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Abstract
Many species of Dalbergia are prized hardwoods, generally referred to as ‘Rosewood,’ and used 
in high-end products due to their distinctive hue and scent. Despite more than 58 species of 
Dalbergia being listed as endangered in Appendix 1 of The Convention on International Trade in 
Endangered Species of Fauna and Flora (CITES), the illegal logging and trade of this timber is 
ongoing. In this work, a handheld laser induced breakdown spectrometer (LIBS) was used to 
analyze seven Dalbergia species and two other exotic hardwood species to evaluate the ability of 
handheld LIBS for rapid classification of Dalbergia in the field. The KNN model of the 
classification presented 80% to 90% sensitivity for discriminating between Dalbergia species in 
the training set. PLS-DA models were based on a binary decision tree structure. Cumulatively, 
the PLS-DA decision tree model showed greater than 97% sensitivity and 99% selectivity for 
prediction of Dalbergia species included in the training set. The data presented in the following 
study are promising for the use of handheld LIBS devices and both KNN and PLS-DA models 
for applications in customs screenings at the port of entry of hard woods, among others.
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Introduction
Illegal logging is one of the leading causes of deforestation today. The global trade in timber is 
estimated to be worth between $30-100 Billion USD annually with up to 40% of the tropical 
timber traded each year entering the market illegally.1 The impact on the United States in 2006 
from imported products manufactured from illegally harvested timber was estimated at $3.6 
billion USD.2 

The genus Dalbergia (Leguminosae), which contains approximately 250 tree species distributed 
worldwide around the tropics possess properties (i.e. appearance, aroma, etc.) desirable for use in 
the manufacture of furniture and cabinetry, is perhaps one of the most widely recognized 
endangered timber species due to its over-exploitation. The Convention on International Trade in 
Endangered Species of Wild Fauna and Flora (CITES) lists 58 species of protected Dalbergia, of 
which 51 are endemic to Madagascar, one is from Indochina and the remaining six are from 
Central and South America. In 1992, in response to the threat of logging, Brazilian rosewood 
(Dalbergia nigra) became the first tree species to be listed as prohibited for international trade. 
Despite its inclusion on Appendix 1 of CITES, D. nigra continues to be logged illegally and 
enters the international market through illegal channels as was recently illustrated in a dispute 
between U.S. federal law enforcement and certain guitar manufacturers.3

For the international community to deter such unlawful practices by presenting a risk of 
prosecution, methods are needed that can provide rapid determination of CITES status within the 
supply chain of the protected species’ import/export. For example, the ability to make a species 
determination of a wood sample may be contingent upon identifying the geographic origin. In 
typical mass spectrometry laboratory analyses, isotopic distribution can be used to identify the 
region of origin for vegetation.4–6 Thus, due to well-defined habitats for Dalbergia species and 
methods for determining isotopic distribution, Dalbergia provenance may be determined if the 
species can be identified with a spectroscopic field measurement.7 

To date, only laboratory-based methods are available for origin identification. Subject matter 
experts can often discern species of exotic woods though the examination of organic compounds, 
isotopic composition of the bulk wood, analysis of the trace elements within the wood, or a 
combination of methods. At ports of entry, a subject matter expert may identify timber products 
by their morphological features, either on-site or off-site. However, those distinctions are 
typically limited to the species level and not every species or sub-species identification can be 
readily made. Aside from macroscopic wood anatomical identification, the most common 
identification procedure includes the use of ‘detector dogs’ trained to recognize scents of certain 
wood species. As of 2016, no analytical technique is readily available for rapid-field 
identification of wood species, although near- and  mid-infrared spectroscopy (NIR, IR) and 
automated macroscopic wood anatomical identification are being developed.8 

NIR and IR, and to a lesser extent, X-ray fluorescence spectroscopy (XRF) and laser induced 
breakdown spectroscopy (LIBS), are being investigated as a field-portable method for 
identification of wood species. Recent NIR and IR research on classification of wood samples 
and wood oils produce low error rates with chemometric models, however the vast majority still 
require a multi-day atmospheric equilibration time, grinding prior to analysis, and use benchtop 
instrumentation, making these methods insufficient for rapid on-site analyses.9–14 While the use 
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of handheld NIR & IR spectrometers is documented, the research in this area is limited to only a 
few groups with a wide range of classification success rates.15,16 While XRF is successfully used 
for elemental analysis, application of XRF to wood has been limited to examining the elemental 
composition of wood wastes.17 From a practical standpoint, the reliance on a radioactive source 
would raise add an extra layers of safety and training concerns with placing portable XRF 
instrumentation at customs entry points for screening hardwood shipments.  

LIBS is an attractive option for screening of exotic hardwood samples in the field. LIBS is an 
adaptation of atomic emission spectroscopy that is capable of providing rapid, multi-element 
analysis of many materials in any physical state, similar to XRF.18 LIBS technology has 
attributes that make it particularly useful for solving difficult and exotic problems such as the 
detection of Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) threats and 
exploring the solar system.19–21 LIBS has received attention because of its ability to perform 
analyses at a distance and in situ. LIBS instruments can be configured for handheld,22–29 or 
standoff30–33 detection applications with multiple hand-held LIBS instruments on the market.34–37

Spectroscopic analyses for wood classification are highly reliant upon chemometric methods 
such as k-Nearest Neighbors (KNN) and Partial Least Squares Discriminate Analysis (PLS-DA), 
among others.9–16,18 The need of chemometrics in classification problems such as determination 
of Dalbergia species lie in the highly convolved, multivariate nature of spectra collected across 
many classes of wood samples. While success has been demonstrated with PLS-DA models for 
obtaining sensitivities and selectivities of nearly 100% for wood oils of the same tree,13 
speciation was not a goal of the study. The application of PLS-DA and NIR to both speciation 
and determination of provenance showed high sensitivity and selectivity for speciation (100%) 
but low sensitivity and selectivity (64%-99%) for provenance classification.38

In this paper classification among seven species of Dalbergia and two other exotic hardwoods by 
a hand-held LIBS instrument supported with multivariate methods common in chemometrics and 
machine learning is reported. The ability to rapidly and reliably identify hardwood species at 
ports of entry would provide a boon for enforcement agencies and minimize the negative impact 
of false positives on legitimate exotic wood traders. 

