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Mechanical properties of the substrate play a vital role in cell motility. In particular, cells have
been shown to migrate along aligned fibers in the substrate (contact guidance) and up stiffness
gradients (durotaxis). Here we present a simple mechanical model for cell migration coupled
to substrate properties, by placing a simulated cell on a lattice mimicking biopolymer gels or
hydrogels. In our model cells attach to the substrate via focal adhesions (FAs). As the cells
contract, forces are generated at the FAs, determining their maturation and detachment. At the
same time, the cell also allowed to move and rotate to maintain force and torque balance. Our
model, in which the cells only have access to information regarding forces acting at the FAs,
without a prior knowledge of the substrate stiffness or geometry, is able to reproduce both contact
guidance and durotaxis.

1 Introduction
Motile eukaryotic cells can sense and react to the mechanical and
structural properties of the substrate on which they move. An
example of this is durotaxis: the tendency of cells to seek stiff tis-
sue1–5. On fibrous substrates cells can sense another mechanical
property, the alignment of the fibers, and they often follow the
alignment. This is known as contact guidance6,7.

It is generally thought that mechanical sensing occurs via the
focal adhesions (FA) which attach the cell to the substrate. A di-
rect bit of evidence for such sensing is the well-tested fact that
FAs on stiff substrates are more likely to mature than on flexible
ones3,8. Thus there are more FAs in stiffer regions. Cells almost
certainly use this information to control their motility. In this
paper we show that both contact guidance and durotaxis follow
naturally from a model of cell motility that properly accounts for
cell mechanics and incorporates the stiffness dependence of FA
maturation to provide biological feedback. Our model applies to
cell motion in two dimensions on various substrates but in princi-
ple could be extended to the case of 3d motion through a fibrous
matrix.

We use two different models for the substrate on which the
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cells move. The simplest represents the hydrogels which are
often used in experiment. For this case we construct a simple
two-dimensional triangular lattice of links with bond-stretching
and bond bending contributions to the energy. However, in real
biological situations, cells move on fibrous biological gels such
as collagen-I which are inhomogeneous and elastically nonlin-
ear9,10. For this case we use a network model that shows fea-
tures such as strain-induced alignment and strain-stiffening11–14.
This network model uses a generalization of the triangular lattice
constructed by removing a fraction of the bonds15–17.

Our model for the mechanics of cell motion is based on a gen-
eralization of the work of Buenemann et al.18 who considered
forces and force balance in the motility cycle19 of Dictyostelium
discoideum. These authors assumed constant contraction rate
during the contraction phase of the cycle and that the cell is con-
nected to the substrate by adhesive bridges (intended to repre-
sent, for example, integrin) which are modeled as elastic springs.
The bridges are located at the FAs. The formation of the attach-
ments is homogeneous but detachment occurs at a spatially vary-
ing, force-dependent rate. Cell motion occurs at the point of the
motility cycle when bridges in the back of the cell detach. Note
that in this, as in all cell-motility problems, the motion is quasi-
static: all forces on the cell balance, except for a brief interval
after detachment, which causes the cell to change its center of
mass and orientation so as to re-balance the force, as we discuss
in detail below. Thus, in our model we assume that both the lat-
tice and the cell are almost always in mechanical equilibrium. A
strong prediction of this model is that the cell speed is largely
independent of the value of the adhesive forces, which has been
validated by experiment20.

The model of Buenemann, et al.18 is essentially one-
dimensional: it does not consider the reorientation of the cell
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during the migration process. However, in contact guidance and
durotaxis cells are observed to turn in response to mechanical
cues. To account for this we consider not only forces but also
torques. In the course of the cell motion not only must forces
(nearly) balance, but also torques. Also the substrate is taken to
be homogeneous with a constant stiffness. In the present paper
we generalize to the cases of alignment and spatial stiffness vari-
ation, and incorporate stiffness-dependent FA maturation.

