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Hierarchical Self-Assembly of Hard Cube Derivatives
Eric S. Harpera, Brendon Watersb and Sharon C. Glotzera,b,c,d

Hierarchical, self-assembled structures are ordered on multiple scales, and formed by objects comprised of even smaller 
elements.  Such structures are widely reported for nanoparticles, macromolecules, and peptides, and even in entropy-driven 
hard particle assembly hierarchical colloidal crystals have been reported. Here we consider the hierarchical self-assembly of 
a cubic colloidal crystal from congruent hard cube derivatives, and investigate how various ways of slicing and dicing a cube 
can affect the ability of the pieces to entropically re-assemble the initial colloidal crystal formed from perfect cubes. We 
present design rules that support heuristics reported for different systems, and present evidence for a previously unreported 
cubatic phase from 2:1 rectangular prisms.

Introduction
In hard particle self-assembly, particle shape has a profound 
effect on the colloidal crystal phases possible1–5 because shape 
affects the strength and directionality of the entropic bonds 
that emerge upon crowding6–11. A variety of crystal structures 
have been predicted and experimentally realized for entropy-
driven self-assembly1,12–17, including complex structures such as 
quasicrystals18. Upon crowding, emergent, directional entropic 
forces (DEFs) produce local motifs7–10 – arrangements of small 
groups of particles – just as enthalpic forces do. These motifs 
can be either compatible or incompatible with the minimum 
free energy structure, producing a liquid crystal, plastic crystal, 
or crystal in the case of the former, or a glass in the case of the 
latter1,19. 

There are now numerous reported examples of entropy-driven 
self-assembly resulting in a hierarchically ordered colloidal 
crystal. Among the most complex are the dodecagonal 
quasicrystal formed from hard tetrahedra; this structure can be 
decomposed into identical, interlocking motifs of many 
tetrahedra. Even simpler are colloidal crystals where objects of 
low symmetry combine to create an object of higher symmetry 
that serves as the fundamental building unit in the crystal. For 
example, square pyramids derived from cubes1 self-assemble a 
cubic crystal lattice (forming so-called “supercubes”), hard 
hemispherical caps self-assemble into a “double FCC” crystal 
structure20, lock-and-key particles form superlattice 

structures21, and aspect ratio 2:1 rectangular prisms, which pair 
to form a cube, self-assemble a cubic crystal22,23. In fact, the 
phase behaviour of these rectangular prisms is rich, having 
stable reported smectic and columnar intermediate phases23, 
while related rectangular prisms and other “thin” shapes such 
as cut spheres and cylinders24,25 also self-assemble a cubatic 
phase; the existence of the cubatic phase, in which there is long 
range orientational order without any translational order, is 
currently not known for 2:1 aspect ratio rectangular prisms. This 
assembly behaviour is in contrast to the two-dimensional (2D) 
analogue of the rectangular prisms, 2:1 rectangles, which self-
assemble a random domino (parquet) phase23,26–28, or the 
related right-isosceles triangles that do not self-assemble an 
ordered phase9. The final self-assembled phase of the 
rectangles and triangles may be controlled via allophilic 
patterning, using the directional entropic forces arising from 
particle shape upon crowding to direct the self-assembly of the 
desired square tiling. This leads us to the question: what shape 
features permit or inhibit hierarchical, entropy-driven self-
assembly in a hard particle system of hard cube derivatives? 

Here we investigate the self-assembly behaviour of a family of 
congruent hard cube14,29–31 derivatives obtained by 
decomposing a cube into identical pieces (shown in Figure ). 
These include 2:1 rectangular prisms (RP) and right-isosceles 
triangular prisms (TP) (both 3D analogues of 2D polygons 
considered previously9); rhomb-faced prisms (RFP) and 
hexagonal-faced prisms (HFP), created by cutting a cube in two 
through its centre, forming distinct cut-faces; and two types of 
supercube shapes, “S3” and the square pyramid1 “S6”, which 
require three and six pieces, respectively, to form a cube. We 
report the self-assembly behaviour of each shape obtained 
from Hard Particle Monte Carlo (HPMC32) simulations, including 
evidence for a previously unreported cubatic phase for 2:1 
rectangular prisms. We consider the geometric motifs formed 
by cubic assemblies of particles in the high-density fluid phase 
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prior to crystallization and demonstrate what makes a shape 
effective at hierarchically assembling a cubic crystal.

