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Multitribe evolutionary search for stable Cu-Pd-Ag

nanoparticles using neural network models†

Samad Hajinazar,a Ernesto D. Sandoval,a Aiden J. Cullo,a and Aleksey N. Kolmogorova

We present an approach based on two bio-inspired algorithms to accelerate the identification of
nanoparticle ground states. We show that a symbiotic co-evolution of nanoclusters across a range
of sizes improves the search efficiency considerably, while a neural network constructed with a
recently introduced stratified training scheme delivers an accurate description of interactions in
multielement systems. The method’s performance has been examined in extensive searches for
stable elemental (30-80 atoms), binary (50, 55, and 80 atoms), and ternary (50, 55, and 80 atoms)
Cu-Pd-Ag clusters. The best candidate structures identified with the neural network model have
consistently lower energy at the density functional theory level compared with those found with
traditional interatomic potentials.

1 Introduction

Materials downsized to the nanoscale display surface-defined
functionalities desirable in catalysis,1 solar energy conversion,2

medicine,3 etc. Compared to their bulk counterparts, nanoparti-
cles (NP) have a wider range of properties because they are not
constrained by the translational symmetry and can be synthesized
in various size-dependent metastable structures. The dramatic
expansion of the configuration space complicates the identifica-
tion of chemical compositions and synthesis conditions optimal
for NPs’ targeted applications. Despite the recent development of
advanced modeling methods, the basic problem of determining
stable structures as a function of the system size and constituent
elements remains a considerable challenge.4–6

The success of predicting stable structures depends on the effi-
ciency of the search algorithm and the quality of the interatomic
interaction description. It has been widely acknowledged that
no single search method can provide the best convergence for all
cases .5–20 As a result, existing optimization algorithms span a
wide spectrum of strategies that rely on unbiased sampling (e.g.,
in ab initio random structure searching21), take advantage of
common motifs (e.g., in dynamic lattice searching16–18,22), or
balance unconstrained optimization with explicit or implicit bi-
ases (e.g., evolutionary algorithm, basin hopping method, parti-
cle swarm optimization, etc.8–11). Similarly, the toolset of inter-
action description methods offers a range of options with vary-
ing degrees of accuracy and efficiency. Density functional theory
(DFT) has been used to model properties of select NPs up to a
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few thousand atoms,23,24 but the method’s N3 scaling restricts
fully ab initio structure searches to systems with typically a few
dozen atoms.25,26 The use of linearly scaling classical potentials
extends the unconstrained search range to hundreds of atoms,
but the models’ limited transferability poses a problem for re-
solving competing structures.6 Hybrid strategies mitigating this
issue have relied on complementary DFT calculations for either
adjusting classical potentials during structure searches27 or as-
sessing small pools of global minima candidate structures.28 The
recent introduction of neural network (NN) interatomic models
has made it possible to maintain near ab initio accuracy of the to-
tal energy description across different atomic environments.29–37

Machine learning-based atomistic force fields have already
been used for predicting crystalline or nanosized materials. Ex-
amples of bulk systems include high-P or high-T crystalline phases
of Si,38 B,39 and Mg-Ca,40 while stable surface configurations
have been explored for the Cu-ZnO41 and Au-Pd42 systems. The
most extensive effort has been directed at the identification of sta-
ble clusters. Neural network potentials have been developed to
perform unconstrained ground state searches for elemental Nan

clusters (n=17-40),43 MgO-supported Pt13,44 Au58,45 Au17,34,58

,46 and Au147.47 Select compositions and sizes have been exam-
ined in multielement systems as well, such as 55-atom Cu-Au
clusters in water solution,48 55-atom Ag-Au structures,49 and Pt-
Cu-Ni clusters with 147, 309, and 561 atoms.50 Surprisingly we
did not find any comprehensive work dedicated to benchmarking
them against traditional potentials in global structure searches.

In this study, we have performed a systematic comparison of
the potential energy surface (PES) mapping at zero temperature
provided by the widely used Gupta potentials and our NN po-
tentials developed for the Cu-Pd-Ag system. NPs comprised of
these precious/noble metals have applications in energy conver-
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sion and storage, medicine, optics, electronics, etc.51 In the el-
emental NP form, Cu enhances the activity of composite cata-
lysts in numerous electro- and photocatalytic reactions by pro-
moting the formation of C-C bonds and facilitating the separation
of electron-hole pairs52,53, Ag exhibits a high antimicrobial activ-
ity suitable for use in medicine54, and Pd displays good catalytic
properties for a range of (electro)chemical reactions55. In the
nanoalloy form, Cu-Ag NPs have a high density of states at the
Fermi level and are considered promising alternatives to expen-
sive Pt-based catalysts56, while Cu-Pd NPs in nanodendrite struc-
tures have high specific and mass activities important for the elec-
trocatalytic methanol oxidation reaction57. Cu-Pd-Ag NPs have
been the subject of numerous structure analysis studies.7 Sev-
eral DFT studies have focused on small elemental Cu, Ag, and
Pd clusters25,58–60, which included evolutionary optimization of
the three metals in the 12-25 atom range26. Binary Cu-Ag and
Pd-Ag clusters of magic 34, 38, and 55 sizes have been examined
with a Gupta potential-assisted DFT search driven by the basin
hopping method.61–67 EAM studies have included explorations
of large-size systems with up to a few hundred atoms.68–70 Stud-
ies based on Sutton-Chen potential have been performed for Cu
and Ag71,72 as well as Cu-Ag,73 with a notable lack of parame-
terizations available for Pd and the corresponding binaries. The
most recent and extensive studies have been done with the Gupta
potential,22,74–77 which motivated us to test our NNs against this
widely used classical model.

Recent extensive ground state searches based on the Gupta po-
tentials yielded libraries of low-energy structures for elemental
Cu, Pd, and Ag22 as well as binary Cu-Ag and Pd-Ag61,63–67,78

clusters. The availability of these reference sets helped us test the
performance of the machine learning-based approach and estab-
lish the NN’s consistently better description of the elemental and
binary systems. Namely, 62.7% of the lowest-energy elemental
structures identified in our NN-based searches turned out to be
more stable (with 26.1% by over 10 meV/atom) compared with
the Gupta reference structures after both sets were locally opti-
mized with DFT. An additional advantage of the NNs over simple
classical potentials is the treatment of 3-body terms that enables
accurate description of ternary alloys. We used our model to iden-
tify Cu-Pd-Ag stability regions for select sizes and observed a good
prediction quality with follow-up DFT calculations.

