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Microarrays for the screening and identification of carbohydrate-
binding peptides
Divya G. Shastry*a,b and Pankaj S. Karande†b,c

The development of carbohydrate-binding ligands is crucial for expanding knowledge on the glycocode and for achieving 
systematic carbohydrate targeting. Amongst such ligands, carbohydrate-binding peptides (CBPs) are attractive for use in 
bioanalytical and biomedical systems due to their biochemical and physicochemical properties; moreover, given the 
biological significance of lectin–carbohydrate interactions, these ligands offer an opportunity to study peptide sequence and 
binding characteristics to inform on natural target/ligand interactions. Here, a high-throughput microarray screening 
technique is described for the identification and study of CBPs, with a focus on polysialic acid (PSA), a polysaccharide found 
on neural stem cells. The chemical and biological uniqueness of PSA suggests that an ability to exclusively target this glycan 
may promote a number of diagnostic and therapeutic applications. PSA-binding peptides from phage display screening and 
from epitope mapping of an ScFv for oligosialic acid were screened in an optimized microarray format with three ligand 
density conditions. Hypothesis-driven mutations were additionally applied to select peptides to modulate peptide affinity 
and selectivity to PSA. Peptide compositional and positional analyses revealed the significance of various residues for PSA 
binding and suggested the importance of basic residue positioning for PSA recognition. Furthermore, selectivity studies 
performed directly on microarrays with chondroitin sulfate A (CS-A) demonstrated the value of screening for both affinity 
and selectivity in the development of CBPs. Thus, the integrated approach described, with attention to design strategy, 
screening, and peptide characterization, successfully identified novel PSA-binding ligands and offers a platform for the 
identification and study of additional polysaccharide-binding peptides.

Introduction
Carbohydrates demonstrate crucial and versatile roles in a 
number of biological processes, including cellular growth and 
differentiation, microbial pathogenesis, and immune 
recognition.1 For some time, the importance of understanding 
carbohydrate-encoded information has been acknowledged. 
Recognition of the significance of harnessing this information 
for molecular and cellular targeting has followed suit, with 
examples of natural and engineered carbohydrate targeting 
spread throughout scientific literature.2–5 However, with the 
paradigm of biological coding still evolving,6 particularly in 
regards to the glycocode, it is not surprising that systematic 
methods for targeting have not reached the rigor of protein 
targeting.

Numerous carbohydrate-binding ligands and platforms have 
been identified (or developed) and studied, the most common 
being lectins (i.e., carbohydrate-binding proteins).7 Artificial 

lectins, antibodies, aptamers, and peptides have also been 
developed, with each molecular class offering its own 
advantages.2,7–10 The stability of protein ligands has commonly 
been cited as an impetus to generate artificial ligands, like 
synthetic lectins (including borono-lectins), nucleic acid-based 
aptamers, and peptides, against carbohydrates.2 Additionally, 
limitations in ligand synthesis (e.g., need for cellular protein 
synthesis machinery) have also been stated, though 
biotechnological advancements are rapidly overcoming these 
drawbacks. Nevertheless, apart from stability and synthesis 
aspects, smaller ligands offer distinct advantages of their own. 
Specifically, advantages in application arise from molecular size 
and structure, especially relating to integration of small 
molecule ligands in bioanalytical and biomedical platforms.

Both peptides and aptamers are similar in that they present 
an ease of synthesis over wholly synthetic ligands,2,8 and 
carbohydrate-binding peptides (CBPs) and aptamers have been 
discovered with random and rational methodologies, 
incorporating structure-based design and non-natural 
moieties.2,10,11 However, overcoming repulsive charge 
interactions is a greater barrier with aptamer development 
when targeting carbohydrates with high negative charge.11 
Additionally, from solely a design and characterization 
perspective, peptides offer an excellent biomimicry opportunity 
in comparing binding characteristics to natural lectins, for which 
specific recognition capabilities have been extensively studied.
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A number of studies on peptides as artificial lectins have 
been reported.12–19 Most commonly, these studies isolate 
peptides from lectin-binding pockets, for which structural 
and/or molecular characterization has been accomplished, or 
approach peptide discovery with screening of large random or 
combinatorial libraries. Possibly due to constraints arising from 
low affinity binding,2,7,17 few reports relating to CBPs utilize 
multiple strategies to optimize and/or characterize peptide 
sequences and binding properties (as compared to studies with 
naturally occurring lectins). This may not be disadvantageous in 
regard to identification of desired peptides; yet, many methods 
for peptide identification fail to provide flexibility in lead 
generation while simultaneously offering a platform for initial 
ligand characterization. Hence, versatility of these 
methodologies and their ability to expand upon knowledge of 
the glycocode is minimized.

The above is especially true for the generation of peptide 
ligands for polysaccharides. A number of CBPs have been 
created for monosaccharides and oligosaccharides, but there 
are few examples of polysaccharide-binding peptides, either 
naturally occurring or engineered.2 The higher structural rigidity 
of smaller carbohydrates, as well as relative ease of structure 
determination (for these sugars and their natural lectin 
complexes), may contribute to this disparity. Notably, Svarovsky 
and colleagues have developed random peptide arrays enabling 
detection of lipopolysaccharides (LPS) on bacterial cell walls, 
where glycan portions of the LPS are detected.20–22 Heparin-
binding peptides have also been identified, though established 
consensus binding motifs from heparin-binding proteins 
facilitated these studies.23–27 Heparin-binding motifs were also 
used for the generation of a peptide library challenged with 
chondroitin sulfate A (CS-A),28,29 representing a rational 
approach driven by lack of knowledge on CS-A binding motifs. 
In separate work, successful in vivo targeting was demonstrated 
with CS-A peptides from a random phage display library.30

The limited examples available for systematic targeting of 
polysaccharides with peptide ligands necessitates the 
development of a platform that offers flexibility at multiple 
stages—in peptide design, screening, and characterization—
thus offering an iterative approach for the study of CBPs. Here, 
a high-throughput peptide microarray screening technique is 
described for the identification of CBPs, using polysialic acid 
(PSA) as an exemplary glycan target. Peptides derived from 
random screening and rational design were immobilized in 
array format and challenged with the PSA target for assessment 
of PSA affinity and selectivity.

