 and 12. This
suggests that some of the molecular interactions cannot be rep-
resented in classical force fields. In pattern 2, we notice a dis-
crepancy between the crystal conformation and the lowest energy
conformation in GFN2 – the second torsion angles (i.e. the tor-
sion angles measured from the thioamide group) are highly con-
centrated around 180◦, i.e. trans-form. This could be explained
by the separate hydrogen bond interaction of the N-H group and
the C=S in the crystal.

Furthermore, we compiled the number of the molecules with the
presence of correlated torsions in three different datasets: (i)
Platinum, (ii) COD and (iii) ChEMBL 25 (see Table 2). We found
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(a)

(b)

(c)

Fig. 4 Intramolecular H-bonds are observed in pattern 15 (a) and patterns
2 and 16 (b); while intramolecular π-π stacking is evident in pattern 17
(c).

that our SMARTS patterns library surprisingly matched 10−15%
organic molecules, which was noticeably higher than the pat-
terns defined in CSD Conformer Generator (1− 4%). These re-
sults suggest that broader investigation of correlated torsions is
warranted, despite the conventional assumption of each rotatable
bond as an independent free rotor.

3.6 Computational Time
Fig. 5 shows the average run time of BOA-EI and BOKEI with
GFN2 energy function, varying the number of iterations (50, 100)
and number of rotatable bonds (two to six rotatable bonds). Both
computational cost increases as the number of rotatable bonds
increases. The computational time also increases when BOKEI is
used, but is primarily dominated by the number of conformers
generated. Note that the current implementation can be further
optimized by providing the gradient information of the acquisi-
tion function.

In theory, extra multiplication in the BOKEI acquisition function
increases the computational complexity of O(mn), where m and
n are the number of correlated torsion found in a molecule and
the number of samples used to evaluate the acquisition function
respectively. We should note that the relative contribution to the
computational time of the new acquisition function will be small,
when a more accurate and computational expensive method, such
as density functional theory (DFT), is used for energy evaluation.

Our new algorithm will be more cost-effective than the old ver-
sion in such settings.

2 3 4 5 6
Number of rotatable bond

0

200

400

600

800

1000

Ti
m

e 
(s

)

EI(50)
EI(100)
KEI(50)
KEI(100)

Fig. 5 Average computational time for BOA-EI and BOKEI with GFN2
energy function, using different number of energy evaluations (50, 100).
The computational time increases as the number of rotatable bonds in-
crease, but is dominated by the number of conformers generated.

3.7 Limitation and Future work
We only calculated the lowest energy conformation of the
molecules with up to five rotatable bonds in the COD set, and
the sampling of the low energy region of the correlated dihedral
could be incomplete. This limited the performance of the algo-
rithm. This issue can be easily solved by increase sampling of
the corresponding substructures in a larger database, for instance
ChEMBL36 and PubChem39, and re-estimating the distribution.
Fig.6a showed the original prior used in Example 2b. We ob-
served that the cluster centroids shifted when observations from
ChEMBL were used (see Fig.6b), and Fig.6c showed a great im-
provement in convergence rate comparing to the original case.

In addition, hundreds of observations were typically required to
fit the mixture models. Cole et al. derived a set of SMARTS pat-
terns, and we did not use all of them due to insufficient observa-
tions. In order to overcome this obstacle, we could apply a meta-
learning approach proposed by Ton et al. 40, which attempts to
learn the conditional distribution of the correlated torsion. They
showed that the approach could generalise the density of the cor-
related torsions with few observations. This meta-learning setting
could greatly reduce the computational cost in learning torsion
rules, and potentially help discover more unexpected torsion pat-
terns for the sampling scheme.

4 Conclusions
By reformulating the search for the lowest energy conformation
of a given molecule as a constrained Bayesian optimization prob-
lem, we have shown concrete improvements. Prior knowledge of
correlated torsions was used to confine the exploration to regions
of low energy. We compared the Bayesian optimization with two
different acquisition functions: standard expected improvement
(EI) and knowledge-based expected improvement (KEI), and ge-
netic algorithm (GA), using two energy functions: MMFF94 and
GFN2. We showed that with the same number of energy eval-
uations, the Bayesian optimization with KEI (BOKEI) frequently
(> 60%) found lower energy conformations (median energy dif-
ference 1.95 kcal/mol in MMFF94 and 1.54 kcal/mol in GFN2)
than the Bayesian optimization with EI (BOA-EI) in both cases,

Journal Name, [year], [vol.], 1–9 | 7

Page 7 of 10 Physical Chemistry Chemical Physics



Table 2 Frequency of molecules with the presence of correlated torsion patterns, comparing this work to previous steric constraints9 across various
databases, including the Crystallographic Open Database (COD).