The use of NNs instead of traditional potentials generally in-
creases the computational cost of simulations by two-three or-
ders of magnitude.79–82 With the primary goal of examining the
models’ performance for a variety of nanosized configurations, we
have introduced and tested an improved evolutionary algorithm
that executes a concurrent optimization of clusters in a specified
size range. The search acceleration is achieved by periodic ex-
change of the most stable members among tribes of neighboring
NP sizes. We have also introduced and examined the performance
of different evolutionary operations that include a Tetris-based
generation of NPs, an alternative core-shell crossover, and a Ru-
bik’s cube mutation.

2 Interaction description methods

2.1 Density functional theory calculations

DFT served as the reference electronic structure method for eval-
uating total energies and atomic forces. By default, we used
the Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional83 within the generalized gradient approximation (GGA),84

and projector augmented wave potentials (Cu_pv, Pd_pv, and
Ag)85 implemented in VASP.86,87 All calculations were performed
with a high 500-eV energy cutoff and without spin polarization or
spin-orbit coupling. Generation of reference bulk structures for
NN training was done with dense (∆k ∼ 0.04 Å−1) k-point meshes
[62] and the Methfessel-Paxton88 0.1-eV smearing. The settings
typically provide a 2-3 meV/atom numerical convergence for rel-
ative energies of different structures. We kept the same smear-
ing method in Γ-point simulations of NPs placed in 20-Å cubic
unit cells. Our tests indicated that the NP relative energies var-
ied by less than 0.5 meV/atom upon reduction of the smearing
parameter or expansion of the box size. Although improvements
in describing the energetics are observed with revised versions
of the PBE functional,89 the original PBE form has been widely
used for the generation of NN training datasets.36,40,90–93 Since
we had used the PBE parametrization for the construction of NN
potentials in our previous study36, we expanded the reference
set in this work with the same DFT flavor, referred to as the GGA
hereafter. Select structure sets were also evaluated with the local
density functional approximation (LDA)94 (Sec. 4) and with the
RPBE functional to assess the DFT systematic errors (Table S1).

2.2 Gupta potential

The Gupta potential (GP) was introduced to treat many-body ef-
fects within a second-moment approximation of the tight-binding
method95,96 and has been widely used for modeling metallic al-
loys.74–77 The potential has the following functional form:

N

∑
j 6=i

Ai je
−pi j(ri j/r

(0)
i j −1)−{

N

∑
j 6=i

ζ 2
i je

−qi j(ri j/r
(0)
i j −1)}1/2,

where Ai j, ζi j, pi j, qi j, and r
(0)
i j are adjustable parameters.

The cohesive term is a function of only pair interactions; there-
fore, it cannot be properly tuned to describe ternary alloys. Table
1 lists GP parameters used for the elemental and binary systems
considered in the present study. All these parameterizations were
based on experimental data: lattice constants, elastic constants,
cohesive energy for elemental systems, and solubility enthalpies
for the binary compounds.

2.3 Neural network parametrization

Known shortcomings of semiempirical potentials27,97,98 have mo-
tivated the development of more adaptable interatomic models.27

NNs are among the most general and flexible machine learning
methods that have been gaining prominence in materials mod-
eling since the introduction of descriptors capable of converting
arbitrary atomic environments into NNs’ input.29,99 It has been
shown that NNs trained on large first-principles datasets outper-
form traditional potentials in the description of total energies, de-
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fect energies, phonon dispersions, transition states, etc. for ele-
mental or multicomponent systems.100,101

Construction of NN models for the present analysis of Cu-
Pd-Ag NPs was based on the approach introduced in our previ-
ous study.36 A reliable sampling of the relevant PES regions is
achieved via short evolutionary searches rather than commonly
used molecular dynamics runs. The former protocol promotes
the inclusion of diverse non-equilibrium configurations occurring
in global structure searches and limits the undesired function of
the NN as an extrapolator. A consistent description of interactions
in alloys is attained via a hierarchical training from the bottom up,
i.e., starting from elements and proceeding to binaries and ternar-
ies. The training stratification ensures that the NN expansion to
chemical systems with more elements does not affect the descrip-
tion of the subsystems, as only the new interspecies weights are
allowed to adjust. The benefits of these data generation and NN
training schemes were examined in systematic tests for bulk Cu-
Pd-Ag structures.36

In order to account for the more diverse atomic environments
in NPs we have made the following adjustments in the NN pa-
rameterization. First, we incorporated GGA atomic forces into
the training set, which provides local information about inter-
atomic interactions.79–82,102 Since forces on nearby atoms are
correlated, it was found sufficient to select 25% of atoms ran-
domly and treat each of the three force components per atom as
a reference data point (see Table S2).102 Second, we used the L2

regularization with L = 10−6 to promote the smoothness of the
PES fit. We observed that the regularization had little effect on
the NN performance because we maintained a reasonably high
(at least 18:1) data to parameter ratio in all considered cases.
Third, we expanded the set of Behler-Parrinello symmetry func-
tions from 30 to 51 per element and increased the cutoff radius
from 6.0 Å to 7.5 Å with the corresponding reduction of all η pa-
rameters by a factor of 1.252 (Table S3).40 Our tests showed that
the diverse low-coordination surface geometries were described
better with the 51-function basis set than with the 30-function
set used for studying the bulk materials,36 which is important for
resolving competing NP configurations. The larger cutoff helps
capture long-range effects and enables future use of these Cu, Pd,
and Ag NN models in combination with larger elements. Last, we
complemented the previously described database of crystalline

model Ai j(eV ) ξi j(eV ) pi j qi j r
(0)
i j (Å)

Cu 0.0855 1.2240 10.96 2.278 2.556
Pd 0.1746 1.7180 10.867 3.742 2.7485
Ag 0.1043 1.194 10.79 3.19 2.88
Cu 0.0894 1.2799 10.55 2.43 2.556
Ag 0.1031 1.1895 10.85 3.18 2.8921
Cu-Ag 0.0980 1.2274 10.70 2.805 2.72405
Pd 0.175 1.7019 11.0 3.794 2.75
Ag 0.1031 1.1899 10.85 3.18 2.89
Pd-Ag 0.1607 1.5597 10.895 3.492 2.82

Table 1 GP parameters used in this study. The elemental parameters for
Ag are from Ref.76, and Cu and Pd parameters are from Ref.75. The
binary parameters for Cu-Ag and Pd-Ag NPs are from Ref.74.

structures36 with NP configurations. The reference NP structures
were generated with short evolutionary searches using the pre-
viously developed bulk NN model.36 The resulting dataset con-
sisted of (i) non-equilibrium bulk structures with 1-12 atoms per
unit cell (∼ 85%); (ii) compressed/expanded close-packed struc-
tures and small clusters to reduce the number of artificial min-
ima appearing in unconstrained searches as discussed in Ref.36

(∼ 10%); and (iii) clusters with 30-80 atoms for single elements
and 55 atoms for alloys (∼ 5%). All constructed NNs had two
hidden layers with 10 neurons each, and the total number of ad-
justable weights is given in Table 2. We split the data randomly
into training and testing sets with a typical 90% to 10% ratio.
The only subset used exclusively for training was the collection of
compressed/expanded structures described in (ii) above. Because
of this choice, the training errors were about 7.5% larger than the
testing errors, as detailed in Table 2 and Fig. S1.