Experimental 
Spectra Collection.
Wood samples of seven Dalbergia and two exotic hardwoods were obtained from commercial 
sources (Table 1). The non-Dalbergia hardwoods were chosen based on geographical region to 
assess if there was a geographical signal that could be detected between Dalbergia and non-
Dalbergia species grown in similar locations. Samples were pre-cut, non-sanded, flat, board-like 
wood sections with approximate dimensions of 0.5x2x3 in. and consisted only of heartwood, as 
heartwood is the purpose of the illegal timber trade. All samples were validated using traditional 
wood anatomy and mass spectrometry.39 Prior to spectra collection, no sample preparation or 
instrument optimization was performed. Classification was based on the putative species 
provided by the vender. No further validation was performed. For each of the 9 classes, 
approximately 10 distinct hardwood samples, each from a different tree, were measured, 
producing 90 recorded spectra in total. Laser induced breakdown spectroscopy (LIBS) spectra 
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were acquired using the handheld SciAps Z-200C LIBS Analyzer (Boston, MA), containing a 
1064 nm source operating at 5-6 mJ and a 50 Hz repetition rate. For each collected spectrum, the 
laser was rastered over 6 discrete spots, in a 3x2 grid pattern, where each spot was exposed to 10 
cleaning laser shots followed by 16 data collection shots. Through this treatment, each collected 
spectrum was an average of 96 individual spectra. Automated calibration and wavelength scale 
validation was accomplished using an internal reference of 316 stainless steel. Example LIBS 
spectra are shown in Figure 1A. 

INSERT TABLE 1 ABOUT HERE

Analysis. 
All computations were performed in the Matlab 2018b (Matlab Natick, MA) operating 
environment augmented by the PLS-Toolbox (Eigenvector, Chelan WA). Spectral baseline 
removal by an automatic Whittaker filter40 and Savitzky-Golay41 first derivative were performed 
by algorithms included in the PLS-Toolbox. Following preprocessing of the data, decluttering by 
External Parameter Orthogonalization (EPO)42 and analyses by either uniform (unweighted)  
KNN or PLS-DA was also performed in the PLS-TOOLBOX. Decision trees were generated by 
‘in house’ software. 

The Whittaker filter is a means of estimating baseline signal and deemphasizing any baseline 
humps that may unequally augment signal intensity to a subset of the variables in the spectra. 
Mathematically, spectral contributions are determined to belong to either baseline or signal by 
iteratively fitting a low order polynomial to the baseline in a piecewise manner. Whittaker 
parameters were set to  = 100 and P = 0.001 for the least squares estimation of the baselines. 
These parameters set the allowable amount of curvature (l) and negativity (P) in the estimated 
baseline. 

The Savitzky-Golay method applied the first derivative of a local 2nd order polynomial to 
simultaneously remove any residual baseline off-set and smooth high frequency random errors in 
each spectrum. The filter width was set to 15 points, approximately half the width of the LIBS 
peaks. 

External Parameter Orthogonalization (EPO) was applied with a 3 principal component model to 
estimate the uninformative variance within each class (class). The portions of the whole data set 
that is correlated to this variance is removed. The EPO algorithm is a “hard” orthogonalization 
method, i.e. it all variance is totally removed. Consequently, care must be exhibited to not over-
fit the data with a large number of PCs in the EPO method and begin to remove usable signal. 

For each analysis, the 90-sample data set was divided into a 72-sample training set and a 18 
sample validation set. For the validation set, 2 samples were randomly removed from each class. 
When PLS-DA was applied 3 times on different training and validation sets, a truly unique 
validation set was randomly determined such that there were always 2 samples removed from 
each class and no sample was assigned to a training set twice. For cross-validation of the KNN 
and PLS-DA models, a further 1 sample (10% of total data) is temporarily removed, thus only 7 
samples per class are employed to generate the KNN or PLS-DA models during cross-validation.
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Results & Discussion
To test the efficacy of hand-held LIBS instrumentation for differentiating among multiple 
Dalbergia species, two classification methods common in chemometric and machine learning 
applications were investigated. KNN is a non-parametric, unguided classification technique in 
that it does not use prior knowledge of class identities to assemble sample groupings based on 
observational (in this case LIBS spectra) similarities.43,44 By contrast, PLS-DA is a guided, 
parametric model that relies on linear regression to differentiate among two (or more) putative 
classes of samples.45–47 A priori class information is enlisted to divide a high dimensional space 
defined by multivariate observations (again, LIBS spectra here). 

KNN and PLS-DA with decision trees each offer a particular set of advantages and 
disadvantages for classification problems. The advantage of KNN is, thus, robustness against 
misidentified sample classes in the training set and resistance to overfitting the model by relying 
on chance correlations of random errors within the data set. The disadvantage of KNN is the lost 
opportunity of building a more sensitive or parsimonious model by enlisting all a priori 
knowledge about the training set in the modelling process. With PLS-DA, the use of a priori 
class knowledge to drive the PLS model mitigates the obfuscating effect of random errors and 
other sources of variance within the training set. With the LIBS spectra of wood samples these 
variances can be large relative to the spectral differences unique to differentiating among 
Dalbergia species. However, the linear PLS models are often inefficient in simultaneously 
differentiating among three or more classes. Consequently, binary decision trees,48,49 such as 
those used in Classification and Regression Trees (CART),50 are employed to simplify the 
differentiation among multiple classes (Dalbergia species) into a series of simple, often binary, 
choices.