Methods
We simulated systems of N=1000 cubes 
(NRP=NTP=NRFP=NHFP=2000; NS3=3000; NS6=6000) in the NPT 
thermodynamic ensemble with the HOOMD-Blue33–36 
simulation software, utilizing the HPMC32 plugin for hard 
particle MC simulation. These system sizes were chosen 
because we have learned in practice that systems on that scale 
are large enough to avoid finite size effects and small enough to 
observe bulk self-assembly behaviour over reasonable waiting 
times, except in extraordinary cases where the unit cells are 
very large. Systems were initialized and equilibrated in the fluid 
phase at low packing density , and then equilibrated and 𝜙 = 0.2
crystallized at the target pressure  where 𝑃 ∗ = 𝛽𝑃𝜎3 𝜎3 = 𝑉cube

. We allowed systems to equilibrate (as determined by = 1.0
volume oscillations) before computing any quantities. To allow 

these systems sufficient time to self-assemble, they were run 
for at least 3e8 MC sweeps. The self-assembled structure was 
identified by calculating diffraction patterns1, bond-order 
diagrams1, and the cubatic order parameter37, as well as by 
visual inspection.

To analyse particle pair motifs, the local geometric 
configuration of a particle pair must be computed. The position 
and orientation of a particle is given by a vector and a 
quaternion, . We can express the vector connecting two (𝑣𝑖, 𝑞𝑖)
particles  in a local coordinate system of a particle by using (𝑖, 𝑗)
the inverse quaternion operation: 𝑟𝑖𝑗 = 𝑟𝑗 ― 𝑟𝑖, 𝑟𝑖𝑗, local = 𝑞 ∗

𝑖 ∙ 𝑟𝑖𝑗

. We can also express the orientation of the paired particle  ∙ 𝑞𝑖 𝑗
relative to particle  using the quaternion operation with a unit 𝑖
vector . By computing the vector  𝑢𝑖𝑗 = 𝑞 ∗

𝑖 ∙ 𝑞𝑗 ∙ (0,0,1) ∙ 𝑞 ∗
𝑗 ∙ 𝑞𝑖

pair ,  for a pair of particles, we obtain four unit vectors 𝑟𝑖𝑗 𝑢𝑖𝑗

that may be combined to analyze preferred geometric motifs 
present in the system: . Combined with the (𝑟𝑖𝑗, 𝑢𝑖𝑗,𝑟𝑗𝑖, 𝑢𝑗𝑖)
length of the interparticle vector, , we obtain a vector |𝑟𝑖𝑗, local|
in 13-dimensional space.

Although each of these vectors may be visualized individually, 
visualizing multiple vectors at a time proves problematic as we 
cannot natively visualize nor intuitively understand  > 3
dimensions. Instead, we employ a dimensionality-reduction 
technique known as t-Stochastic Neighbour Embedding (t-
SNE)38–40. This technique embeds a higher-dimensional 
distribution in a lower dimension, in this case reducing 13 
dimensions to 2 (see Supplemental Information t-Stochastic 
Neighborhood Embedding, Figure 1 for more information). t-
SNE accomplishes this by keeping points that are close in the 

higher dimensional space also close in the reduced dimensional 
space. We performed t-SNE analysis on a set of 8000 randomly 
sampled pair geometry vectors from 10 independent simulation 
trajectory frames for each cube decomposition at the highest 
observed equilibrium fluid pressure (that is, just below the 
crystallization pressure).
We then clustered similar points in this lower dimensional space 
via Gaussian mixture methods40–42, allowing us to identify pair 
motifs preferred by the system. This method provides an 
alternative to both the potential of mean force and torque7,8,10 
and explicit geometric definitions of pairing9 to identify 
particular local motifs present in the dense fluid phase. We then 
categorized these motifs based on their contribution to the final 
ordering of the system: cut-face pairs (faces that form from the 
correctly cut pair), square-face pairs (faces that form from the 
original square faces of the cube), compatible motifs (motifs 
that do not have congruent faces pairing, but nonetheless 
contribute to the final crystal structure, and are thus “native” 