2.4 Method comparison

The following tests illustrate the performance of the NN model
relative to the GGA, the LDA, the GP, and our previous NNbulk

model trained on only bulk structures.36 According to Tables 2
and 3, the inclusion of the NP reference data tunes the NN to
describe both bulk and cluster configurations with a good 3-10
meV/atom accuracy. The NNbulk model extrapolates the surface
energies of close-packed structures well (Fig. S2) but evalu-
ates the total energies of NPs with large average errors of 50-70
meV/atom (Fig. S3). As can be seen from the mean values of the
error distributions in Table 3, the lack of low-coordinated atomic
configurations in the NNbulk training set resulted in the model’s
consistent overestimation of the NP cohesive energies.

Fig. 1 details how the NN and the GP describe atomic forces
relative to the two DFT approximations. The considered NN and
GP structures were putative ground states found with the respec-
tive classical model for the elemental systems (Sec. 4). Since the
structures were fully relaxed at the NN or the GP level, the root-
mean-square error (RMSE) of forces evaluated with the DFT ap-
proximations provides useful information on how close the con-
figurations are to being local minima on the DFT PES. Against the
GGA, we observed a good agreement for the NN (with the errors
below 0.1 eV/Å for all three metals) and a large discrepancy for

model # of # of # of testing testing
weights E data F data error E error F

Cu 641 2916 19581 4.3 0.043
Pd 641 2844 19683 8.6 0.073
Ag 641 2907 19635 3.6 0.042
Cu-Pd 1880 3725 32223 6.6 0.063
Cu-Ag 1880 3724 32034 3.5 0.038
Pd-Ag 1880 3705 32166 4.8 0.058
Cu-Pd-Ag 1290 2191 29163 5.2 0.053

Table 2 The NN parameterization specifications broken down by the
chemical composition: the total number of adjustable weights, the num-
ber of energy and force components in the training sets, and the NN test-
ing RMSEs for energies (meV/atom) and forces (eV/Å). The GGA was
used as a reference method for the NN training and testing.

1–14 | 3

Page 3 of 14 Physical Chemistry Chemical Physics



the GP (with the errors in the 0.3-0.6 eV/Å range for Pd and Ag).
Against the LDA, the force error values for the NN and the GP ef-
fectively flipped. The results suggest that the empirical GP might
be providing reasonable NP geometries, as the GGA and LDA are
known to overestimate and underestimate bond lengths, respec-
tively. However, our results illustrate that the GP local minima
configurations turn out to be consistently less stable than the NN
configurations once both sets are relaxed with either the LDA or
GGA method.

In a final set of benchmark tests, we examined the PES profiles
for non-equilibrium configurations obtained by rotating one atom
about a NP (see Figs. S4 and S5). The atom’s radial distance was
optimized for a series of angles at the GGA level and the resulting
structures were evaluated with the four methods. Interestingly,
the LDA proved to be the odd one out, differing from the other
methods by up to 100% in the description of the relative energies
along this partially constrained transition state path. The NN and
GP showed a good agreement with the GGA, describing the en-
ergy barriers to within ∼ 20%. The main purpose of the test was
to check whether the flexible NN models would develop clearly
artificial minima corresponding to low-coordination surface con-
figurations. The results for the considered elemental and binary
NPs demonstrated a reasonably good performance of the devel-
oped NN models.

dataset Cu Pd Ag
NNbulk NN NNbulk NN NNbulk NN

bulk RMSE 4.6 4.0 10.6 8.7 4.6 3.3
mean -0.1 0.0 -0.9 0.1 0.0 0.0

NP RMSE 69.5 15.3 70.1 12.3 50.1 12.6
mean -60.2 0.4 -64.3 -2.3 -21.1 -0.9

Table 3 RMSEs of NN models in evaluating the total energies (in
meV/atom) of bulk and NP datasets, with respect to GGA values. The
NNbulk and NN are models trained using bulk only and bulk plus NP
datasets, respectively. The second row of numbers for each dataset re-
flects the mean value of error distribution for the corresponding model
(see Fig. S3).

3 Structure search algorithm

3.1 Overview of optimization methods

A number of advanced optimization techniques have been
adapted for finding NP ground states. Basin-hopping represents
an efficient procedure for escaping from local minima and map-
ping the PES12–14; particle swarm optimization relies on the
crowd intelligence for navigating the energy landscape19,20; evo-
lutionary algorithm mixes and propagates beneficial structural
traits103–105; and dynamic lattice searching takes advantage of
known structural motifs.16–18,22

While these algorithms differ in implementation and perfor-
mance for different PES topologies, there are a few guiding prin-
ciples that the successful approaches have in common. The search
efficiency is generally improved by avoiding the consideration
of similar candidate structures, which is achieved by creating
taboo lists of visited local minima or eliminating duplicate mem-
bers in the population. It is also beneficial to incorporate rele-
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Fig. 1 Accuracy of atomic force description with the NN and GP models
relative to the two DFT approximations. The RMSEs were evaluated for
the lowest-energy Cu, Pd, and Ag structures found with the correspond-
ing NN or GP interaction model.

vant information or optional constraints into unbiased searches
in the form of known structure seeds or symmetrization opera-
tions. Even with these features present, optimization algorithms
typically screen 103-104 structures to identify ground states for
clusters with 50-100 atoms.12 Therefore, the computational cost
could be a factor limiting the scope of stability analysis when the
atomic interactions are modeled with NNs rather than semiem-
pirical potentials.