Preprocessing of LIBS spectra.
The raw LIBS spectra (Figure 1A) exhibited a significant baseline with broad, variable features 
around 390 nm, 460 nm, and 510 nm. A few variables, notably the most intense features at 395 
nm, 398 nm, 425 nm and 195 nm presented large sample-to-sample variability within each class. 
Additionally, LIBS analyses of the wood samples returns sparse spectra; approximately 90% of 
the variables are below the 3 standard deviations of instrumental noise. Applying a KNN model, 
with n = 3, to the raw data yielded correct classification of only 35 of 90 hardwood samples in 
the calibration model (Figure 2A).  Perhaps not surprisingly, the two distinct non-Dalbergia 
classes (8 & 9) are accurately classified relative to the seven Dalbergia species (Figure 2A).

INSERT FIGURE 1 ABOUT HERE
 
Preprocessing of the LIBS spectra was essential for developing sensitive and selective models 
for classification of the 9 distinct types of hardwood sampled. Application of a Whittaker filter 
followed by determination of the spectral 1st derivative significantly decreased the baseline 
variance (Figure 1B). The error structure of each spectrum was normalized by taking the square 
root of the absolute value of the intensity for each baseline corrected spectrum (Figure 1C).  For 
all analyses, variables representing the uninformative spectral baseline were removed by 
applying a cut-off filter set to either 0.5 units or 1.0 units for the mean normalized spectrum. The 
cut-off filters reduced the number of points per sample from 17431 to 1849 or 489, respectively. 
After normalization and variable selection, the spectra were autoscaled ( ), 𝜇 = 0, 𝜎 = 1
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decluttered by EPO, then autoscaled again. The benefit of some variable selection to ignore 
uninformative baseline variables is evident when comparing the KNN (n = 3) models with no 
variable removal (Figure 2B, 55/90 correct) to the models applied to the 0.5 cut-off filter 
(Figure 2C 81/90 correct) and the 1.0 cut-off filter (Figure 2D 83/90 correct). While not 
autoscaling before or after applying EPO occasionally presented a more sensitive or selective 
model, the technique of pre- and post-autoscaling was found to be the most robust across 
preliminary models and was employed for all data presented here. Similarly, preliminary 
analyses could not support a greater merit to either cut-off filter values, so both the 0.5 filter and 
1.0 filter are considered for future analyses. 

INSERT FIGURE 2 ABOUT HERE

Classification by KNN
Predictive KNN (n = 3) models determined from a 72-sample training set and applied to an 18-
sample test set yielded a 94% success rate for classification of the test set with the 0.5 cut-off 
filter and a 100% success rate with the 1.0 cut-off filter. Only 1 Dalbergia sample was 
misclassified in the test set. Cross-validated classification errors for the two 72-sample training 
sets were appreciably greater than the two 18 sample test (prediction) sets. However, the cross-
validation errors are effectively based on only 6 samples per class, while prediction errors were 
based on 7 training samples per class and the preliminary analyses above employed 10 samples 
per class. In spite of the functionally sparser data clouds for each class, cross-validation was still 
90% correct for the 0.5 cut-off (Figure 3A) and 79% correct for the 1.0 cut-off (Figure 3B).  

Closer examination of results yields a few observations about KNN model performance in this 
data set. For cross-validation, no class of Dalbergia samples has both a sensitivity and selectivity 
of 1.00; all Dalbergia classes either have samples misclassified as a different Dalbergia species 
or have samples from a different Dalbergia misappropriated into that class. The KNN model 
works better with the data from the 0.5 cut-off filter (7 miss-classifications) than with the 1.0 cut-
off filter (15 miss-classifications). The KNN model has the hardest time classifying Dalbergia 
melanoxylon (class 3) with a sensitivity of 0.62 for the 0.5 cut-off data and only 0.25 for the 1.0 
cut-off data. However, the KNN method deftly classifies the more distinct non-Dalbergia 
hardwoods with a sensitivity of 1.0 for the data with the applied 0.5 cut-off filter. 

INSERT FIGURE 3 ABOUT HERE

To further validate that the KNN model was classifying based on real spectral features and not 
forcing classification through chance correlations within each class, classification was repeated 
with randomized class assignments. The KNN model (n = 3) returned only 4 of 90 correct 
classifications (4.4%), less than would be expected by random chance.

Classification by Partial Least Squares – Discriminant Analyses (PLS-DA)
The sensitivity and selectivity of PLS-DA for determining class identity of the 18-sample 
validation set was 0.97 and 0.99, respectively, for the 0.5 intensity cutoff filter and 0.98 and 0.99, 
respectively, for the 1.0 intensity cut-off filter. The difference between the 0.97 and 0.98 
sensitivity is one sample misclassification across 3 realizations of an 18-sample validation set 
(54 samples total) (Table 2).   The confusion matrix for 0.5 intensity cut-off data shows that one 
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out of six test samples from class 2 was predicted to belong to class 9 and one of six test samples 
from class 3 was predicted to belong to class 7 (Table 3), while for the 1.0 intensity cut-off only 
one sample from class 2 was miss-allocated (Table 4).