Unlike in previous studies, an integrated random and 
rational approach is demonstrated, wherein novel ligands are 
identified from a combination of phage display screening, lectin 
mapping, and mutational approach, and ligand characterization 
informs on target binding properties. Additionally, while 
peptides binding to the sialic acid monosaccharide have been 
identified,31–35 this report is the first to identify peptide binders 
to PSA. PSA is a highly negatively charged polysaccharide 
playing important roles in physiology, development, and 
pathogenesis, though limited information on structure, binding 
motifs, and ligands is available.36–38 Thus, the approach herein 

enabled identification of peptides with appreciable affinity and 
selectivity to a large glycan target and demonstrated a 
methodology that can be used for characterization of peptide–
polysaccharide interactions.

Experimental
Phage display screening

Phage display screening of colominic acid (CA) was conducted 
with the Ph.D.TM-12 Phage Display Peptide Library (New England 
BioLabs, Inc., Ipswich, MA). Biopanning of CA was carried out in 
accordance with standard NEB protocols,39 with modifications 
for the polysaccharide target described as follows. CA was 
immobilized prior to each round of biopanning on wells of a 
polystyrene 96-well plate (CELLTREAT Scientific Products, 
Pepperell, MA), pre-coated with poly-L-lysine (PLL) to enhance 
immobilization.40 PLL coating was achieved through incubation 
of 300 L of 0.1 mg/mL PLL in sterile phosphate-buffered saline 
(PBS; 0.01% w/v solution) (Cultrex, Trevigen, Inc., Gaithersburg, 
MD) for 1 hour at room temperature. Following removal of PLL 
solution, CA was immobilized on PLL-coated wells through 
overnight incubation of 300 L of 5 mg/mL CA sodium salt 
(Nacalai USA, Inc., San Diego, CA) in deionized water at 4 °C in a 
humidified container. CA solution was removed, and blocking 
buffer, sterile-filtered (1% bovine serum albumin [BSA] in 
phosphate-buffered saline [PBS], w/v; 10 mM phosphate, 100 
mM NaCl, pH 7.4) was added at room temperature for 1 hour. 
All incubation steps were performed with mild shaking.

Briefly, biopanning against CA encompassed screening of 
the Ph.D.TM-12 phage library on CA-coated wells, elution of 
binders, and amplification of binders for the next round of 
panning. All wash steps were performed with PBS buffer (pH 
7.4). Bound phages were eluted at high pH (30 mM 
triethylamine; neutralized with 1 M Tris-HCl, pH 7.4)41 and low 
pH (0.2 M glycine-HCl, pH 2.2 with 1 mg/mL BSA; neutralized 
with 1 M Tris-HCl, pH 9.1) in separate screens. A total of three 
rounds of panning were conducted for each screen. Twenty 
phages were selected at random at the end of the third round 
of panning for each elution screen, and sequencing was 
performed (Genscript, Piscataway, NJ).

Peptide library design and synthesis
A peptide library was constructed from linear epitope mapping 
of mAb735, a monoclonal antibody specific to oligosialic acid,42 
and from lead peptides derived from phage display screening. 
In contrast to peptides originating from random screening, 
peptides were designed from mAb735 through linear epitope 
mapping of the scFv (Peptide IDs 1–102). Peptides 15 amino 
acids in length were designed from the primary sequence of the 
mAb with 13 residue overlaps, such that consecutive peptides 
were shifted by 2 amino acids. For phage display peptides, 81 
mutant peptides were included in the library along with 40 
parent sequences derived from random screening (Peptide IDs 
102–223). All mutations to phage display-derived peptides 
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encompassed single and double mutations to select parent 
sequences, except one peptide (peptide 170) into which 
putative PSA-binding residues from the protein Siglec-11 were 
spliced.43 Mutations were rationally introduced into parent 
peptides, and hence positions and identities of residues 
selected for mutation (as well as identities of introduced 
residues) did not encompass all combinatorial possibilities. 

Peptides were synthesized in high-throughput with SPOT 
technology using standard Fmoc (fluorenylmethyloxycarbonyl) 
chemistry in an automated peptide synthesizer (Multipep RS, 
INTAVIS Bioanalytical Instruments AG, Germany) as described 
previously.44–46 Briefly, peptide synthesis was carried out in a 
parallel fashion from C- to N-terminus on solid cellulose-based 
discs. Though number and spacing of functional groups for 
amino acid conjugation are uniform amongst commercially 
available discs, the same batches of discs and reagents were 
used across the peptide library to minimize any sequence-
specific variability in peptide density.

To maintain charge of mAb peptides as they occur within the 
parent protein sequence, these peptides were N-terminally 
acetylated. Phage display-based peptides (parent and mutant 
sequences) were synthesized with free N-termini and C-
terminal GGGS linkers so as to mimic peptide presentation on 
phage particles.39 Two positive and negative control peptides 
derived from the Siglec-11 ligand were also synthesized with N-
terminal acetylation for parallel microarray screening with the 
peptide library (details on origins of control peptides are 
provided with ESI Table 3). Control peptides were subsequently 
assessed with SPR spectroscopy as described in ESI Fig. 7. 
Following synthesis, peptide–cellulose discs were subjected to 
the standard work-up procedure outlined by Intavis47 and 
reconstituted in 250 μL of dimethyl sulfoxide (DMSO) to create 
stock solutions of peptide–cellulose conjugates. Peptide stock 
solutions were diluted 1:2 for spotting on microarray 
substrates.