Very little modeling effort has addressed contact guidance.
Durotaxis, on the other hand has a substantial modeling litera-
ture. In one example of a durotaxis model21,22 there is no mech-
anism for turning – torques are never considered. Furthermore,
the elasticity of the substrate enters only as an effective “fric-
tion" which is intended to represent the breaking and reforming
of bonds between the FAs and the substrate. Note that there is no
way to account for alignment or non-linear elasticity in this for-
mulation. Another treatment23 evaluates the chemical and elastic
free energy of a cell and linear substrate including recruitment of
myosin motors. The assumed dynamics is not a motility cycle but
rather over-damped motion down the gradient of the free energy.
These authors assumed feedback of a different form from ours: it
is in the stress dependence of the number of myosin motors which
are active. This is a considerably more coarse-grained point of
view than we take here. A treatment that shares more similarity
with ours is Kim et al.24. These authors explore in detail how
a filopod from a mesenchymal cell explores a fibrous mechani-
cal environment and determines the changes in the polarization
of the cell. The dynamics is encoded in the assumption that the
cell follows the polarization. Thus this is a model for polarization
rather than motility, and is complementary to what we present
here.

2 Motility Model

In the model of Beunemann et al.18, cells undergo a cycle of con-
traction and oriented protrusion. These processes create contin-
uous transport of cell material to the front of the cell during the
motility cycle. This idea is supported by the observation that cell
speed is nearly a constant over the entire cycle and the motion of
the cell outline appears to be that of continuous sliding25.

In the model the cell body is assumed to contract uniformly
with a constant rate during the contraction phase, whose duration
is τ. Cell contraction is not hindered by viscous stress from the
surrounding medium because external fluid drag is much, much
smaller than the observed forces exerted on the substrate26.
The adhesive bridges that connect the cell to the substrate form
with a constant on-rate k+ and break with a force- and position-
dependent off-rate k−. Their spring constants are denoted by ks.

2.1 Two-dimensional Mechanical Model

In this work we take the assumptions above and generalize to
two dimensions by also considering torque balance. The adhesion
area of a cell is modeled as an ellipse with randomly distributed
sites representing FAs. The position of the center of the ellipse
is called pppm(t) = (xm(t),ym(t)) and the positions of the FAs with
respect to the center is pppi(t) = (xi(t),yi(t)). The contraction is

A B
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Fig. 1 Representation of cell-substrate adhesion during the contraction
cycle. (a) The start of the contraction cycle. FAs are blue circles. The FAs
form randomly at network nodes. (The network structure is not explicitly
shown here.) (b) During the motility cycle, the cell contracts uniformly at a
constant speed. The position of the attached network nodes is shown as
red circles. The current position of FAs are blue circles. The contraction
causes deformation of the network and rotation and shift of the cell. (c)
The end of the contraction cycle: remaining FAs are shown in green.
At the start of a new motility cycle, the cell outline is shifted such that
its back coincides with last remaining adhesion site as indicated by the
dashed ellipse.

represented by λ = (A− Aτ )/A where A, Aτ are the semimajor
axes of the ellipse at the start and the end of the contraction.
The contraction cycle is divided into 30 equal time steps dt (We
have tried 50-time steps and the results are essentially the same).
We assume the contraction only occurs along the long axis. The
orientation of the cell at time t is called θ(t). Then, from simple
geometry, the contraction dynamics of the node i is:

xi(t +dt) = xi(t)−λ (dt/τ)xi(t)cos2 θ(t)

−λ (dt/τ)yi(t)cosθ(t)sinθ(t)

yi(t +dt) = yi(t)−λ (dt/τ)yi(t)sin2
θ(t)

−λ (dt/τ)xi(t)cosθ(t)sinθ(t). (1)

At the beginning of the contraction phase, FAs are formed at each
network node within the adhesion area with probability k+. The
force on a single FA is given by:

FFF i(t) =−ks(RRRi(t)− R̂RRi) (2)

Here, RRRi = pppi + pppm is the position of FAi and R̂RRi the position of the
network node. The total energy of the springs at the FAs at time
t +dt is:

Es =
ks

2 ∑
i
[Rdθ pppi(t +dt)+ pppm(t +dt)− R̂RRi)]

2 (3)

Here Rdθ is the 2D rotation matrix through dθ . The derivative of
Es with respect to θ is the net torque on the cell, and the deriva-
tive with respect to pppm(t +dt) is the net force on the cell. The cell
center pppm and cell orientation θ are allowed to ensure zero net
force and torque. At the same time, the network nodes R̂RRi are also
allowed to move, minimizing the total energy of the cell and the
network elasticity, as we discuss below.
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Once the cell contracts, the traction forces on FAs will build
up and a number of FAs will detach. In order to account for cell
polarization, we need the attachments to be weaker (i.e. have a
larger off-rate) at the back of the cell than in front. We encode
this as follows:

k(0)− (x) = k−,b− [k−,b− k−, f ]
x− xb

x f − xb
. (4)

Here x f/b are the front/back of the cell at the start of the contrac-
tion cycle and k−, f/b are parameters with the constraint kb > k f .