INSERT TABLE 2 ABOUT HERE

The 0.92 sensitivity determined by cross-validation (Table 2) is impressive considering only 7 
samples per class are employed to construct each PLS-DA model. For the 0.5 intensity cut-off 
data, the majority of the miss-classifications come from classes 1 and 2. An average of two class 
1 samples were predicted as belonging to class 6 and from the thee resampled analyses, a class 1 
sample was predicted to belong to class 4 on 1 of the 3 replicates (Table 3). At the same time, on 
average 1 sample from class 2 was miss-classified as class 7 and another as class 9 during cross 
validation. The 1.0 intensity cut-off data exhibited a more uniform distribution of miss-
classifications during cross-validation (Table 4). Only class 7 had 1.00 sensitivity and only class 
4 averaged more than one miss-classification. 

INSERT TABLE 3 ABOUT HERE

INSERT TABLE 4 ABOUT HERE

The key to success of the PLS-DA models for classification of Dalbergia species is the 
simplification of the classification process by employing decision trees to transform the 
classification model to a series of binary decisions. The two decision trees independently 
determined for data sets from each intensity cut-off are very similar. They differ only in class 
grouping of the penultimate decision of each branch and the number of factors employed in the 
PLS-DA model for each decision (Scheme 1). For example, the first decision of each data set is 
whether a sample belongs to the group of classes 2, 7, 8, and 9 or the group of classes 1, 3, 4, 5, 
and 6. With the 0.5 intensity cut-off data, a 1 factor PLS-DA model was employed and a 3 factor 
PLS-DA model was employed for the 1.0 intensity cut-off data. At the ends of the decision trees, 
differences can be seen in how the model distinguishes among the final three classes. For 
example, at Level 3 the 0.5 intensity cut-off tree differentiates class 9 from classes 2 and 7 before 
distinguishing among classes 2 and 7 at Level 4. While the decision tree for the 1.0 cut-off data 
differentiates class 7 from classes 2 and 9 at Level 3 and then resolves class 2 from class 9 at 
Level 4. The differences in structure at the tips of the trees are understandable because the final 
differentiations are generally the hardest to resolve. 

Assessment of the classification models
Classification of Dalbergia species by LIBS was expected to be a challenging application. 
Consequently, the 0.97 sensitivity and 0.99 selectivity for these samples by a PLS-DA decision 
tree should be viewed skeptically. One concern is that the high sensitivity for prediction could be 
the result of cherry picking the test set to lie in the center of each class. To guard against that, the 
test set was resampled 3 times without replacement such that 60% of the data was included in the 
test set at one time or another. All three models performed equivalently (Supplemental 
Information). 
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A second concern is that the models are forcing classification based on random signals. Were 
this the case, it is doubtful that the sensitivity for either cross-validation or prediction would 
above 0.9. However, to further validate that the models were not seizing upon spurious 
correlations, the classification models were repeated with randomized class affiliations. With 
randomized classes the KNN model (n = 3) miss-classified 84 out of 90 samples. The PLS-DA 
model at the Level 1 decision exhibited a cross-validation sensitivity of 0.44 and cross-validation 
selectivity of 0.61 even though 9 samples per class were employed in construction of each 
model. 

It is worth noting that the wood samples were acquired from two different vendors. A modicum 
of confidence in the models is added because the initial classification is not a binary decision 
based on vendor. Classes 1 and 6, the two classes purchased from Gilmer Wood, do fall on the 
same of the first binary decision, but with three other classes of Dalbergia. While there might be 
a systematic difference in the wood spectra based on vendor, any difference here is not so great 
as to induce those samples from forming a distinct and separate branch of the decision tree.

INSERT SCHEME 1 ABOUT HERE

Conclusions
This preliminary study presents encouraging evidence that Dalbergia species can be rapidly 
identified by a handheld LIBS device. With appropriate data preprocessing both KNN and PLS-
DA driven models can accurately classify Dalbergia species. The worst case observed 0.92 
sensitivity is sufficient for customs screening of imported hardwoods at ports of entry. In such an 
application, the goal is not to definitively identify the species of an unknown Dalbergia sample. 
Rather, the rapid LIBS field test would screen the sample for a mismatch to the species reported 
on the manifest. If these two identities do not match, the shipment would be flagged for further 
investigation or laboratory analyses. As identified by Dormontt et al., there is a growing need for 
both tools and methods that allow for rapid screening of potentially illegally sourced wood at 
ports of entry.51 Consequently, a high sensitivity is desired to minimize impact on legitimate 
trade. A high selectivity is important so protected or trade-regulated species are not mistakenly 
identified as legal, tradeable woods.

The next step of this project is to test the models on a larger number of samples acquired from 
multiple sources. Simultaneously, the data collection parameters should be optimized to 
determine the minimum signal-to-noise needed to realize reliable classification. Lower signal-to-
noise ratios can be more rapidly be acquired by handheld instrumentation. An additional 
exploratory task is to determine whether fusion of the LIBS spectra with complimentary 
information, such has from a handheld XRF or handheld IR reflectance, would significantly 
improve the models.

Acknowledgements
The authors thank NSF CHE1506853 for support of the modeling component of this project. 
The authors also thank SciAps for loan of the Z-200 LIBS Analyzer. 

Page 8 of 23Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 9 of 23 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



References
(1) UNODC. The Globalisation of Crime: A Transnational Organized Crime Threat 

Assessment. Glob. Crime A Transnatl. Organ. Crime Threat Assess. 2013, No. April, 314.

(2) China illegal tropical timber import export USA President Initiative Against Illegal 
Logging rubber wood furniture statistics pulp paper Brazil Cameroon Congo Equatorial 
Guinea Gabon Liberia Russia Malaysia Indonesia PNG Papua New Guinea Solomon 
Islands B http://www.globaltimber.org.uk/ChinaIllegalImpExp.htm (accessed Apr 16, 
2019).

(3) U.S. Fish & Wildlife Service. International Trade in Plants and Wildlife Information for 
Musicians and Manufacturers of Musical Instruments.