Peptide microarray preparation
Peptide solutions prepared as described above were spotted in 
triplicate in a spatially addressable manner on nitrocellulose-
coated glass microscope slides using the Slide Spotting Robot 
from Intavis Bioanalytical Instruments AG. Printed microarrays 
were air-dried prior to heating for 2 hours at 65 °C to improve 
adhesion of peptide–cellulose conjugates to slides. Microarrays 
encompassing the complete peptide library were prepared with 
the following three printing conditions: i) 60 nL spot volume (1x 
condition), ii) 120 nL spot volume (2x condition), and iii) 60 nL 
spot volume, air-dried, followed by a second printing of 60 nL 
directly superimposed on the initially printed spots (1x2 
condition). For 2x and 1x2 conditions, the peptide library was 
divided into two microarrays due to space limitations, and 
differences arising from slide and screening variability were 
accounted for in microarray data analysis (see below). As per 
manufacturer provided values on cellulose disc parameters, 
each 60 nL spot contained approximately 0.1 pmol cellulose 

fibers and 11.5 pmol peptide (corresponding to approximately 
6.4 x 1010 and 7.42 x 1011 molecules, respectively).

Microarray screening and data acquisition
Microarray screening was conducted at room temperature 
(approximately 20 °C) with shaking. Prepared microarrays were 
blocked for 3 hours in 5 mL of 5% (w/v) BSA in PBS (10 mM 
phosphate, 100 mM NaCl, pH 7.4). Following removal of 
blocking buffer, microarrays were subjected to three 10-minute 
washes in PBS (5 mL each). The same wash procedure was 
employed after all subsequent incubation steps. Target 
incubation of the microarrays was performed with 5 mL of CA 
sodium salt (Nacalai USA, Inc.) at 10 μM in PBS for 3 hours. For 
selective-binding studies, chondroitin sulfate A sodium salt 
from bovine trachea (CS-A) (Sigma-Aldrich, St. Louis, MO) was 
incorporated in target incubation through addition of 0.1, 1, or 
10 μM of CS-A to the CA solution (see ESI Fig. 6 for further 
information regarding molecular weight estimation of CS-A). CA 
binding to peptides in the presence or absence of competitor 
was detected indirectly through antibody-based detection using 
anti-PSA-NCAM primary antibody, clone 2-2B (MilliporeSigma, 
Burlington, MA) at 1:5000 in 2.5% (w/v) BSA in PBS and 
horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG, 
IgM (H+L) secondary antibody (Thermo Fisher Scientific, 
Waltham, MA) at 1:500,000 in 2.5% (w/v) BSA in PBS. Each 
antibody was incubated for 1 hour (5 mL per microarray). 
Binding of primary and secondary antibodies to the peptide 
library in the absence of CA were assessed to account for non-
target antibody–peptide binding, if any, in binding intensity 
analysis. Similarly, dot blot assays, in which CA and CS-A were 
immobilized at various concentrations on nitrocellulose 
membranes and targeted with screening antibodies, were 
performed to ensure antibodies did not show cross-reactivity 
with CS-A. Throughout the microarray screening procedure, 
hydration of the microarray surface was ensured, as partial or 
complete drying of the surface at any step prior to imaging 
severely compromised image quality.

Chemiluminescence imaging was performed using a 
ChemiDocTM XRS+ System and Image Lab 4.0 software (Bio-Rad, 
Hercules, CA) with a protocol optimized for acquisition of high-
resolution microarray images. A 5 mL volume of SuperSignalTM 
West Femto Maximum Sensitivity Substrate (Thermo Fisher 
Scientific) was added to each slide immediately prior to imaging. 
Images were acquired in signal accumulation mode (SAM) in 
high resolution chemiluminescent imaging mode (with 2x2 
binning) to maximize signal-to-noise ratio without signal 
saturation. SAM parameters were set to the first image time at 
1 second, the last image time at 30 seconds, and a total of 15 
images.

Positive and negative control peptides synthesized with the 
peptide library were established as such through parallel 
screening with the complete peptide library on microarrays 
with CA and CS-A. To validate the capability of microarray 
screening to distinguish between binding and non-binding 
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peptides, the control peptides were evaluated for binding to 
PSA with SPR spectroscopy. Further details of SPR spectroscopy 
are provided along with ESI Fig. 7.

Microarray data analysis
Images captured at 30 seconds exposure were selected for 
analysis. In order to enable comparison amongst various 
microarray printing and screening conditions, all microarray 
images were normalized to identical image transform values 
and exported at 1200 dpi. Image transformation in Image Lab 
did not alter underlying image data; transformation removed 
variation arising from chemiluminescent imaging conditions 
(e.g., auto scaling of a slide with low signal to a compressed 
intensity range) and did not remove variation due to screening 
conditions of interest (e.g., CS-A concentration). Transform 
values were selected to maximize dynamic range of spot 
intensities and signal-to-noise ratio of peptide spot intensity to 
background microarray intensity in subsequent microarray 
image analysis in TIGR Spotfinder (Dana Farber Cancer 
Institute, Boston, MA). Exported images were modified in 
ImageJ (NIH, Bethesda, MD) to enable analysis in the microarray 
analysis software. ImageJ modifications encompassed image 
conversion to 8-bit grayscale, background subtraction using the 
rolling ball radius algorithm (rolling ball radius of 50 pixels), and 
color inversion. Quantification of peptide spot intensities in 
modified images was conducted with the Otsu segmentation 
method utilizing local background subtraction in TIGR 
Spotfinder with the following gridding and processing 
parameters: mask size 10, minimum spot size 3, maximum spot 
size 10, and top background cut-off 5%. Any aberrant spots 
arising from slide irregularities, printing error, or physical marks 
during screening were flagged during processing to prevent 
erroneous calculations of peptide average intensity and 
standard deviations. Only clearly aberrant spots were excluded 
in such a manner (0–0.01% of spots per slide).