The evolutionary algorithm implemented in MAISE106 has
been extensively used for bulk40,107–110 and film111 materials
leading to confirmed predictions of some of the largest new struc-
tures with 10 (FeB4

107, CrB4
112), 20 (MnB4

109), 28 (CaB6
108),

and 56 (Na3Ir3O8
110) atoms per primitive unit cell. In this work,

we extended the application range to NPs by implementing and
improving the evolutionary-driven optimization for non-periodic
configurations. We benchmarked the method using the less ex-
pensive GP against the low-energy structures found previously
with dynamic lattice searching for elemental Cu, Pd, and Ag clus-
ters with 30-80 atoms.22

3.2 Evolutionary operations

Population initialization is one of the critical steps in the PES sam-
pling. Use of common structural motifs may speed up the identifi-
cation of ground states by order(s) of magnitude,108 but may also
steer the search away from unexpected or unknown morpholo-
gies. We chose not to rely on any prior information except for the
effective atomic sizes and generate structures randomly, ensur-
ing the absence of unphysically short interatomic distances. The
creation of meaningful starting geometries is especially important
in NN calculations because the inclusion of high-energy configu-
rations reduces the NN accuracy in the relevant low-energy PES
regions. In the case of periodic structures, we avoided short dis-
tances in randomly generated unit cells by allowing 5-10 gradient
descent steps with a purely repulsive pair potential. In the case
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Fig. 2 Illustration of generation and evolution operations for elemen-
tal NPs. The semitransparent spheres represent atoms that are being
added, rearranged, or discarded. The yellow and blue colors correspond
either to fixed and repositioned atoms or to NP fragments from two differ-
ent parents. (a) Addition of a new atom in a Tetris-like creation of random
NPs. (b) Rubik’s cube rotation of the NP’s top half by a random angle.
(c,d) Crossover performed with either planar or spherical cuts.

of NPs, we kept atoms contained by adding a parabolic energy
penalty for atomic positions beyond a spherical boundary at the
cluster’s estimated radius. We also implemented an alternative
generation scheme inspired by the game of Tetris. Atoms are shot
from random directions towards the NP one by one and repeat-
edly rotated to explore allowed positions closer to the cluster’s
center (Fig. 2(a)). The algorithm was particularly helpful for
generating nanoalloys with desired radius- or angle-dependent
species distributions. Both schemes proved to be efficient for cre-
ating random compact NPs up to at least a few hundred atoms.
In fact, the good packing achieved in these approaches led to
an apparent bias towards spherical configurations. We promoted
the generation of ellipsoidal shapes by introducing a diagonal co-
variance matrix Λ = diag(ε−1/2,ε−1/2,ε) in the calculation of the
atomic distances to the origin d2

i =riΛri. A single ellipticity pa-
rameter ε was randomly chosen in the 0.7-1.3 range, and the
principal axis was randomly oriented along x, y, or z.

The central feature of evolutionary optimization is the
crossover operation that creates offspring by combining pieces
of two parent structures. The partitioning is commonly done in
the form of planar cuts through each parent that select parts of
roughly equal size (Fig. 2(c)). As has been observed and dis-
cussed in previous studies of bulk materials108,113, the rebonding
between otherwise intact fragments is particularly beneficial in
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Fig. 3 Comparison of different evolutionary search strategies for elemen-
tal Cu, Pd, and Ag NPs modeled with the GP. (a-c) Single-tribe optimiza-
tion with the titled operation used to create 70% of offspring. (d) Single-
tribe optimization with a balanced assortment of various operations de-
scribed in the main text. (e) Multitribe co-evolutionary optimization with
the same operation assortment. The best structures found in each run
are compared against the putative ground states proposed by Wu et al.22

Identified lower-energy structures are shown with hollow symbols.

the optimization of large structures. To examine the effectiveness
of this operation in the case of NPs, we considered two related
crossover and mutation operations. The first one is crossover per-
formed with a spherical cut that seems more natural for cluster
geometries (Fig. 2(d)). The second one mimics the Rubik’s cube
rotation by a random angle along a planar cut that divides a single
parent structure into two roughly equal hemispheres (Fig. 2(b)).

Panels (a-c) in Fig. 3 show the performance of the three oper-
ations for elemental Cu, Pd, and Ag clusters. In these tests, we
used 50-member populations and limited the search to 200 gener-
ations to illustrate the different success rates for affordable search
durations in the following NN-based runs. New structures were
created with 70% of the titled operation as the primary driver to
explore different PES basins, 20% of simple distortions to help
locate nearby minima, and 10% of random NP generation to in-
ject diverse starting points. The planar cut crossover performed
better for Cu and Ag than for Pd, missing 7, 13, and 22 of the
previously reported lowest-energy structures, respectively. Inter-
estingly, the search identified 2 Pd structures lower in energy by
3-4 meV/atom compared with the reference set (Sec. 4). The
success rate dropped considerably in the case of the spherical cut
crossover, especially for Pd and Ag. We ensured that the boundary
between fragments had meaningful interatomic distances, but it
was evident that the core-shell combination either carried less sig-
nificant information from each parent or could not be optimized
into a seamless stable shape with local relaxations. This conclu-

1–14 | 5

Page 5 of 14 Physical Chemistry Chemical Physics



sion is supported by the operation’s particularly poor performance
for Pd, as this metal adopts a variety of less spherical stable struc-
tures (Sec. 4). The Rubik’s cube mutation was found to be com-
parable to the planar cut crossover for Cu and Ag, having missed
only 5 and 16 structures, respectively. Hence, the optimization
of Cu and Ag clusters with simpler geometries appears to be less
sensitive to how the fragments are recombined as long as they are
obtained by bond-breaking planar cuts. The subpar performance
of the Rubik’s cube rotation for Pd indicates that the inheritance
of phenotypes from two different parents is more important than
the mutation of a single parent when dealing with more complex
shapes.

We implemented additional single-parent mutation operations
that could locate specific global minima more efficiently. Since
faceting is known to reduce surface energy in large NPs, we intro-
duced an operation that promotes the formation of facets in ran-
dom directions. In this procedure, about

√
N atoms are selected

with a single planar cut and relocated to random positions on the
opposite side. Since stable NPs also tend to possess symmetries,
we considered two simple symmetrization operations. In both,
a single parent structure is sliced into two nearly equal hemi-
spheres, and the smaller part is discarded. The full NP is then
regenerated from the remaining part using either reflection or in-
version. Any two atoms of the same species that happen to be
close to each other are merged into one, and the child structure is
accepted if the cluster has the proper number of each species. Ac-
cording to our tests (not shown), these three operations showed
efficiencies comparable to that of the Rubik’s cube mutation.

Having tested multiple combinations, we ultimately chose to
use a balanced assortment of several implemented operations.
Each of the planar cut, spherical cut, Rubik’s cube rotation, facet
mutation, reflection mutation, inversion mutation, and random
atom distortion operations was used to generate 10% of offspring.
The remaining 30% of child structures were created with a redis-
tribution of surface atoms in randomly selected parents; this op-
eration was generalized in multitribe optimizations to exchange
variable-size seeds (see Sec. 3.3). Results in Fig. 3(d) illustrate
that the search produced a set of low-energy structures compara-
ble to that found with the planar cut crossover including several
additional putative ground states for Pd and Ag.