(4) Hartman, G.; Danin, A. Isotopic Values of Plants in Relation to Water Availability in the 
Eastern Mediterranean Region. Oecologia 2010, 162 (4), 837–852. 
https://doi.org/10.1007/s00442-009-1514-7.

(5) Tahmasebi, F.; Longstaffe, F. J.; Zazula, G.; Bennett, B. Nitrogen and Carbon Isotopic 
Dynamics of Subarctic Soils and Plants in Southern Yukon Territory and Its Implications 
for Paleoecological and Paleodietary Studies. PLoS One 2017, 12 (8), e0183016.

(6) Milligan, H. E.; Pretzlaw, T. D.; Humphries, M. M. Stable Isotope Differentiation of 
Freshwater and Terrestrial Vascular Plants in Two Subarctic Regions. Ecoscience 2010, 
17 (3), 265–275.

(7) Winfield, K.; Scott, M.; Graysn, C. Global Status of Dalbergia and Pterocarpus 
Rosewood Producing Species in Trade; 2016.

(8) International Consortium o Combating Wildlife Crime. Best Practice Guide for Forensic 
Timber Identification INTERNATIONAL CONSORTIUM ON COMBATING 
WILDLIFE CRIME. St/Nar/52 2016, 226.

(9) Duca, D.; Pizzi, A.; Rossini, G.; Mengarelli, C.; Foppa Pedretti, E.; Mancini, M. 
Prediction of Hardwood and Softwood Contents in Blends of Wood Powders Using Mid-
Infrared Spectroscopy. Energy and Fuels 2016, 30 (4), 3038–3044. 
https://doi.org/10.1021/acs.energyfuels.5b02994.

(10) Chen, H.; Ferrari, C.; Angiuli, M.; Yao, J.; Raspi, C.; Bramanti, E. Qualitative and 
Quantitative Analysis of Wood Samples by Fourier Transform Infrared Spectroscopy and 
Multivariate Analysis. Carbohydr. Polym. 2010, 82 (3), 772–778. 
https://doi.org/10.1016/j.carbpol.2010.05.052.

(11) Zhou, C.; Jiang, W.; Cheng, Q.; Via, B. K. Multivariate Calibration and Model Integrity 
for Wood Chemistry Using Fourier Transform Infrared Spectroscopy. J. Anal. Methods 
Chem. 2015, 2015, 1–9. https://doi.org/10.1155/2015/429846.

(12) Via, B. K.; Zhou, C.; Acquah, G.; Jiang, W.; Eckhardt, L. Near Infrared Spectroscopy 
Calibration for Wood Chemistry: Which Chemometric Technique Is Best for Prediction 
and Interpretation? Sensors (Switzerland) 2014, 14 (8), 13532–13547. 
https://doi.org/10.3390/s140813532.

Page 10 of 23Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(13) Almeida, M. R.; Fidelis, C. H. V.; Barata, L. E. S.; Poppi, R. J. Classification of 
Amazonian Rosewood Essential Oil by Raman Spectroscopy and PLS-DA with 
Reliability Estimation. Talanta 2013, 117, 305–311. 
https://doi.org/10.1016/j.talanta.2013.09.025.

(14) Amusant, N.; Beauchène, J.; Digeon, A.; Chaix, G. Essential Oil Yield in Rosewood 
(Aniba Rosaeodora Ducke): Initial Application of Rapid Prediction by near Infrared 
Spectroscopy Based on Wood Spectra. J. Near Infrared Spectrosc. 2016, 24 (6), 507–515. 
https://doi.org/10.1255/jnirs.1241.

(15) Soares, L. F.; Da Silva, D. C.; Bergo, M. C. J.; Coradin, V. T. R.; Braga, J. W. B.; Pastore, 
T. C. M. AVALIAÇÃO DE ESPECTRÔMETRO NIR PORTÁTIL E PLS-DA PARA A 
DISCRIMINAÇÃO DE SEIS ESPÉCIES SIMILARES DE MADEIRAS AMAZÔNICAS 
EVALUATION OF A NIR HANDHELD DEVICE AND PLS-DA FOR 
DISCRIMINATION OF SIX SIMILAR. Quim. Nov. 2017, 40 (4), 418–426. 
https://doi.org/10.21577/0100-4042.20170014.

(16) Silva, D. C.; M, P. T. C.; F, S. L.; S,  de B. F. A.; J, B. M. C.; H, C. V. T.; Bahia, G. A.; 
Herrera, S. M.; Beltetón, C. C.; B, B. J. W. Determination of the Country of Origin of 
True Mahogany (Swietenia Macrophylla King) Wood in Five Latin American Countries 
Using Handheld NIR Devices and Multivariate Data Analysis. Holzforschung. 2018, p 
521. https://doi.org/10.1515/hf-2017-0160.

(17) Fellin, M.; Negri, M.; Zanuttini, R. Multi-Elemental Analysis of Wood Waste Using 
Energy Dispersive X-Ray Fluorescence (ED-XRF) Analyzer. Eur. J. Wood Wood Prod. 
2014, 72 (2), 199–211. https://doi.org/10.1007/s00107-013-0766-4.

(18) Cremers, D.; Radziemski, L. Handbook of Laser-Induced; 2013. 
https://doi.org/10.1002/9781118567371.

(19) Arnaud, C. H. Chemical and Engineering News : “news Edition” of the American 
Chemical Society. The American Chemical Society April 2012, pp 36–37.

(20) Musazzi, S. Springer Series in Optical Sciences 182 Laser-Induced Breakdown 
Spectroscopy; 2014.

(21) Harmon, R. S.; Russo, R. E.; Hark, R. R. Applications of Laser-Induced Breakdown 
Spectroscopy for Geochemical and Environmental Analysis: A Comprehensive Review. 
Spectrochim. Acta - Part B At. Spectrosc. 2013, 87 (September 2018), 11–26. 
https://doi.org/10.1016/j.sab.2013.05.017.