Statistical analyses on intensity data thus obtained were 
performed in Microsoft Excel 2016. Average intensities and 
standard deviations for triplicate peptide spots were 
determined from spot intensities using Visual Basic macros, and 
these data were used in the calculation of inter- and intra-assay 
coefficients of variation (CVs), in a similar manner as reported 
by Sachse et al.46 For comparison of microarray printing 
conditions, bivariate scatterplots for pairwise conditions were 
created, and Pearson correlation coefficients (r) were 
calculated. Values of 0 < r < 0.30 were noted as very weak, 0.30 
≤ r < 0.50 as weak, 0.50 ≤ r < 0.70 as moderate, 0.70 ≤ r < 0.90 
as strong, and 0.90 ≤ r < 1.00 as very strong correlations, with r 
= 0 and r = 1.00 considered no correlation and perfect 
correlation, respectively. Based on the low intra-assay CV for 
high intensity peptides obtained in 1x, 2x, and 1x2 conditions 
with screening for peptide–CA binding in the absence of 
competitor (i.e., screening with a target solution of only 10 μM 
CA in PBS, from henceforth referred to as “affinity” screening‡, 
in contrast to screening with addition of CS-A, termed 

“selectivity” screening), the top 5% of binding peptides from 
averaged results from the three screens were identified. 
Selectivity of these peptides in 1x, 2x, and 1x2 screening with 
10 μM CA was assessed through determination of percent 
selectivity, where percent selectivity was calculated as percent 
of average binding intensity in 10 μM CA screening remaining 
with the addition of 1 μM CS-A (10:1 molar ratio CA:CS-A). 
Additionally, percent selectivity of all PSA-binders in the 
complete peptide library was determined to identify selective 
binders regardless of affinity rank. Peptides displaying binding 
above background or non-binding levels in affinity screening 
were identified as PSA-binders, where background was 
defined as intensities falling in the bottom 20% of the intensity 
range of a screen (approximately 70–80% of the library.) 
Binding of all high affinity and high selectivity peptides was 
visually verified in microarray images.

Peptide residue compositional and positional analyses 
were conducted to assess variation in frequency of residue 
occurrence between the unmodified peptide library and 
peptides with top 10% affinity binding in this set; frequency 
variation was assessed in the peptide sequences 
(compositional analysis) and at each position within the 
sequences (positional analysis).28 Binding data from the 1x 
printing condition was used for these analyses. Only 
unmodified sequences from mAb epitope mapping and phage 
display screening were used for compositional and positional 
analyses to avoid sampling bias arising from mutant phage 
display-derived peptides (comprising >10% of the library), as 
select parent phage peptides were chosen for modification 
and overrepresentation of these sequences would otherwise 
bias statistical outcomes. For compositional analysis, 
statistical significance of changes in residue propensity was 
determined using the test statistic z, calculated as in eqn (1):

𝒛 =  
𝒑 ― 𝒑𝟎

𝒑𝟎(𝟏 ― 𝒑𝟎)
𝒏

(1)

where  is the percentage of a residue, or type of residue, 𝒑
occurring in the top 10% affinity binders;  is the percentage 𝒑𝟎

of the same residue or residue type occurring in the library; 
and  is the total number of residues in the library.𝒏

Results and discussion
In this study, a peptide library composed of random and 
rationally-designed peptides was screened for binding to 
polysialic acid (PSA) in an optimized high-throughput 
microarray format. The modification of existing peptide 
microarray technology allowed for rapid detection of PSA-
binding peptides. PSA was chosen as a polysaccharide target for 
structural and functional considerations. From a structural 
perspective, PSA is a linear homopolymer with a degree of 
polymerization estimated to vary between 8 and 200 residues,36 
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and thus presents an opportunity to target repeating 
monomeric units. While PSAs of differing polymeric 
composition exist, the -(2,8)-linked form of PSA used in this 𝛼
study occurs naturally in mammalian neural stem and 
progenitor cells and in the polysaccharide capsules of 
Escherichia coli K1 and Neisseria meningitidis serogroup B.36 In 
these occurrences, changes in polysialylation on proteins or cell 
surfaces is tied to functional states. The identification of 
peptides for targeting or detection of PSA can thus serve a range 
of diagnostic and therapeutic purposes relating to such changes 
in healthy or disease contexts.

The high-throughput microarray screening employed 
allowed for the simultaneous screening of up to 1200 peptide 
spots per microarray for polysaccharide binding. The lower 
equilibrium dissociation constants (micromolar to millimolar; 
KD’s) generally associated with carbohydrate–protein binding 
translates to carbohydrate–peptide interactions, with the 
additional challenge of higher entropic penalties for small 
molecule binding.2,7 In order to identify such “weak” (as 
compared with nanomolar binding) affinity carbohydrate 
interactions, two conditions exist: i) a technique must either be 
of sufficiently high sensitivity to detect low affinity interactions 
or ii) the strength of the interaction must be enhanced. These 
conditions are not mutually exclusive; for example, increasing 
the strength through avidity effects can promote detection of 
the interaction. Here, successful screening of a peptide library 
and identification of PSA-binding peptides addressed both 
detection (through assay development‡) and interaction 
strength (through peptide density and peptide design).

Peptide microarray screening

In contrast to previous studies where glycan targets were 
modified for detection,20–22,28 PSA-binding peptides were 
indirectly detected with chemiluminescence-based detection of 
colominic acid (CA) (Fig. 1B–C; analyses from microarray data 
are shown in Fig. 1A). CA is the bacterial homolog of PSA derived 
from E. coli K1 and is structurally identical to the PSA found in 
humans, specifically poly-alpha 2,8-(N-acetylneuraminic acid) 
(the CA used has an average molecular weight of 30 kD with a 
normal distribution of chain lengths; ESI Fig. 6).40 Direct labeling 
of CA, as with a fluorescent label, may influence peptide binding 
either through allosterically affecting PSA–peptide interaction 
or through non-target binding to peptides or the cellulose 
support. This is especially true for interactions of μM–mM KD’s, 
where the strength of “weak” non-specific interactions may be 
on par with that of target interactions. This was supported by a 
high false positive rate arising from assays where CA was 
conjugated with hydrophobic fluorescent dyes as well as 
indirect detection assays using fluorescently labeled antibodies 
(data not shown). In comparison, antibody binding controls 
incorporated with indirect chemiluminescent detection showed 
no significant non-specific antibody binding to peptides, and 
hence control antibody binding subtraction was not performed 
in subsequent analyses.

While direct labeling with a chemiluminescent agent may 
not have resulted in false positives as well, versatility of the 
microarray assay would be reduced; a glycan target would 
require chemical ligation with an agent, such as HRP, in contrast 
to indirect detection, where only availability of target 
antibodies is limiting. While commercial availability of detection 
agents may be a drawback for other glycans of interest (and is 
itself an incentive for development of CBPs), the advantage of 
the ELISA-like microarray methodology described is flexibility in 
format and detection techniques. For instance, assay format 
may be optimized based on commercially available reagents 
and/or target properties (e.g., biochemical properties linked to 
detrimental effects from a specific labeling technique). Thus, for 
PSA, indirect chemiluminescence-based detection of PSA–
peptide interaction minimized the likelihood of false positives 
while increasing assay versatility. 