RP
a

TP

b

RFP
c

HFP

d

S3
e

S6

f

Figure 1 Illustration of shapes studied in this paper: a rectangular prisms (RP); b right-
isosceles triangular prisms (TP); c rhomb-faced polyhedra (RFP); d hexagonal-faced 
polyhedra (HFP); e 3 piece supercubes (S3); and f 6 piece supercubes (S6). The cube 
formed by the assembled shapes is rendered with one (or more) of the pieces 
transparent to better show the faces that touch in the assembled cube. These 
decompositions are chosen as they yield congruent shapes (each shape arising from 
decomposing the cube is the same). RP and S6 have been previously studied.

Figure 2 Cubatic order parameter,  vs. pressure  (top panel), and the equation of 𝐾𝛺 𝑃 ∗

state (bottom panel) for 2:1 rectangular prisms, showing the existence of a previously 
unreported cubatic phase, evidenced by the simultaneous increase in both  and  at 𝐾𝛺 𝜙

. The slight increase in  with an increase in  at  shows the 𝑃 ∗ ≈ 13.5 𝐾𝛺 𝜙 𝑃 ∗ ≈ 13.8

transition from the cubatic phase to a smectic phase. Insets highlight the fluid-cubatic-
smectic phase transition. See Figure  for images of the cubatic phase.
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motifs), and competing motifs (motifs that are not found in the 
final crystal and thus compete with the desired self-assembly 
(non-native motifs)). This analysis provides insight into the self-
assembly pathways for the different shapes. By analysing these 
motifs in the context of the final self-assembled crystal, we can 
understand the self-assembly behaviour of these systems in 
conjunction with known hierarchical design rules43.

Results and Discussion
The pressure dependence of the cubatic order parameter  𝐾𝛺

and the equation of state for RP is shown in Figure . We observe 
a transition to an intermediate phase between the fluid phase 

 and a previously reported smectic phase (𝑃 ∗ < 13.5)
. We identify this intermediate phase as a cubatic (𝑃 ∗ < 13.8)

phase, evidenced by the increase in  in this region of the 𝐾𝛺

equation of state. The difference in the cubatic and smectic 
phases is shown in Figure , where the peaks in the bond-order 
diagram (Figure b) show local cubatic ordering and the 
diffraction pattern (Figure c) shows no long-range translational 
ordering for the cubatic phase, while these quantities in the 
smectic phase (Figure e,f) show clear development of layers. 
This quantities demonstrate evidence for a previously 
unreported cubatic phase for 2:1 aspect ratio rectangular 
prisms; it was previously reported to not assemble such a 
phase23. At higher pressures, we observe a cubic crystal (Figure 
g-i).

The square-pyramid supercube (S6) was previously reported to 
self-assemble into a cubic crystal1. We also observe this self-
assembly (Figure ); however, the process is prone to multiple 
nucleation sites, making the self-assembly of a single crystal 
difficult. To understand why this is the case, we employ the t-
SNE analysis of the pair geometry vectors, shown in Figure . We 
observe four major clusters of pair configurations, belonging to 
three classes of motifs: triangle-triangle, square-square, and 
square triangle.

Analyzing the population fraction of the S6 motifs (Figure ), we 
find the cut-face motif (Figure , triangle-triangle green motif) 

, making it the predominant motif. The frequency of this ≈ 49%
motif is surprising to us because we would expect that the 
smallest face of the S6 shape (the triangular face) to be 
associated with the lowest DEFs and thus have a lower 
frequency of self-assembly in the high-density fluid phase; in 
contrast, the larger square faces that we would expect to be 
associated with higher DEFs align only  of the time. We 21%
conclude the high assembly propensity is a result of the larger 
number of ways for triangular faces to pair, rather than simply 
the size of the faces. The high population fraction of motifs 
associated with the cubic phase also explains the observation of 
multiple crystal grains originating from multiple nucleation sites 
in the S6 system (note the two cubic crystal grains present in 
the assembly shown in Figure ).