The force dependence of the off-rate is modeled by Bell’s law
where the off-rate exponentially grows with the stretching18,27:

k−(RRRi(t)) = k(0)− (x0
i )exp

(
α
|RRRi(t)− R̂RRi|

R

)
(5)

Here x0
i is the initial position of the FA along the major axes of the

ellipse. The dimensionless parameter α measures the strength of
the bond: see18. At the start of a new motility cycle, the cell
outline is shifted such that its back coincides with last remaining
adhesion site.

The bond attachment and detachment is treated with the ki-
netic Monte Carlo method. That is, after each time step bonds
are broken and reformed with probability k±dt.

This mechanical model is a very simplified version of real cell
dynamics. The rigid rotation step, in particular, represents in an
average way the rather complex process of protrusion of compet-
ing filopods. Our representation of a cell as an ellipse appears to
be quite far from some cell types, e.g. fibroblasts, though it seems
more plausible for more compact cell types such as glioma28. Pre-
sumably our approach will be best for such compact cells but will
give us, we feel, qualitative insight for all cells. What this method
cannot do is account in detail for the multiple, competing protru-
sions which are so prominent in fibroblasts. What we gain from
this simplification is tractability of the model.

The network model that we use for biopolymer gels is known
to reproduce many important features of fibrous matrices such as
strain-induced alignment and strain-stiffening11–14. The network
is built on a diluted triangular lattice as shown in Figure (2). Each
bond in the lattice is present with a probability p. The probability
p satisfies pZ = 〈z〉, where Z is the coordination number of the
undiluted lattice (Z = 6 for triangular lattice), and z is the aver-
age connectivity of fibrous network. In experiment 〈z〉 ≈ 3.429.
Therefore we study p in the range [0.5,0.65]. We make contact
with the mechanics of physical biopolymer gels by identifying the
lattice sites as cross-linking points and bonds as fibrils between
crosslinks. If bonds continue straight across a lattice site, they
represent a continuing fiber. For simpler substrates such as hy-
drogels we simply put p = 1.

The elastic energy of the network is:

Enet = ∑
<α,β>

1
2

k(∆lαβ )
2 + ∑

<α,β ,γ>

1
2

κ(θαβγ )
2 (6)

The sum < α,β > runs over bonds and < α,β ,γ > runs over pairs
of bonds that are co-linear and share lattice site j,and thus belong
to the same fiber.

Fig. 2 The network model. The red circles are network nodes (crosslink-
ing points) and the blue bonds are the fibrils between crosslinks. In the
beginning of the contraction cycle, FAs (blue circles) have a probability
to form on the top of each nodes within the adhesion area (dashed el-
lipse). Periodic boundary condition is applied to the network model in all
the simulations

The length change of the bond is ∆lαβ , i.e.,

∆lαβ = |R̂RRα (t)− R̂RRβ (t)|− l0

where l0 is the rest length of the bond. The angle θαβγ is the
angle between the adjacent bonds. The spring constant of the
bonds is k and κ is the bending stiffness of the fibers. We always
take κ � kl2

0 for fibrous gels, in agreement with experiment. We
use a 60x60 network in the results below. We have tested our
results on networks of size up to 128 by 128 and obtained good
consistency.

Cell contraction results in the displacement of the FAs, which
leads to a nonzero net force and torque on the cell. To restore
mechanical equilibrium we minimize the total energy of the sys-
tem Etotal = Es +Enet with respect to the position and orientation
of the cell. That is, the cell (ellipse) is allowed to shift and rotate,
and the network is allowed to deform.

2.2 Stiffness dependent maturation of focal adhesions
It is natural to extend the model of Buenemann et al.18 by simply
adding rotations. However, this will not do: it turns out that if
this is all we do our simulated cells often migrate down the stiff-
ness gradient. This is never observed and would be inconsistent
with the idea that durotaxis has an important biological function5

and hence needs to be robust in many biological environments.
Clearly, we are missing a biological process.

We must incorporate the property of FAs mentioned above,
namely that they are more likely to mature on stiff substrates3,8.
For example, a recent experiment8 shows that the local matrix
microenvironment regulates the adhesion lifetime. It is positively
correlated with the stiffness of the extra-cellular matrix. By in-
serting this effect into our model we make it robust for all the
substrates we have examined.