(22) Manard, B. T.; Schappert, M. F.; Wylie, E. M.; McMath, G. E. Investigation of Handheld 
Laser Induced Breakdown Spectroscopy (HH LIBS) for the Analysis of Beryllium on 
Swipe Surfaces. Anal. Methods 2019, 11 (6), 752–759. 
https://doi.org/10.1039/c8ay02473a.

(23) Senesi, G. S.; Manzari, P.; Tempesta, G.; Agrosì, G.; Touchnt, A. A.; Ibhi, A.; De Pascale, 
O. Handheld Laser Induced Breakdown Spectroscopy Instrumentation Applied to the 
Rapid Discrimination between Iron Meteorites and Meteor-Wrongs. Geostand. 
Geoanalytical Res. 2018, 42 (4), 607–614. https://doi.org/10.1111/ggr.12220.

Page 11 of 23 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(24) Manard, B. T.; Wylie, E. M.; Willson, S. P. Analysis of Rare Earth Elements in Uranium 
Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS). Appl. Spectrosc. 
2018, 72 (11), 1653–1660. https://doi.org/10.1177/0003702818775431.

(25) Senesi, G. S.; Manzari, P.; Consiglio, A.; De Pascale, O. Identification and Classification 
of Meteorites Using a Handheld LIBS Instrument Coupled with a Fuzzy Logic-Based 
Method. J. Anal. At. Spectrom. 2018, 33 (10), 1664–1675. 
https://doi.org/10.1039/c8ja00224j.

(26) Harmon, R. S.; Hark, R. R.; Throckmorton, C. S.; Rankey, E. C.; Wise, M. A.; Somers, A. 
M.; Collins, L. M. Geochemical Fingerprinting by Handheld Laser-Induced Breakdown 
Spectroscopy. Geostand. Geoanalytical Res. 2017, 41 (4), 563–584. 
https://doi.org/10.1111/ggr.12175.

(27) Piorek, S. Rapid Sorting of Aluminum Alloys with Handheld LIBS Analyzer. 2019, 10, 
348–354.

(28) Pospíšilová, E.; Novotný, K.; Pořízka, P.; Hradil, D.; Hradilová, J.; Kaiser, J.; Kanický, V. 
Depth-Resolved Analysis of Historical Painting Model Samples by Means of Laser-
Induced Breakdown Spectroscopy and Handheld X-Ray Fluorescence. Spectrochim. Acta 
- Part B At. Spectrosc. 2018, 147 (May), 100–108. 
https://doi.org/10.1016/j.sab.2018.05.018.

(29) Harmon, R. S.; Throckmorton, C. S.; Hark, R. R.; Gottfried, J. L.; Wörner, G.; Harpp, K.; 
Collins, L. Discriminating Volcanic Centers with Handheld Laser-Induced Breakdown 
Spectroscopy (LIBS). J. Archaeol. Sci. 2018, 98 (July), 112–127. 
https://doi.org/10.1016/j.jas.2018.07.009.

(30) Scaffidi, J.; Angel, S. M.; Cremers, D. A. Emission Enhancement Mechanisms in Dual-
Pulse LIBS. Anal. Chem. 2006, 78 (1), 24–32. https://doi.org/10.1021/ac069342z.

(31) Marquardt, B. J.; Goode, S. R.; Michael Angel, S. In Situ Determination of Lead in Paint 
by Laser-Induced Breakdown Spectroscopy Using a Fiber-Optic Probe. Anal. Chem. 1996, 
68 (6), 977–981. https://doi.org/10.1021/ac950828h.

(32) Angel, S. M.; Stratis, D. N.; Eland, K. L.; Lai, T.; Berg, M. A.; Gold, D. M. LIBS Using 
Dual- and Ultra-Short Laser Pulses. Fresenius. J. Anal. Chem. 2002, 369 (3–4), 320–327. 
https://doi.org/10.1007/s002160000656.

(33) Michael Angel, S.; Bonvallet, J.; Lawrence-Snyder, M.; Pearman, W. F.; Register, J. 
Underwater Measurements Using Laser Induced Breakdown Spectroscopy. J. Anal. At. 
Spectrom. 2016, 31 (1), 328–336. https://doi.org/10.1039/c5ja00314h.

(34) SciApps. No TitleZ-300 LIBS Analyzer https://www.sciaps.com/libs-handheld-laser-
analyzers/z-300/ (accessed Apr 21, 2019).

(35) Bruker. EOS 500 https://www.bruker.com/products/x-ray-diffraction-and-elemental-
analysis/libs/eos-500/overview.html (accessed Apr 21, 2019).

(36) BWTEK. NanoLIBS http://bwtek.com/products/nanolibs/ (accessed Apr 21, 2019).

(37) Inc., S. PORTA-LIBS-2000 and Plasma Monitor Configurations.

Page 12 of 23Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(38) Yang, Z.; Liu, Y.; Pang, X.; Li, K. Preliminary Investigation into the Identification of 
Wood Species from Different Locations by Near Infrared Spectroscopy. BioResources 
2015, 10 (4), 8505–8517. https://doi.org/10.15376/biores.10.4.8505-8517.

(39) Lancaster, C.; Espinoza, E. Analysis of Select Dalbergia and Trade Timber Using Direct 
Analysis in Real Time and Time-of-Flight Mass Spectrometry for CITES Enforcement. 
Rapid Commun. Mass Spectrom. 2012, 26 (9), 1147–1156. 
https://doi.org/10.1002/rcm.6215.

(40) Whittaker, E. T. On a New Method of Graduation. Proc. Edinburgh Math. Soc. 1922, 41, 
63–75. https://doi.org/10.1017/S001309150000359X.