Previous studies have approached the problem of 
carbohydrate affinity primarily with multivalent presentation of 
either the peptide or carbohydrate ligands.5,49–52 Here, a similar 
approach is undertaken with microarray presentation of 
peptides. The three-dimensional presentation of peptides in 
high density on immobilized cellulose fibers45–47 provides a 
platform for selecting interactions of highest affinity and 
selectivity,53 which may then be studied in low-throughput 
experimental or computational platforms (as for 
thermodynamic, kinetic, or structural analysis). Two synthesis 
and screening control peptides incorporated with the peptide 
library exemplify this approach (ESI Table 3 and ESI Fig. 7), 
wherein microarray binding of a positive control and non-
binding of a negative control are corroborated by low-
throughput analysis with SPR spectroscopy.

In order to determine whether printing-based density 
effects significantly altered peptide binding outcomes, three 
printing conditions were examined (Fig. 1). As can be seen in Fig. 
1A, intra-assay comparisons of peptide intensities show strong 
or very strong correlations, suggesting that a peptide binder 
with one printing condition is likely to be selected as a binder in 
another. Even with uniform occurrence of reactive functional 
groups across cellulose discs on which peptides are synthesized, 
it is possible that peptide-to-peptide differences exist in peptide 
density on cellulose fibers due to differences in amino acid 
coupling yields. However, variation of peptide density through 
altered printing conditions allows for preliminary assessment of 
density effects on binding for individual peptides. Furthermore, 
the intra-assay comparisons demonstrate that variability in 
microarray printing (common for physical adsorption-based 
methods) does not significantly affect discrimination of binding 
peptides from non-binding peptides. Thus, the microarray assay 
provides flexibility of printing conditions in lead peptide 
candidate selections.

Nevertheless, it is evident that some variation exists 
amongst these conditions, primarily in higher intensity binding 
with 2x and 1x2 conditions; inter-assay correlations for the sub-
set of peptides with above background binding are moderate or 
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strong. For the top 30% of intensities, in comparison to 1x 
condition, spot area increased by 170% for the 2x condition, 
while increasing 140% for the 1x2 condition. At the same time, 
mean spot intensity per unit area increased by 110% for the 2x 
condition and by 130% for the 1x2 condition. This suggests that 
the higher intensities for either 2x or 1x2 conditions are indeed 
due to higher peptide densities. The nature of this increase in 
density is likely complex, relating to peptide drying or 
deposition on the slide surface and/or possible multivalent 
binding effects with density differences; further investigations 
on molecular binding mechanisms are outside the scope of this 
study.

Inter-assay variability, in part arising from the above density 
effects, was considered in the identification of high “affinity” 
(see subsequent discussion) PSA-binding peptides (ESI Fig. 1 and 
ESI Table 1). The highest binding peptides in screening against 
CA with no competitor all displayed low coefficients of variation 
(CVs; <25%). In comparison, in all screens, at least 90% of 
peptides with intensities above background (i.e., in the top 80% 
of experimental intensity range) had intra-assay CVs below 20%. 
Also, the intra-assay CVs for 86–100% of peptides with top 10% 
binding intensities in different screens were <10%, 
demonstrating good reproducibility of peptide binding within 
and between different microarray assays.

Affinity and selectivity of PSA-binding peptides

The peptide library was subjected to a screening assay against 
CA at a single concentration (10 μM) to identify high “affinity” 
PSA-binding peptides (Table 1). As noted,§ affinity in this 
context refers to screening in the absence of competing 
macromolecules (in contrast to selectivity screening) and does 
not indicate specific KD’s. Binding analysis for thermodynamic 
characterization of peptide–carbohydrate binding, through 
screening at multiple CA concentrations (for construction of a 
ligand binding curve), was not possible; use of higher CA 
concentrations required for determination of μM–mM KD’s was 
limited due to the solubility limit of CA in water-based buffers 
(approximately 1.67 mM), increased viscosity of CA solution at 
higher concentrations, and poor slide background at very high 
CA concentrations. Additionally, any determination of binding 
affinity constants through microarrays would likely be high as 
compared to methods where 1:1 stoichiometry can be ensured. 
In fact, enhancement of multivalent interactions through 
clustered presentation of immobilized peptides has been shown 
to increase apparent KD.51,54,55

As evident from Table 1, peptides with the highest binding 
to CA in the absence of a competing glycan originate from both 
mAb epitope mapping and phage display screening. The 
incidence of phage display peptides with mutations to positively 
charged residues is expected given repeating carboxyl groups 
on the sialic acid polymer. Similarly, all high binding peptides 
contained positively charged residues. To determine whether 
occurrence of certain residues in higher binding peptides was 
likely even without bias introduced with rational mutations, 

compositional and positional analyses were undertaken on 
unmodified sequences in the peptide library (Fig. 2) in a method 
adapted from Butterfield et al. and others.26–28 As expected, Fig. 
2A shows a statistically significant increase in basic residues in 
PSA-binding sequences and a statistically significant decrease in 
acidic residues. Interestingly, both polar and nonpolar residues 
display significant decreases as well, though propensities of 
residues within categories vary (ESI Fig. 2). For example, there 
is an increase in phenylalanine propensity, which may be due to 
CH–pi interactions with sialic acid.56 Polar, hydrophobic, and 
aromatic residues have all been implicated in carbohydrate–
protein binding, and studies on characterization of binding of 
carbohydrates by peptides,7 though more limited, have arrived 
at similar conclusions.2,21,28 Definition of such binding 
generalities for PSA-binding peptides, beginning with 
compositional residue propensities, serves as the first step in 
establishing a molecular understanding of PSA binding, which 
can be used to improve upon peptide design.