We performed the same t-SNE dimensionality reduction on the 
remaining shapes: HFP, RFP, TP, and the S3 supercube (see 

Supplemental Figures 2-4 for the t-SNE figures). Of these 

shapes, only the S3 shape fails to self-assemble an ordered 
phase (see Figure d). Considering the pair motifs observed for 
the S3 shape (Figure ), we see that more than half of the pairs 
are misaligned and incompatible with the target cubic crystal. 
This incompatibility makes any self-assembly prohibitively 
difficult19,43.

Figure 3 Comparison of the cubatic a-c, smectic  d-f, and (𝑃 ∗ = 13.65) (𝑃 ∗ = 14.0)
cubic  phases. The bond-order diagrams (b, e, h) show order with the six (𝑃 ∗ = 21.0)
sides of a cube, with additional equatorial ordering in the smectic phase (e). Note the 
disappearance of the equatorial band from the smectic to cubic phase. No long-range 
translational order is present in the cubatic phase as measured by the diffraction 
pattern (c), while the layering is clearly present in the smectic phase (f), and the cubic 
order is present in the cubic phase (i).
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The polyhedral shapes HFP and RFP both successfully self-
assemble the cubic crystal (Figure a,b). Like S6, HFP forms only 
“native” motifs that directly contribute to the cubic crystal 
(Figure a) and does not form other motifs. This behaviour is a 
result of the symmetry of the HFP: the cut-face has three 
equivalent alignments, and each of the large faces that result 
from the original square faces on the cube are congruent, 
thereby exhibiting no alignment preference. In contrast, RFP 
forms not only native motifs but also other contributing motifs 
(Figure b), due to its incongruent faces: the bottom square face 
is different from the other large faces that result from the 
original square face, and those two faces are not congruent. 
Additionally, the cut-face to cut-face motif has only one correct 
alignment; while the rhomb itself has 2-fold symmetry, the pair 
assembly is only 1-fold symmetric. This results in the smaller 
population of the cut-face motif and the larger population of 
misalignment in RFP relative to HFP. However, because the final 
crystal structure is compatible with the contributing motifs, 
both HFP and RFP successfully self-assemble the cubic crystal 
structure.

The right-isosceles triangular prism also manages to self-
assemble the cubic crystal phase (Figure c). From the assembly 
itself, as well as from the bond-order diagram and diffraction 
pattern, the quality of the assembly for the TP is not as good as 
for the HFP and RFP. In contrast to the 2D right-isosceles 
triangle9, the additional dimension adds the additional 
contributing motifs that drive the system to an ordered 
assembly; the total population of motifs leading to or 
compatible with the final assembly is  (Figure ).𝑓 ≈ 0.6

Quantification of these motifs is based on previous investigation 
into assembly pathway engineering43. Ref. 43 suggested that 
when local motifs form and compete with the target structure, 
the assembly of the target structure will be hindered or even 
prevented. Our observations reflect and reinforce this 
conclusion, as the only shape that did not self-assemble the 
target crystal (S3) has a fluid phase dominated by competing 
motifs19 (see Figure ). These observations and analysis may be 
summarized in the following design rules:

1. Shapes should maximize the number of correct ways to 
assemble compatible motifs, and minimize the number of 
ways to incorrectly assemble incompatible motifs.

2. Shapes should possess “selectivity”; individual particle 
faces should be different enough to prevent local motif 
“confusion.”

Both the HFP and S6 shapes demonstrate the synergy of these 
rules. Both shapes avoid forming compatible motifs – motifs 
that result from non-matching faces but are allowed in the final 

Figure 6 Comparison of the fraction of pair motifs found in the dense fluid phase for S6, 
HFP, RFP, TP, and S3 shapes. Note that S6 and HFP do not form other contributing 
motifs, and that the S3 shape is not observed to self-assemble the cubic crystal lattice.