Dataset Number of Molecules % Matches (New) % Matches (CSD)
Platinum 4,548 9.2 2.5
COD 110,623 13.5 1.6
ChEMBL 25 1,870,461 14.6 3.6

(a) (b)

(c) (d)

N

N

O
N

O

O

Fig. 6 (a) Mixture model derived from the COD dataset. (b) Mixture
model derived from COD and ChEMBL database. The contour plot
indicates the log density of a mixture model and the points (in red)
mark the mean location for the components. (c) Convergence plot. (d)
Molecule used to validate the performance of the updated prior.

across all rotatable bonds.

Importantly, using bivarivate von Mises mixture models to de-
scribe the correlated dihedral allowed us to capture correlation
that could not be explained by simple clash terms, and this ap-
proach could be integrated into other conformer sampling frame-
works easily. Furthermore, we showed that the correlated tor-
sions not only reflect steric clashes, but also favorable intramolec-
ular interactions such as hydrogen bonds and π-π stacking.

Future work should focus on expanding data sources, to ensure
sufficient sampling across a wide range of correlated dihedrals
including other types of neighbors, non-nearest neighbors. More-
over, ring torsions were not investigated, which are well-known
to involve correlations torsional motion (e.g. Cremer-Pople angles
and ring pucker)41,42. Such efforts will improve the efficiency
in sampling low-energy conformers for applications in property-
driven drug design, materials screening, and crystal structure pre-
diction.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
GRH thanks the National Science Foundation (CHE-1800435) for
support. GMM thanks the EPSRC and MRC for financial support
under grant number EP/L016044/1. The authors would like to
acknowledge the use of the University of Oxford Advanced Re-
search Computing (ARC) facility in carrying out this work, and
supported in part by the University of Pittsburgh Center for Re-
search Computing through the computational resources provided.
We also thank Prof. Jotun Hein, Susan Leung and Carlos Outeiral
for helpful discussion.

Notes and references
1 P. C. D. Hawkins, Journal of Chemical Information and Model-

ing, 2017, 57, 1747–1756.
2 N.-O. Friedrich, C. de Bruyn Kops, F. Flachsenberg, K. Som-

mer, M. Rarey and J. Kirchmair, Journal of Chemical Informa-
tion and Modeling, 2017, 57, 2719–2728.

3 N.-O. Friedrich, A. Meyder, C. de Bruyn Kops, K. Sommer,
F. Flachsenberg, M. Rarey and J. Kirchmair, Journal of Chem-
ical Information and Modeling, 2017, 57, 529–539.

4 S. Grimme, C. Bannwarth, S. Dohm, A. Hansen, J. Pisarek,
P. Pracht, J. Seibert and F. Neese, Angewandte Chemie Inter-
national Edition, 2017, 56, 14763–14769.

5 S. Grimme, Journal of Chemical Theory and Computation,
2019, 15, 2847–2862.

6 L. Chan, G. R. Hutchison and G. M. Morris, Journal of Chem-
informatics, 2019, 11, 32.

7 N. M. O’Boyle, T. Vandermeersch, C. J. Flynn, A. R. Maguire
and G. R. Hutchison, Journal of Cheminformatics, 2011, 3, 8.

8 J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger and A. G.
Wilson, Advances in Neural Information Processing Systems,
2018.

9 J. C. Cole, O. Korb, P. McCabe, M. G. Read and R. Taylor,
Journal of Chemical Information and Modeling, 2018, 58, 615–
629.

10 N.-O. Friedrich, F. Flachsenberg, A. Meyder, K. Sommer,
J. Kirchmair and M. Rarey, Journal of Chemical Information
and Modeling, 2019, 59, 731–742.

11 S. Kothiwale, J. L. Mendenhall and J. Meiler, Journal of Chem-
informatics, 2015, 7, 47.

12 P. C. Hawkins, A. G. Skillman, G. L. Warren, B. A. Ellingson
and M. T. Stahl, J Chem Inf Model, 2010, 50, 572–84.

13 H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov and P. E. Bourne, Nucleic Acids
Research, 2000, 28, 235–242.

14 C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, Acta

8 | 1–9Journal Name, [year], [vol.],

Page 8 of 10Physical Chemistry Chemical Physics



Crystallographica Section B, 2016, 72, 171–179.
15 W. Guba, A. Meyder, M. Rarey and J. Hert, Journal of Chemical

Information and Modeling, 2016, 56, 1–5.
16 G. Landrum, RDKit: Open-Source Cheminformatics, 2018,

http://www.rdkit.org.
17 S. Riniker and G. A. Landrum, Journal of Chemical Information

and Modeling, 2015, 55, 2562–2574.
18 S. Gražulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi,

M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck
and A. Le Bail, Journal of Applied Crystallography, 2009, 42,
726–729.
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