Positional analysis (Fig. 2B) of PSA-binding peptides can 
similarly aid in peptide characterization. Analysis of changes in 
basic residues (R and K), which display the greatest increase, 
shows the largest increases in lysines in the middle of sequences 
and arginines in the middle and C-terminal end (the greater 
increases for lysine may be due to higher positive charge 
density). It is possible that N-terminal presentation of peptides 
on cellulose fibers on the microarrays influences peptide 
binding, but projection of peptides from the matrix may 
minimize this effect. Increases in R and K frequencies at nearly 
every two positions suggests the existence of a binding motif for 
PSA, where peptide primary sequence and subsequent 
conformation (i.e., final geometric presentation) play an 
important role. This agrees with previous studies where 
electrostatic interactions, especially from positively charged 
groups, have been shown to serve as “anchors” that guide 
binding affinity, with other residues contributing to affinity and 
selectivity.7,9,28,57,58 It is possible that PSA-non-binding peptides 
of acidic or highly hydrophobic nature present unfavorable 
enthalpic contributions to binding, while non-binding peptides 
containing positive charge lack the necessary binding motif (or 
flexibility required to orient and mimic such a motif). As 
suggested in prior work,27,28 it is possible that the residue 
occurrence and positioning data uncovered with peptide 
binding studies serve as preliminary evidence, though 
tangential, for the understanding of naturally occurring 
interactions (here, for biological lectin–PSA interactions).

The increased incidence of basic residues at certain 
positions within high binding peptides suggests that peptides do 
not bind the negatively charged target indiscriminately, but 
demonstrate specific target binding. Importantly, qualitative 
(Fig. 1C and Fig. 3) and quantitative (Tables 1–2) descriptions of 
selectivity show clear evidence for specific and selective target 
binding by some, if not all, high “affinity” PSA-binding peptides 
(here, “specific” denotes binding to the target over “non-
specific” interactions with background components such as the 
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microarray surface, with no other biomolecules present, and 
“selective” denotes the ability to bind the target in the presence 
of non-target, non-buffer species).

The selective binding of high affinity peptides to PSA in the 
presence of the competing glycan chondroitin sulfate A (CS-A) 
varies dramatically (Table 1 and Fig. 3; selectivities of high 
affinity peptides with 2x and 1x2 screening shown in ESI Fig. 3). 
CS-A serves as a negatively charged polymer with both similar 
and distinct functional groups to PSA, and thus is a good 
exemplary competitor for study of peptide selective binding. 
Like PSA, CS-A is a polydisperse polysaccharide playing 
important roles in the mammalian nervous system; in contrast 
to PSA, CS-A prevents plasticity through inhibition of axonal 
growth and remyelination.59,60 The applicability of PSA-binding 
peptides may be envisioned with selective peptide–PSA binding 
in a therapeutic system for nervous system regeneration. The 
differing selectivity of high-binding peptides to CS-A emphasizes 
the importance of selectivity assessment in early stages of 
peptide development and why selectivity cannot be assumed 
based on high affinity, library size,20 or peptide origin.

The quantification of peptide selectivity in the context of a 
fraction of competitor (10%), as opposed to equimolar 
amounts, served two purposes: i) relative assessment of 
selectivity of high affinity peptides, none of which showed 
significant binding to CA with equimolar CS-A and ii) evaluation 
of a larger range of peptides (few peptides displayed binding 
with equimolar CS-A). Of high affinity PSA-binding peptides, 
only peptides 79 and 214 demonstrate >80% selectivity by this 
definition regardless of assay, thus serving as binders displaying 
both affinity and an appreciable degree of selectivity to the 
target. Comparatively, PSA-binding peptides that demonstrated 
>80% selectivity regardless of affinity (i.e., binding intensity 
with CA alone) are given in Table 2 and ESI Table 2. Peptides 36 
and 214 are noteworthy in that they display consistently higher 
selectivities; in fact, peptide 36, despite its higher variability 
between affinity screens and generally lower affinity, was one 
of the few peptides displaying above background binding with 
equimolar CS-A. Such peptides, displaying binding 
characteristics that may not be identified solely through 
assessment of high affinity, may be evaluated for direct binding 
to one or more competitors of interest through low-throughput 
platforms following lead selection. Considering that a peptide’s 
KD and selectivity may display a different relationship than 
affinity intensity and selectivity, selectivity evaluation thus 
ensures that peptides with only low or moderate affinity 
binding intensity to CA are not discounted for study.

Peptide design strategies

Peptides of higher affinity and selectivity originated from both 
phage display screening and mAb epitope mapping. Here, a 
smaller library with peptides from exemplary sources 
demonstrated: i) use of a previously elucidated carbohydrate–
protein interaction as a reference for peptide–target binding, ii) 
the ability of the screening methodology to rapidly verify 

random screening leads, and iii) potential advantages in 
combining random and rational screening, such as initial large 
library screening combined with a hypothesis-driven approach. 
Furthermore, multiple sources and strategies may have offered 
a higher probability of peptide identification for a target for 
which a priori binding knowledge is minimal.

Epitope mapping is a strategy commonly employed for the 
generation of peptide ligands against both protein and 
carbohydrate targets. mAb735 is an scFv that interacts 
discontinuously with oligosialic acid. Linear epitope mapping for 
this interaction is thus not intended to “map” the true epitope, 
as with discontinuous epitope mapping, but may provide 
peptides from small linear and conformational epitopes from 
continuous portions of the protein interaction (ESI Fig. 5). For 
example, despite the critical contribution of a number of 
tyrosine residues for octasialic acid-binding of mAb735,42 PSA-
binding peptides display neither a higher propensity of tyrosine 
(ESI Fig. 2) nor do the majority of peptides containing the 
corresponding “mAb-critical” tyrosine residues demonstrate 
high PSA affinity. In contrast, peptide 79 and similar sequences 
demonstrate higher PSA binding. Though many corresponding 
residues from these peptides also do not display direct ligand 
binding in the mAb, the corresponding mAb sequence occurs 
with local continuity in close proximity to the binding site and 
potentially promotes ligand binding through enhancing local 
basicity. Thus, in peptide form, a sequence serves as a novel 
entity in entropic and conformational aspects, but the residue 
composition in lectins (carbohydrate-binding proteins) may 
inherently provide peptides with a higher probability of 
carbohydrate interaction (both affinity and selectivity),61 even 
with regard to antibody sequences, for which sequence 
diversity may be higher.62