3.3 Multitribe co-evolution

Examples in different fields, from finding a cooperative relation-
ship between populations of bacteria in biological systems114,115

to solving for optimal load distribution in parallel computing sys-
tems,116 demonstrate the benefits of optimization achieved via
the use of multiple co-evolving tribes. In this evolutionary process
commonly seen in Nature, individual tribes develop specific traits
in isolation and periodically interact with neighboring tribes. The
two major types of interactions are competition, which subjects
the combined population to ’survival of the fittest’ evolutionary
pressure, and cooperation, which leads to an intertribe exchange
of genetic material.

Several adaptations of this co-evolution strategy have been
used to improve structure prediction. Habershon et al. found

Fig. 4 (a) Schematic of the multitribe co-evolutionary optimization. The
global population is divided into tribes by NP size and evolved in a cyclic
fashion. Each cycle involves tribes’ isolated evolution for a few gener-
ations followed by an exchange of best members among several tribes
of neighboring NP sizes. Particularly stable motifs, e.g., the diamond
shape for N = 54, have a chance to spread over the global population
and morph into ground states for other NP sizes. (b) Illustration of the NP
size adjustment during intertribe seed exchange.

ordered crystalline phases consistent with experimental powder
diffraction data more efficiently by defining a global population
of structures and redistributing members among individual tribes
every few generations.117 In all other variations of the parallel
evolutionary optimization, a single pool or population of struc-
tures has been used to explore the configuration space by vary-
ing composition/size at the same time.113,118–120 For instance,
the simultaneous optimization of bulk binary phases113,118 re-
lied on the distance to the convex hull as the fitness parame-
ter for phases across the full composition range, while crossover
operations allowed the creation of child structures with differ-
ing stoichiometries. The global variable-size/composition opti-
mization approach has been shown to have a clear advantage
over the independent optimization of fixed-size/composition crys-
talline phases113,118 or NPs.119,120

The algorithm for simultaneous optimization of NPs across dif-
ferent sizes introduced in this study divides the global population
into distinct tribes and imposes periods of isolated evolution. The
schematic in Fig. 4(a) illustrates the flow of information during
such global searches. We assigned one tribe per NP size and op-
timized the combined population in cycles of five-generation iso-
lated evolution followed by an intertribe exchange of structural
motifs. The pool of geometries used to seed a new cycle consisted
of 15 structures, with 8 neighboring sizes contributing the most
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stable NP from the previous cycle, and the remainder compris-
ing NPs chosen randomly from the previous generation of the NP
size. We removed or added surface atoms to match the targeted
size and optionally distorted ∼

√
N atoms on the NP surface. The

co-evolutionary method could be expected to be more efficient
due to the persistence of certain stable motifs over multiple sizes.
For example, the 55-atom icosahedron shown in Fig. 4(b) is the
well-known ground state for several metals, and most algorithms
find the structure relatively quickly because it is highly symmetric
and stable. Derivatives of this motif with missing or added atoms
may also be the ground state for neighboring sizes but are more
difficult to find because of the reduced symmetry and stability.
Namely, without a clear edge over competing configurations, the
icosahedron-based precursors have a lower chance of survival and
are less prevalent in populations with non-ideal cluster sizes. The
intertribe exchange and minor adjustment of already assembled
stable shapes could help the tribes to shortcut directly to the most
stable solutions.

In our benchmark multitribe runs with the GP, we used the
same assortment of operations as in single-tribe searches. A dra-
matic improvement in the success rate was observed using this
flavor of the evolutionary optimization (see Fig. 3(e)). Out of the
153 Cu, Pd, and Ag cases, only 6 reference structures were missed
by 0.3-2.5 meV/atom and 7 new structures were identified to be
more stable by 0.1-4.1 meV/atom. Two of the new Pd putative
ground states were incomplete icosahedra with a missing center
atom (for N =54) or missing center and surface atoms (N =53).
The finding highlights the benefit of sharing seeds across NP sizes
and the need to sample counterintuitive configurations, as one
might expect a smaller energy penalty for removing an atom from
the surface rather than the middle of a metallic NP. Considering
the ∼ 10 meV/atom accuracy of our NN models, the implemented
search algorithm and the chosen settings deliver an appropriate
level of convergence for a systematic comparison of the NN and
GGA accuracy for low-energy structures.

4 Results and discussion

4.1 Review of previous work

The most systematic GP-based study of metallic NPs has been re-
cently performed by Wu et al.22 They utilized the dynamic lattice
searching method and found that the main structural motifs of
the Cu, Pd, and Ag NPs between 13 and 100 atoms in size are the
icosahedron, decahedron, and icosahedron/decahedron, respec-
tively. Their analysis of the PES for the intermediate-size 38-atom
NPs showed that the number of the local minima, and hence the
PES complexity, increases in the order of Pd, Ag, and Cu.22

In the binary subsystems of the Cu-Pd-Ag ternary, systematic
GP-based ground state searches have been mostly restricted to
select magic sizes.7 For Cu-Ag bimetallic NPs, the lowest forma-
tion energy configurations have been shown to have Cu-Ag core-
shell ordering and occur in the 0.6-0.8 Ag-rich composition range.
Namely, the most stable magic-size clusters with 34, 38, 40, and
98 atoms have been found to have 2761, 2978 or 3061, 2763,
and 58-6478 Ag atoms, respectively. The smaller clusters com-
monly adopt polyicosahedral core-shell configurations, while the

98-atom NPs assume structures with icosahedral Cu cores and
(anti-)Mackay Ag overlayers. Considerable atomic size mismatch
of Cu and Ag, bond order-bond length correlation, lower sur-
face energy of Ag, dominance of Cu-Cu and Cu-Ag bonds, and
HOMO-LOMO gap have been suggested as important factors in
determining the structure of the energetically favored nanoal-
loys.61,63–65 Global optimizations of Pd-Ag bimetallic NPs with
34 and 38 atoms have revealed that the lowest formation energy
structures occur at stoichiometries with 2466, and 2467 or 2666

Ag atoms, respectively. As in the Cu-Ag case, Ag atoms prefer to
be in the outer layers of stable NPs. However, the smaller atomic
size difference of Pd and Ag evidently leads to a less pronounced
segregation tendency and a lower favorability of the polyicosahe-
dral motif.66

4.2 Elemental nanoparticles

We employed the multitribe co-evolution algorithm (Sec. 3.3)
and our developed NN models (Sec. 2.3) to search for stable
Cu, Pd, and Ag elemental NPs with 30-80 atoms. Such clusters
are large enough not to be dominated by electronic structure pe-
culiarities associated with low-coordination atomic environments
that are difficult to capture with classical models. At the same
time, the clusters are small enough to be systematically explored
with NNs and checked with DFT. Even though clusters of these
sizes are of little practical value, they can be synthesized exper-
imentally121 and may be used as a testing ground for checking
theoretical predictions. A typical global optimization run con-
sisted of 100-200 generations with a population size of 50 struc-
tures per tribe. For Ag and Pd, as higher NN residual errors sug-
gest, the PES is more complicated. We performed two multitribe
searches for these metals and selected the lowest energy struc-
tures for each size.