(41) Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of Data by Simplified Least 
Squares Procedures. Anal. Chem. 1964, 36 (8), 1627–1639. 
https://doi.org/10.1021/ac60214a047.

(42) Roger, J. M.; Chauchard, F.; Maurel, V. B.; Roger, J. M.; Chauchard, F.; Maurel, V. B. 
EPO-PLS External Parameter Orthogonalisation of PLS Application to Temperature-
Independent Measurement of Sugar Content of Intact Fruits To Cite This Version : HAL 
Id : Hal-00464022 Introduction. 2010.

(43) Alhazen; Smith, A. M. Alhacen’s theory of visual perception : a critical edition, with 
English translation and commentary, of the first three books of Alhacen’s De aspectibus, 
the medieval Latin version of Ibn al-Haytham’s Kitab al-Manazir; American 
Philosophical Society: Philadelphia, 2001.

(44) Stevens, K. N.; Cover, T. M.; Hart, P. E. Nearest Neighbor. 1967, I.

(45) Wold, S.; Martens, H.; Wold, H. The Multivariate Calibration Problem in Chemistry 
Solved by the PLS Method. In Matrix Pencils; Kågström, B., Ruhe, A., Eds.; Springer 
Berlin Heidelberg: Berlin, Heidelberg, 1983; pp 286–293.

(46) Barker, M.; Rayens, W. Partial Least Squares for Discrimination. J. Chemom. 2003, 17 
(3), 166–173. https://doi.org/10.1002/cem.785.

(47) Vandeginste, B. G. M. Handbook of Chemometrics and Qualimetrics. Part B Part B. 
Elsevier: Amsterdam; Boston 1998.

(48) Belson, W. Matching and Prediction on the Principle of Biological Classification. J. R. 
Stat. Soc. 1953, 8 (2), 8679–8681.

(49) Liu, H.; Gegov, A.; Cocea, M. Representation of Classification Rules. In Rule Based 
Systems for Big Data: A Machine Learning Approach; Springer International Publishing: 
Cham, 2016; pp 51–62. https://doi.org/10.1007/978-3-319-23696-4_5.

(50) Breiman, L.; Friedman, J.; Stone, C. J.; Olshen, R. A. Classification and Regression 
Trees; The Wadsworth and Brooks-Cole statistics-probability series; Taylor & Francis, 
1984.

(51) Dormontt, E. E.; Boner, M.; Braun, B.; Breulmann, G.; Degen, B.; Espinoza, E.; Gardner, 
S.; Guillery, P.; Hermanson, J. C.; Koch, G.; et al. Forensic Timber Identification: It’s 
Time to Integrate Disciplines to Combat Illegal Logging. Biol. Conserv. 2015, 191, 790–

Page 13 of 23 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



798. https://doi.org/10.1016/j.biocon.2015.06.038.

Page 14 of 23Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



TABLE 1

Table 1. Origins, class labels, and commercial source of wood samples
Species Origin Class Number Number of Samples

Dalbergia baroniia Madagascar 1 10
Dalbergia latifoliab India, Malaysia 2 10

Dalbergia melanoxylonb Tanzania 3 10
Dalbergia nigrab Brazil 4 10
Dalbergia retusab Mexico 5 11

Dalbergia spruceanaa Brazil 6 10
Dalbergia stevensoniib Honduras 7 9

Phoebe porosab Brazil 8 10
Swietenia macrophyllac Central & South America 9 10

a Gilmer Wood Co., Portland, OR, USA
b Eisenbrand Inc. Exotic Hardwoods, Torrance, CA, USA
c Cook Woods, Klamath Falls, OR, USA
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TABLE 2

Table 2. Ensemble Sensitivity and Selectivity of all PLS-DA models for Dalbergia 
Classification. 

Calibration
(0.5 Cut / 1.0 Cut)

Cross-Validation
(0.5 Cut / 1.0 Cut)

Prediction
(0.5 Cut / 1.0 Cut)

Sensitivity Selectivity Sensitivity Selectivity Sensitivity Selectivity
Class 1 1.00 / 1.00 1.00 / 1.00 0.71 / 0.88 1.00 / 0.98 1.00 / 1.00 1.00 / 1.00
Class 2 1.00 / 1.00 1.00 / 1.00 0.75 / 0.88 0.99 / 0.99 0.85 / 0.85 1.00 / 0.99
Class 3 1.00 / 1.00 1.00 / 1.00 1.00 / 0.91 0.99 / 0.99 0.85 / 1.00 1.00 / 1.00
Class 4 1.00 / 1.00 1.00 / 1.00 1.00 / 0.79 0.99 / 0.99 1.00 / 1.00 1.00 / 1.00
Class 5 1.00 / 1.00 1.00 / 1.00 0.92 / 0.97 1.00 / 0.99 1.00 / 1.00 1.00 / 1.00
Class 6 1.00 / 1.00 1.00 / 1.00 0.96 / 0.96 0.97 / 0.98 1.00 / 1.00 1.00 / 1.00
Class 7 1.00 / 1.00 1.00 / 1.00 0.96 / 1.00 0.98 / 0.99 1.00 / 1.00 0.97 / 1.00
Class 8 1.00 / 1.00 1.00 / 1.00 1.00 / 0.96 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
Class 9 1.00 / 1.00 1.00 / 1.00 0.96 / 0.96 0.98 / 0.98 1.00 / 1.00 0.99 / 1.00
Average 1.00 / 1.00 1.00 / 1.00 0.92 / 0.92 0.99 / 0.99 0.97 / 0.98 0.99 / 0.99
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TABLE 3

Table 3. Confusion Matrix for PLS-DA applied to 0.5 Cut-off Filtered Average LIBS Data. 
Shown values are for the calibration / cross validation / and test sets. Each value represents the 
average number of assignments across three replicate analyses, each with a unique training set 
and different calibration set. Values of ‘0’ are replaced in the table with ‘.’ for clarity of reading.