While phage display screening has been applied for diverse 
targets, including biomolecules, synthetic materials, and 
metals,63 this report is the first to use this technique in the 
targeting of PSA. A number of phage display peptides 
demonstrated lack of binding to CA on microarrays, which was 
not unexpected given the false positive rate (from target 
unrelated peptides) with this screening technique.64 Unlike with 
phage ELISAs, which verify peptide–target binding when 
peptides are presented on a phage particle, microarrays are 
able to verify peptide binding with alternative molecular 
context. The microarray platform also provides an opportunity 
to rapidly create and screen modified sequences from parent 
phage peptides while remaining in vitro. Fig. 4 demonstrates 
variation in affinity and selectivity of mutants from one phage 
display-derived peptide (sequences shown in Table 3; see ESI 
Fig. 4 for binding in 2x and 1x2 conditions). Evaluation of 
mutational results supports library-level conclusions on peptide 
properties conferring higher affinity and selectivity. For 
example, peptide 170, where a high density of positive charge 
was introduced, displays higher affinity binding but very poor 
selectivity. This supports residue occurrence data, which 
demonstrates importance of charge placement, and selectivity 
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data, in which highest affinity was not necessarily correlated to 
high selectivity.

Conclusions
In this study, PSA-binding peptides were identified in an 
integrated approach emphasizing flexibility of assay design 
when limited biochemical information is available on the target 
and its natural ligands. Peptide ligand characterization, as 
through amino acid compositional and positional analysis, 
suggested biochemical characteristics necessary for PSA-
binding by peptide sequences, including the importance of 
positive charge positioning for PSA interactions. The discovery 
of sequence characteristics serves as the first step for 
enhancement of affinity and selectivity of novel ligands and also 
provides a resource for understanding the molecular basis of 
biological interactions involving PSA. Though rational strategies 
are common in ligand design, successful application of such 
strategies for polysaccharide-binding peptides is limited. Here, 
rational design utilizing well-known mutational approaches was 
shown to enhance hypothesis-driven ligand discovery for PSA-
binding peptides.

The high-throughput assay developed directly incorporates 
a selectivity test. This goes in hand with potential applications 
for CBPs, where peptide selectivity to a glycan amongst many 
structurally complex, yet similar, glycans would prove 
advantageous and where preliminary assessment of selectivity 
along with affinity is strategic for ligand development. Given the 
amenability of the method to modifications, including to ligand 
density, peptide design, and selectivity screening, this approach 
can be adapted to other carbohydrates, particularly those for 
which rational ligand design is challenging, but for which 
random methodologies alone do not offer sufficient analytical 
capacity for fundamental understanding and iterative design.
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Table 1 High affinity PSA-binding peptides, that is, peptides with the top 5% of binding intensities in 1x, 2x, and 1x2 screening against CA. Percent 
selectivities of peptides in different assays provided with standard deviations of triplicate inter-assay measurements.

% Selectivity

Peptide index Peptide sequence Peptide origin 1x 2x 1x2

21 YLQKPGQSPKPLIYR mAb735 52  ± 6 48 ± 3 23 ± 1
23 PGQSPKPLIYRVSNR mAb735 27 ± 6 33 ± 4 24 ± 6
28 RVSNRFSGVPDRFSG mAb735 45 ± 8 30 ± 1 21 ± 3
35 GSGSGTDFTLKISRV mAb735 37 ± 5 40 ± 9 34 ± 2
78 SGNTKYNEKFKGKAT mAb735 63 ± 23 53 ± 11 27 ± 2
79 NTKYNEKFKGKATLT mAb735 91 ± 5 97 ± 5 49 ± 6
161 TLPYILQSSGTRGGGS Phage display screening; A4Y mutation 60 ± 4 39 ± 2 31 ± 3
170 TLERGSRVRQSSGTRG Phage display screening; PAIL to ERGSRVR mutation and 

C-terminal GGS deletion
30 ± 6 35 ± 2 17 ± 2

203 KISSPLLWNPFRGGGS Phage display screening; A1K mutation 67 ± 14 44 ± 4 34 ± 5
213 AISSPLLRNPFRGGGS Phage display screening; W8R mutation 55 ± 19 89 ± 5 100 ± 3
214 AISSPLLKNPFRGGGS Phage display screening; W8K mutation 86 ± 4 106 ± 4 93.6 ± 4.0
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Table 2 Selective peptides from 1x condition. Peptides with % selectivity greater than 80% are shown with corresponding inter-assay average intensities from 
affinity screening (intensities in relative intensity units). Only peptides with intensities above background levels (bottom 20% of intensity range of a screen; 
approximately 70% of the library) were considered in selectivity assessment (intensity range = 11-94 [non-binding < 27]). * Represented in Table 1 in list of 
high affinity PSA-binding peptides.

Peptide index Peptide sequence Peptide origin Average 1x affinity intensity % Selectivity

36 GSGTDFTLKISRVEA mAb735 59 ± 5 86 ± 10
50 VPYTFGGGTRLEIKG mAb735 85 ± 5 89 ± 7
79* NTKYNEKFKGKATLT mAb735 85 ± 5 91 ± 5
147 TLPAILQAAGTRGGGS Phage display screening; S8A and S9A mutations 50 ± 6 109 ± 18
150 RLPAILQSSGTRGGGS Phage display screening; T1R mutation 70 ± 3 80 ± 9
166 TLPAILRSSGTRGGGS Phage display screening; Q7R mutation 66 ± 4 84 ± 9
167 TLPAILKSSGTRGGGS Phage display screening; Q7K mutation 68 ± 7 86 ± 9
214* AISSPLLKNPFRGGGS Phage display screening; W8K mutation 82 ± 2 86 ± 4
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Table 3 Mutations to peptide 106 (P106; from phage display screening). 
* Represented in Table 1 in list of high affinity PSA-binding peptides. ** 
Represented in Table 2 in list of high selectivity PSA-binding peptides.