Fig. 5 illustrates the stability of these structures relative to the
putative ground states proposed by Wu et al.22 The comparison
was done at the GGA and LDA levels and involved energy evalua-
tions of the structures relaxed locally with either the correspond-
ing classical model (hollow points) or the corresponding DFT ap-
proximation (solid points). The results indicate that between the
candidate structures identified with the GP and NN models, the
latter are consistently more stable at the DFT level for all three
metals. The figure also reveals the NN’s good agreement with
the GGA in evaluating forces, as the GGA-level re-optimization
of the NN-relaxed structures led to energy gains of only a few
meV/atom. The structures found with the NN-model underwent
a-common nearest neighbor analysis122 (a-CNA) to describe the
local environment of each atom in terms of well-known reference
structures. The structures were then classified manually based on
their visual similarity to the motifs used to describe NPs in Ref.22.

The NN-based search for Cu NPs resulted in 26 new minima. In
the N=30-60 range, several structures are significantly more sta-
ble than those found through GP-based searches, by 10 meV/atom
or more (Fig. 5) at the GGA level. Most of these energy gains
are not the result of substantially different configurations but
rather different decorations of incomplete icosahedron shapes.
For N=36, the change does result in an amorphous (AMO) struc-
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ture that resembles a distorted incomplete icosahedral structure.

For N=38, the NN favored a mixed octahedral-icosahedral (Oh-
Ih) structure; although this motif has been reported to be a low-
energy isomer in other elemental123 and binary124 systems, our
GGA calculations placed it 3.9 meV/atom above the GP-favored
FCC structure for Cu. The most striking improvements over the
results reported for Cu in Refs.22,125 occur in the N=72-80 range.
The previously reported minima show an icosahedral (ICO) trend
up to N=72 with a switch to decahedral (DEC) motif up to N=79,
and finally an ICO shape for N=80. The competing morphologies
of structures identified in our search in this size range are the
typical ICO with an (anti)-Mackay layer (N=72, 73, and 75) and
double icosahedrons (d-ICO) (N=74 and 76-80). The DEC shapes
previously reported in Ref.22 are not observed to be stable at the
GGA level. The d-ICO shape first appears at N=74 with a disor-
dered arrangement. Further occurrences of d-ICO at larger sizes
show a more ordered configuration for N=78 and 80 (Fig. 6).

Searches for Pd NPs produced 41 new minima at the GGA level.
The morphologies of the new configurations represent a signifi-
cant departure from what was previously reported.22,77 The mo-
tifs reported included DEC, ICO, stacking-fault face-centered cu-
bic (sf-FCC), and AMO motifs. The DEC motif was found to be
dominant throughout the N=30-80 range.22,77 Our results, how-
ever, show that the face-centered cubic (FCC) structures are more
stable at the GGA level than other shapes throughout most of the
examined range. The stable FCC motifs found in Fig. 5 include
truncated octahedra (Oh) which were found for N=38 and 79,
matching the previous results22 an octahedron, which was found
to be a minimum for N=44 (Fig. 6). The new minima also in-
clude three sf-FCC NPs for N=35, 36, and 51. The preference for
the FCC shape has been attributed to the generalized Wulf con-
struction principle.126 A notable exception to the FCC trend is the
magic ICO shape found for N=55. Piotrowski et al.58 determined
the FCC to be the preferred motif for Pd by 3.8 meV/atom at the
GGA level with the PAW-GW pseudopotential and a 250-eV en-
ergy cutoff. In our PAW-GGA calculations with the 500-eV cutoff,
the ICO and FCC motifs were found to be within 0.1 meV/atom.

The juxtaposition illustrates that the NN model’s misevaluation of
the relative stability of the two motifs by 3.7 meV/atom in favor
of the former is not only well within the NN’s 8.6-meV/atom test
error but also comparable to the typical calculation errors in the
same DFT approximation.

The NN-based search for Ag NPs uncovered 27 new minima
compared to the reference structures22 at the GGA level. Similar
to our results for Cu, most of the new putative global minima for
structures of 60 atoms and below are variations of the incomplete
ICO morphology. (Fig.5). The largest gain in energy in this size
range was for size N=44, which in Ref.22 was found to be an ICO-
like amorphous (AMP) structure and in our study an incomplete
ICO motif with an energy gain of almost 30 meV/atom at the GGA
level. We found that the competition between ICO and ICO-like
AMP motifs occurs in the N=63-69 size range. For the N=70-
74 and 76 sizes, the DEC morphology found in Refs.22,127 was
replaced with (anti)-Mackay ICO structures at the GGA level.

Fig. 5 shows that only 13 (∼ 8.5%) of the elemental refer-
ence structures22 were not matched or improved upon at the GGA
level, whereas 96 (∼ 62.7%) were found to be new putative global
minima at the GGA level. This performance evaluation of the two
classical models is understandably biased because the NNs were
trained on GGA data, while the GPs were fitted to empirical data.
Considering that the GPs showed much better agreement with the
LDA in the description of forces for Pd and Ag (see Fig. 1), we
examined the relative stability of the structures in the NN and
GP pools at the LDA level as well. Remarkably, the structures fa-
vored by the NNs remained consistently more stable in the LDA
treatment, as the relative energies evaluated in the two DFT ap-
proximations matched reasonably well (Fig. 5).

Another comparison of the classical models’ ability to map the
GGA PES is illustrated in Fig. S6. We selected several metastable
55-atom structures from the NN and GP pools and evaluated their
relative energies with single-point GGA calculations. The NN
models provided a much more consistent energy ordering than
the GPs within the chosen 20 meV/atom window above the cor-
responding ground states.
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The energy gains in GGA optimization of NN and GP best struc-
tures in Fig. 5 provide useful information about the PES features.
Indeed, significant structural relaxations could be a contributing
factor to the suboptimal stability of the resulting minima. The
argument is based on an expectation that the longer the trajecto-
ries the higher the chance for structures to get trapped in nearby
local minima. For the considered metals, the energy gains in GGA
relaxations of the GP structures were notably different: about 10
meV/atom for Cu and 40 meV/atom for Pd/Ag. Nevertheless, the
GP-derived minima ended up above NN-derived minima by a sim-
ilar 10 meV/atom for all three metals. These results suggest that
the GGA basins around the starting GP configurations are smooth.
The conclusion is supported by the analysis of the NP estimated
volumes (defined in Ref.90) before and after the relaxation. It
reveals an overall expansion of the GP structures in the GGA opti-
mizations by 0.0 % for Cu, 2.2 % for Pd, and 3.2 % for Ag. Hence,
the starting geometry appears to be of less significance than the
ranking of the relevant basins for identifying global DFT minima