N = Pred. 1 Pred. 2 Pred. 3 Pred. 4 Pred. 5 Pred. 6 Pred. 7 Pred. 8 Pred. 9
True 1 8/8/2 8/5.7/2 . /. /. . /. /. . /.3/. . /. /. . /2/. . /. /. . /. /. . /. /. 
True 2 8/8/2 . /. /. 8/6/1.7 . /. /. . /. /. . /. /. . /. /. . /1/. . /. /. . /1/.3
True 3 8/8/2 . /. /. . /. /. 8/8/1.7 . /. /. . /. /. . /. /. . /. /.3 . /. /. . /. /. 
True 4 8/8/2 . /. /. . /. /. . /. /. 8/8/2 . /. /. . /. /. . /. /. . /. /. . /. /. 
True 5 9/9/2 . /. /. . /. /. . /.7 /. . /. /. 9/8.3/2 . /. /. . /. /. . /. /. . /. /. 
True 6 8/8/2 . /. /. . /. /. . /. /. . /.3/. . /. /. 8/7.7/2 . /. /. . /. /. . /. /. 
True 7 7/7/2 . /. /. . /.3/. . /. /. . /. /. . /. /. . /. /. 7/6.7/2 . /. /. . /. /. 
True 8 8/8/2 . /. /. . /. /. . /. /. . /. /. . /. /. . /. /. . /. /. 8/8/2 . /. /. 
True 9 8/8/2 . /. /. . /.3/. . /. /. . /. /. . /. /. . /. /. . /. /. . /. /. 8/7.7/2
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TABLE 4

Table 4. Confusion Matrix for PLS-DA applied to 1.0 Cut-off Filtered Average LIBS 
Data. Shown values are for the calibration / cross validation / and test sets. Each value 
represents the average number of assignments across three replicate analyses, each with a 
unique training set and different calibration set. Values of ‘0’ are replaced in the table with ‘.’ 
for clarity of reading.

N = Pred. 1 Pred. 2 Pred. 3 Pred. 4 Pred. 5 Pred. 6 Pred. 7 Pred. 8 Pred. 9
True 1 8/8/2 8/7/2 . /. /. . /. /. . /.3/. . /. /. . /.7/. . /. /. . /. /. . /. /. 
True 2 8/8/2 . /. /. 8/7/1.7 . /. /. . /. /. . /. /. . /. /. . /. /. . /. /. . /1 /.3
True 3 8/8/2 . /./. . /. /. 8/7.3/2 . /./. . /.7/. . /./. . /. /. . /. /. . /. /. 
True 4 8/8/2 . /1/. . /. /. . /. /. 8/6.3/2 . /. /. . /.7/. . /. /. . /. /. . /. /. 
True 5 9/9/2 . /. /. . /. /. . /.3 /. . /. /. 9/8.7/2 . /. /. . /. /. . /. /. . /. /. 
True 6 8/8/2 . /. /. . /. /. . /. /. . /.3/. . /. /. 8/7.7/2 . /. /. . /. /. . /. /. 
True 7 7/7/2 . /. /. . /. /. . /. /. . /. /. . /. /. . /. /. 7/7/2 . /. /. . /. /. 
True 8 8/8/2 . /. /. . /. /. . /. /. . /. /. . /. /. . /. /. . /.3/. 8/7.7/2 . /. /. 
True 9 8/8/2 . /. /. . /.3/. . /. /. . /. /. . /. /. . /. /. . /. /. . /. /. 8/7.7/2

Page 18 of 23Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



FIGURE 1

Figure 1. LIBS spectra of (A) Raw data, (B) the data after application of a Whittaker filter and the first 
spectral derivative, and (C) fully preprocessed and baseline corrected data. Spectra shown are 5 
select spectra from randomly chosen timbers.
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FIGURE 2

Figure 2. k-Nearest Neighbors plots showing (A) a KNN model of the raw data, (B) a KNN model of the 
preprocessed data with no variable selection, (C) a KNN model of the preprocessed data with a mean 
intensity cutoff greater than 0.5, and (D) a KNN model of the preprocessed data with a mean intensity 
cutoff greater than 1.0.
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FIGURE 3

Figure 3. k-Nearest Neighbor models of the training sets (~8 samples/class) for (A) a mean intensity 
cutoff greater than 0.5 and (B) a mean intensity cutoff greater than 1.0.
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SCHEME 1

All Groups
1, 2, 3, 4, 5, 6, 7, 8, 9

2, 7, 8, 9

82, 7, 9

1

1, 3, 4, 5, 6

2, 7 9

2 7

31, 4, 5, 6

1, 4, 6 5

1, 6 4

6

All Groups
1, 2, 3, 4, 5, 6, 7, 8, 9

2, 7, 8, 9

82, 7, 9

4

1, 3, 4, 5, 6

2, 9 7

2 9

31, 4, 5, 6

1, 4, 6 5

4, 6 1

6

𝐌𝐞𝐚𝐧 > 𝟎.𝟓 𝐌𝐞𝐚𝐧 > 𝟏.𝟎

Level 1

Level 5

Level 4

Level 3

Level 2

1

2

2

2

4

1

1

1

3

2

4

2

4

2

3

2

Scheme 1. Decision tree model for calibration, training, and validation sets at both variable 
selection cutoffs. Circled number indicates number of latent variables used at each branch 
for the PLSDA model.
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Seven�Dalbergia�and�two�non-
Dalbergia�hardwood�species�were�
successfully�differentiated�with�
PLS-DA�and�KNN�chemometric�
models�of�LIBS�spectra.
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