Peptide 
index

P106 series 
index Peptide sequence Mutation(s)

106 1 TLPAILQSSGTRGGGS N/A
143 2 TLPAILQTSGTRGGGS S8T
144 3 TLPAILQSTGTRGGGS S9T
145 4 TLPAILQASGTRGGGS S8A
146 5 TLPAILQSAGTRGGGS S9A
147** 6 TLPAILQAAGTRGGGS S8A & S9A
148 7 TLPAILQSSGTKGGGS R12K
149 8 SLPAILQSSGTRGGGS T1S
150** 9 RLPAILQSSGTRGGGS T1R
151 10 KLPAILQSSGTRGGGS T1K
152 11 DLPAILQSSGTRGGGS T1D
153 12 ELPAILQSSGTRGGGS T1E
154 13 TLPRILQSSGTRGGGS A4R
155 14 TLPKILQSSGTRGGGS A4K
156 15 TLPDILQSSGTRGGGS A4D
157 16 TLPEILQSSGTRGGGS A4E
158 17 TLPHILQSSGTRGGGS A4H
159 18 TLPSILQSSGTRGGGS A4S
160 19 TLPTILQSSGTRGGGS A4T
161* 20 TLPYILQSSGTRGGGS A4Y
162 21 TLPWILQSSGTRGGGS A4W
163 22 TLPAILNSSGTRGGGS Q7N
164 23 TLPAILASSGTRGGGS Q7A
165 24 TLPAILHSSGTRGGGS Q7H
166** 25 TLPAILRSSGTRGGGS Q7R
167** 26 TLPAILKSSGTRGGGS Q7K
168 27 TLPAILDSSGTRGGGS Q7D
169 28 TLPAILESSGTRGGGS Q7E
170* 29 TLERGSRVRQSSGTRG PAIL to 

ERGSRVR; 
GGS
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Fig. 1. Comparison of three printing conditions: 1x (60 nL), 2x (120 nL) and 1x2 (2x60 nL). (A) Correlation 
of average microarray spot intensities from triplicate intra-assay readings with different printing conditions. 
Raw intensity values gathered from microarray analysis software represent mean spot intensities per unit 
area in relative intensity units. For the sub-set of peptides above background (i.e., intensities in the top 
80% of experimental intensity range), r = 0.69, 0.75, and 0.70, for left, middle, and right correlations, 
respectively. (B–C) Chemiluminescent images of representative peptide microarrays from: (B) affinity 

screening with 1x (top), 2x (middle), and 1x2 (bottom) printing and (C) selectivity screening for 2x printing 
with 0, 1, 10, and 100% (top to bottom) molar concentration of chondroitin sulfate A (CS-A) with 10 μM 
colominic acid (CA). Polysialic acid (PSA)-binding peptides appear white in affinity screening, and PSA-

binding peptides with at least some degree of selective binding to CA over CS-A appear white with 
increasing amounts of CS-A in selectivity screening (each unique peptide appears in triplicate). Microarray 
images prior to any background modification for analysis are displayed. Since most peptides shown do not 

show selective binding to CA in equimolar concentration of competitor, percent selectivity at 10% competitor 
concentration was determined to enable assessment of selectivity of a larger pool of PSA-binding peptides. 

However, some peptides did retain the ability to detect CA with equimolar CS-A (C, bottom image). 
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Fig. 2. Peptide residue (A) compositional and (B) positional analysis. For compositional analysis, occurrence 
of residue types in the partial peptide library (consisting of all mAb epitope mapping-derived peptides and 
unmodified phage display screening-derived peptides) is compared to occurrence in the top 10% of this 

peptide set, where top 10% refers to peptides with highest affinity binding in the partial library (14 
peptides). Acidic = D and E; basic = R and K; polar = H, C, N, Q, and S; aromatic = Y, F, and W; and 

nonpolar = G, A, V, I, L, M, and P. (Two-tailed z test for population proportions; *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001). For positional analysis, changes in R and K occurrences (i.e., positional 

changes for basic residues, which display greatest change in compositional occurrence) at positions 1–15 are 
displayed for the same partial library and top 10% sub-set; position 16 excluded from plot as no library 

peptides contain these residues at position 16. Statistical significance of an increase or decrease in positional 
occurrences was not similarly determined as low residue occurrence in the sample population precluded the 

assumption of normal distribution. 
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Fig. 3. Selectivity of high affinity peptides (Table 1) with 1x printing (intra-assay average intensities from 
triplicate measurements shown in relative intensity units). Blue circles = 10 μM CA with 0 μM CS-A, green 
circles = 10 μM CA with 0.1 μM CS-A, orange circles = 10 μM CA with 1 μM CS-A, and red circles = 10 μM 

CA with 10 μM CS-A. Peptides of similar binding intensities in affinity screening display different selectivities, 
that is, levels of binding ability in the presence of 10% competitor. Peptides 79 and 214 display relatively 

higher selective binding to CA in the presence of CS-A. No high affinity peptides show significant (i.e., above 
background) levels of binding to PSA with equimolar concentrations of CS-A. 
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Fig. 4. Selectivity of peptides derived from peptide 106 (P106; phage display screening peptide) with 1x 
printing (intra-assay average intensities from triplicate measurements shown in relative intensity units). 
Blue circles = 10 μM CA with 0 μM CS-A, green circles = 10 μM CA with 0.1 μM CS-A, orange circles = 10 
μM CA with 1 μM CS-A, and red circles = 10 μM CA with 10 μM CS-A. P106 series indices corresponding to 
primary peptide library indices are shown in Table 3. Peptide 29 (library index 170) displays high affinity to 

CA in the absence of competitor, possibly due to substitution of neutral residues with arginines, but has 
poorer selectivity as compared to other peptides in the series. 
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An integrated approach for the identification of carbohydrate-binding peptides is described, with a focus on the unique glycan polysialic
acid.

NTKYNEKFKGKATLT

TLPYILQSSGTRGGGS

TLERGSRVRQSSGTRG

KISSPLLWNPFRGGGS

…

Protein sequence Peptides Microarray screening (affinity and selectivity) Characterization

Phage display screening

Glycan target +/- competitors
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