Fig. 6 Examples of significantly different structural motifs favored by the
NN and GP models. The relative stability and structure classification for
Cu, Pd, and Ag NPs in the N = 30− 80 size range are presented in Fig.
5.

with these classical models.
We also assessed the contribution of the vibrational entropy on

the relative stability of the NN and GP best structures at elevated
temperatures. Our previous tests showed a good agreement be-
tween the NN and DFT results for phonon dispersions and vibra-
tional entropy corrections to the free energy calculated in Cu-Pd-
Ag36 and Mg-Ca40 bulk phases. Here, we used the NN models to
examine 33 NP pairs with 30-80 atoms and found that the rela-
tive free energies at 300 K changed on average by only 0.7, 2.7,
and 1.9 meV/atom for Cu, Pd, and Ag, respectively. Therefore,
most of the NPs in the NN pool determined at T = 0 K to be more
stable than those in the GP pool are expected to be more stable at
elevated temperatures as well. A comprehensive analysis of the
NP stability at high temperatures involves long MD simulations
or a systematic sampling of local minima128,129 and will require
a separate study.

4.3 Binary nanoparticles

We investigated the stability of binary nanoalloys for several rep-
resentative NP sizes (50, 55, and 80 atoms) by performing NN-
based single-tribe evolutionary searches for select stoichiome-
tries. We sampled the binary compositions in steps of 5 atoms
for the two smaller sizes and in steps of 10 atoms for the largest
size to identify regions with low formation energies. The similar-
size NPs with 50 and 55 atoms were considered to compare sta-
bility trends in cases of low-symmetry and high-symmetry con-
figurations, as the NNs favored different-shape and same-shape
elemental ground states for the three metals, respectively. The
larger 80-atom NPs were examined to assess the importance of
size effects. The searches were carried out using the same set of
evolutionary operations as in the case of single elements with the
addition of atom swaps in the mutation operations. Because of
the more complex nature of the PES for binary NPs, we extended
the searches to 500 generations and executed two separate runs.
The resulting lowest-energy NPs with 50 and 55 atoms were re-
optimized at the GGA level. While thermodynamically stable bulk
alloys are determined unambiguously by calculating Gibbs forma-
tion energies and constructing the convex hull109, the variability
of NP sizes governed by a combination of kinetic and thermody-
namic factors greatly complicates the stability analysis. We used
a common measure of the nanoalloy stability based on the forma-
tion energy.63,67 For an A-B binary NP with N = NA +NB atoms,
the formation energy per atom is calculated with respect to the
most stable elemental NPs, each of size N, as follows:

Eform
AB = EAB −

NA

NA +NB
EA −

NB

NA +NB
EB,

where EAB, EA, and EB represent the energies per atom of the
(NA+NB)-atom binary and elemental clusters, respectively. As ar-
gued by Ferrando et al.130, the reliance on the NP rather than
bulk ground states as references helps avoid element-dependent
bias when comparing clusters of the same size but different com-
positions. Given that the NP ground states in this study were de-
termined with a 10 meV/atom accuracy, we could not determine
the boundary of the convex hull definitively to identify the full set
of stable nanoalloys in the considered multicomponent systems.

1–14 | 9

Page 9 of 14 Physical Chemistry Chemical Physics



Fig. 7 GGA formation energies of most stable 50-atom bimetallic NPs found in our evolutionary searches at the NN (red points) and GP (blue points)
levels. The hollow and solid symbols correspond to GGA evaluations of the non-modified and GGA-optimized putative ground states, respectively.
Each panel shows the most stable elemental and binary structures found in the NN-based searches.

We will refer to most stable compositions as stoichiometries cor-
responding to the lowest formation energies.

Fig. 7 summarizes formation energy results for 50-atom NPs
and illustrates that the most stable binary compositions identi-
fied in our NN-based searches are Cu0.6Pd0.4, Cu0.3Ag0.7, and
Pd0.3Ag0.7. The Cu-Pd NPs adopt an incomplete ICO shape at
the Cu-rich end, become disordered at the Cu0.5Pd0.5 compo-
sition, and assume incomplete anti-Mackay ICO or incomplete-
sixfold pancake structures at the Pd-rich end. The Cu-Ag puta-
tive ground states have Ag-rich polyicosahedral shapes such as
the anti-Mackay ICO and incomplete pancake structures. Inter-
estingly, the Pd-Ag ground state NPs are mostly different incom-
plete ICO structures (with the exception of FCC-type Pd0.9Ag0.1)
despite the reference structures for Pd and Ag being FCC and in-
complete ICO, respectively.

In order to evaluate the degree and importance of mixing in sta-
ble NPs we compared the number of total and interspecies neigh-
bors within 3.2 Å in the lowest-energy NPs at the 1:1 composition.
Out of 207, 219, and 205 total bonds in the corresponding CuPd,
CuAg, and PdAg 50-atom NPs, 103, 82, and 92 were between
different metals. The results at this and other compositions are
consistent with the largest (smallest) magnitudes of the forma-
tion energy observed in the Cu-Pd (Cu-Ag) nanoalloys. As for
the dependence of the bimetallic NP stability on the size and/or
structure, Table 4 summarizes the stoichiometries with the lowest
formation energies in all considered cases. The results show that
it is difficult to draw any definitive conclusions regarding possi-
ble correlations because the variations in stable compositions are
comparable to the chosen grid sizes (Fig. S7).

We also performed comparative ground state searches with the
available Cu-Ag and Pd-Ag GPs.74 Reoptimization of these 18 50-
atom NPs with the GGA resulted in 6 structures of lower energy
(by an average of 2.6 meV/atom) and 12 structures of higher
energy (by an average of 14.7 meV/atom) compared to the NN-
based set (Fig. 7). Formation energies of the NN- and GP-based
sets, evaluated by GP, NN, and GGA are detailed in Fig. S8. De-
spite the overall suboptimal performance, the GPs were accurate
enough to suggest candidate structures for reasonable GGA esti-
mates of the stability regions and formation energies. However,
as in the case of the elemental NPs (Sec. 2.4), the GPs showed

less agreement with the GGA in the description of atomic forces:
the RMSEs were 0.20 and 0.33 eV/Å for the lowest-energy Cu-Ag
and Pd-Ag NPs, respectively. The NNs described the forces with
a considerably better accuracy: 0.05, 0.04, and 0.06 eV/Å for
the corresponding sets of lowest-energy Cu-Pd, Cu-Ag, and Pd-Ag
NPs.