Figure 4 View of the self-assembled supercube structure of the S6 shape at a pressure 
of , showing two different crystal grains (red and off-white). a shows the 𝑃 ∗ = 53.0

actual particles, while b shows the particle centre-of-mass shifted to the tip, showing 
the cubic crystalline structure.

Figure 5 t-SNE analysis and classification of the S6 shape at . This shape 𝑃 ∗ = 50.0

exhibits only three of the four possible geometric motifs: triangle-triangle (blue), 
square-square (red), and triangle-square (green); this shape does not form other 
motifs which contribute to the simple cubic crystal.
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crystal. In contrast, the compatible motifs arising in both RFP 
and TP shapes allow for multiple intermediate motifs to 
assemble. The S3 shape, and its failure to self-assemble, 
exemplifies these design rules. While faces resulting from the 
original square faces are congruent, allowing for multiple 
chances for correct assembly, these faces are similar enough to 
the cut triangle faces to introduce motif confusion, introducing 
competition between compatible and incompatible motifs. This 
competition results in a decreased ability to self-assemble the 
final correct structure. Additionally, the cut triangle faces are 
not congruent, but are similar in shape, again introducing 
confusion44 and ultimately competition. The interplay of these 
design rules will also impact hierarchical self-assembly in 
polydisperse systems45,46, allowing the system to self-assemble 
the target phase as long as the polydispersity does not 
introduce local motifs44 that compete with the original 
structure.

These design rules agree with the results of 2D self-assembly of 
“jig-saw” rectangles and triangles9. The saw-tooth patterns 
introduced on matching shape edges promoted the assembly of 
compatible motifs and inhibited the assembly of incompatible 
motifs, provided the saw-tooth pattern had a sufficiently large 
wavelength relative to the edge length. This so-called allophilic 
patterning was capable of overcoming the DEFs that prevent 
the entropy-driven self-assembly of right-isosceles triangles, 
successfully self-assembling the square lattice. The use of 
allophilic patterning should be capable of altering the DEFs 
present in the S3 system, and should be considered for further 
investigation.

Conclusions
We showed that different “cube slices” successfully assemble 
the parent cube, and self-assemble a hierarchical simple cubic 
crystal in most cases. We reported evidence for a cubatic phase 
in systems of 2:1 aspect ratio rectangular prisms, and 
reproduced the self-assembly of hard square pyramids into a 
so-called “supercube” cubic crystal structure. In our 
investigation of all six cube-derivative shapes, we quantified the 
observed pair motifs and related them to the geometric 
features of the self-assembled crystal. By categorizing these 
motifs into classes compatible with or competing with 
successful self-assembly, we provided insight into desirable and 
undesirable shape features to be considered in building block 
design and selection. Even in the presence of intrinsic attractive 
interactions, entropic interactions arising from particle shape 
can contribute to – or interfere with – self-assembly, and should 
be considered in building block design and selection.

This investigation did not observe local motifs that could lead to 
the self-assembly of multiple possible crystal structures, for 
example, square pyramids that may either self-assemble into 
octahedra or rectangular pyramids. Future research into 
assembly engineering of such “pluripotent” particles should be 
considered. Use of the t-SNE dimensionality reduction 
technique facilitated investigation of the pair motifs. Previous 
studies utilized the potential of mean force and torque 
(PMFT)8,10 to understand the preferred pair motifs and quantify 
the entropic driving force underlying their formation. In the 
systems we studied, a six-dimensional PMFT would be required 
to properly account for the different pair motifs. Our current 
software47,48 does not yet perform this complex calculation, 
requiring additional development of these techniques. The 
resulting PMFT would provide additional insight into the 
effective driving force to form these motifs, as well as the 
topology of the free-energy landscape, allowing shapes more 
effective at hierarchical self-assembly to be designed. 
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