4.4 Ternary nanoparticles

Ternary Cu-Pd-Ag nanoalloys have not been studied previously ei-
ther at the classical or the DFT level. Our searches for putative
ground states of 50-, 55-, and 80-atom ternary NPs were per-
formed with the same settings as in the case of binary nanoalloys.
Within the sampled grid, a 50-atom ternary cluster with the low-
est formation energy was found at the Cu0.3Pd0.4Ag0.3 composi-
tion (Fig. 8) and displayed an incomplete six-fold pancake struc-
ture with a Cu core and Pd-Ag shell. The NP also had the lowest
GGA formation energy when the full set of putative ground states
was reoptimized in this DFT approximation. Note that the higher
∼ 20 meV/atom discrepancy between the NN and GGA results in
Fig. 8 is consistent with the accumulation of errors in the calcula-
tion of ternary formation energies referenced to the elemental NP
ground state energies. Overall, Fig. 8 shows an encouraging level
of agreement between the NN and the GGA, as the NN model re-
produces the stability trends and correctly identifies the island of
NP stability.

Figs. S9 and S10 summarize our NN and DFT results on the
formation energies for 50-, 55-, and 80-atom ternary NPs. We did

cluster size Cu-Pd Cu-Ag Pd-Ag
x Eform x Eform x Eform

50 atoms NN 0.40 -140.5 0.70 -72.5 0.70 -131.8
GGA 0.40 -132.6 0.80 -35.5 0.70 -125.8

55 atoms NN 0.45 -156.1 0.73 -59.5 0.64 -136.2
GGA 0.36 -148.4 0.73 -32.0 0.55 -121.5

80 atoms NN 0.37 -123.8 0.62 -71.6 0.62 -113.2

Table 4 NN- and GGA-level composition ratio (x in A1−xBx) and formation
energy (Eform) (in meV/atom) corresponding to the most stable binary
NPs with 50, 55, and 80 atoms.
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Fig. 8 Color-coded formation energies calculated at the GGA (left) and NN (right) levels for putative ground states of 50-atom Cu-Pd-Ag NPs found in
our NN-based evolutionary searches. All the structures were relaxed with the corresponding GGA or NN method.

not observe any significant dependence of the lowest formation
energy stoichiometry on the NP size. According to the NN model-
ing, the optimal ternary compositions for nanoalloys with 55 and
80 atoms are Cu0.272Pd0.364Ag0.364 and Cu0.25Pd0.375Ag0.375, re-
spectively. The GGA optimization of the 55-atom NPs confirms
the NN model’s findings (Fig. S9). These observations provide
further support for future use of NNs as a reliable stand-alone
method for describing large-scale systems.

5 Summary

This work has been dedicated to the development, examination,
and application of computational methods for predicting stable
NPs.

Aiming to improve ground state search efficiency, we intro-
duced a multitribe evolutionary algorithm for simultaneous op-
timization of NPs in a specified size range. In contrast to pre-
viously implemented variable-size/composition global optimiza-
tion strategies, our approach features well-defined periods of iso-
lated evolution for individual tribes followed by intertribe seed
exchange. This symbiotic co-evolution scheme showed a clear
advantage over the conventional serial evolutionary optimization
of fixed-size NPs. In our relatively short 200-generation bench-
mark runs with 50-member tribes of Cu, Pd, and Ag NPs in the
30-80 atom range, the multitribe searches identified 7 new puta-
tive ground states at the GP level compared to previously reported
candidate structures.

Given the lack of systematic studies comparing the reliability
of NN models and empirical potentials in ground state searches,
we performed benchmark tests of NN and GP models against DFT
approximations for elemental and binary NPs. The Cu-Pd-Ag NN
models were constructed from the bottom up and showed a con-
sistent ∼ 10 meV/atom accuracy for nanoalloys, which illustrates
that our stratified training scheme originally tested on bulk struc-
tures is applicable to datasets with more complex NP configura-
tions. The lowest-energy structures identified in our searches at
the NN and GP levels were evaluated without and with relaxation
at the GGA level. Between the NNs fitted to GGA data and the GPs
fitted to empirical data, the former showed an expectedly better

agreement with this DFT approximation. In terms of the quality of
the atomic force description, most of the NN (GP) configurations
were found to be within about 4 (40) meV/atom of the nearest
minima on the GGA PES.

In terms of the total energy correspondence, the GP candidate
structures were favored by the GGA in 8.5% of considered cases
by an average of 4.2 meV/atom while the NN ones in 62.7% by
an average of 9.1 meV/atom, with 26.1% of the NN pool by more
than 10 meV/atom. According to our additional LDA calculations,
all the putative ground states from the NN pool favored by the
GGA were also favored by the LDA. The findings indicate that the
NNs provide a more reliable mapping of the DFT PES. Compara-
tive analysis of structures found in the NN- and GP-based searches
revealed significant changes in the previously discussed stability
trends. For example, we found the largest elemental NPs to be
more stable in ICO/d-ICO rather than DEC morphologies for Cu,
FCC rather than DEC for Pd, and ICO rather than DEC for Ag.

We would like to note that due to the wide scope of the study
and the high cost of DFT calculations we considered only one
best structure per size or composition from each of the GP and NN
pools, which is certainly insufficient for determining the true GGA
ground states. However, it should also be pointed out that the typ-
ical ∼ 3 meV/atom level of ground state search convergence and
∼ 10 meV/atom NN accuracy are comparable to the 3 meV/atom
DFT numerical errors (e.g., found in this study for Pd55) and
∼ 10 meV/atom DFT systematic errors107,131–133 (found to be
∼ 3 meV/atom for select NPs in Table S1). These observations
highlight the difficulty of establishing definitively which stable
NP configurations occur in experiments even if none of the nu-
merous environmental factors are considered. Namely, free en-
ergy corrections due to entropy, kinetic effects, influence of so-
lutions and substrates, etc., must be evaluated at target temper-
atures with sufficient accuracy, which presents a much greater
challenge compared to the identification of putative ground states
at zero temperature performed in this study128. Nevertheless,
the NN/DFT level of accuracy may allow one to identify regions
of zero-temperature nanoalloy stability. According to our analy-

1–14 | 11

Page 11 of 14 Physical Chemistry Chemical Physics



sis of bimetallic systems, GP-based candidate structures are still
generally inferior to those found with NNs but can be used for an
adequate prediction of most stable stoichiometries. The following
NN/DFT examinations of medium-size ternary Cu-Pd-Ag NPs re-
vealed that NNs are sufficiently accurate for predicting “regions”
that most likely contain stable nanoalloy(s). These results suggest
that NN models can be used for a reliable simulation of nanoscale
materials that are too large for full-scale DFT calculations.
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