In our study, the cell probes the local stiffness by contracting
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A B

Fig. 3 Fiber alignment for contact guidance simulations. (a) The state of
the network, which is isotropic before deformation. (b) Fibers are aligned
along the stretching direction by external deformation. Here p = 0.60,
κ/k = 0.001, stretching strain γ = 0.40.

and the maturation of FAs depends on the traction forces between
FAs and the substrate. Our model with FA maturation does show
positive durotaxis as observed in experiments. It also shows that
the orientation of the cell is along fiber alignments, which is con-
sistent with experimental observations6,7 of contact guidance.

In detail, instead of assuming all FAs survive after formation,
we assume that nascent FAs are formed at each network node
within the adhesion area with the probability k+. At the end of
the first time step dt, we determine if the FA will mature or perish
based on the loading force on the FA. The maturation probability
is taken to be:

pm = 1− km exp

(
−|R

RRi(t)− R̂RR
0
i |

fthreshold

)
dt. (7)

Where fthreshold is maturation force threshold. the For the rest of
the contraction phase, mature FAs can detach from substrate at
the end of each time increment, as we do in the basic model.

2.3 Fiber alignment and stiffness gradients

In order to study contact guidance we use the fact that gels have
strain-induced alignment11. In the simulations we introduce fiber
alignment by simply stretching the network: Figure (3).

For durotaxis we first simulate the case where cells are placed
on top of a simple substrate such as hydrogel as in many in vitro
experiments. We represent the hydrogel as a network with p = 1
and introduce a stiffness gradient by varying the spring constant
k in space. To create a sharp jump in stiffness gradient, we take
the upper half of the network to have kupper and the lower half of
the network klower: Figure (4a).

In contrast, for a biopolymer gel such as collagen, cells are
placed on the top of the diluted network. We introduce a stiff-
ness gradient by keeping k constant but spatially varying p – in
effect we are modeling density variations in the gel. We create
the sharp jump in by putting p = pupper in the upper plower in the
lower part: Figure (4b).

A B

Fig. 4 Setting a stiffness gradient in the network model for a simulation of
durotaxis. (a) Hydrogel case (p=1). kupper = 1.00 (blue) and klower = 0.001
(green). (b) Fibrous network case. pupper = 0.65 and plower = 0.50 The
dashed line shows the location of the interface.

A B

Fig. 5 Nematic order parameter N for cells and fibers. p = 0.60 and (a)
κ/k = 0.001 (b) κ/k = 1. Ncell is calculated over 500 cell samples, and
N f iber is calculated over all fibers in each sample.

3 Results
3.1 Contact guidance

We first consider contact guidance, namely the tendency of cells
to follow fiber orientation6,7. We stretch the network in the ver-
tical direction with strain ε to induce fiber alignment. Then a cell
is put on the substrate with a uniformly distributed orientation
θ(t = 0). The simulation lasts for 50 cell cycles and the orien-
tation of the cell is recorded at the end of the simulation. The
simulation is repeated 500 times. To quantify the alignment, we
calculate the nematic order parameter N for both cells and fibers
in each samples. Ncell/ f iber = 〈cos(2θ)〉, where θ is the direction of
the cell/fiber orientation measured from the stretching direction.
Figure 5a shows that both fiber alignment N f iber and cell orien-
tation Ncell are positively correlated with the stretching strain ε,
confirming both strain-induced alignment and contact guidance.

Note that external strain induces both fiber alignment and stiff-
ness anisotropy. To figure out which is important in contact guid-
ance in our model, we test a slightly different case where the
bending stiffness κ = 1 (Figure 5b). Interestingly, the strain-
induced fiber alignment stays largely the same in this case, while
Ncell is strongly suppressed. This observation suggests that the
network geometry alone is not enough for contact guidance, be-
cause in both κ = 1 and κ = 0.001 cases we observe comparable
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Fig. 6 (a)-(c) cell orientation distribution after 50 cell cycles. The blue line represents the results of Fokker-Planck equation with k′c = 11 (See
Supplementary Materials). Stretching strain (a) ε = 2% (b) ε = 6% (c) ε = 10%. (d) nematic order of cell orientation versus nematic order of fiber
alignment. The dashed line is a linear function with a slope of 5.1.

fiber alignment strength, but the cell orientation is quite different.
A plausible explanation here is that the cell senses the stiffness of
its environment by deforming it. When the network is too stiff to
deform, the cell loses its ability to sense stiffness anisotropy, re-
sulting in the weakening of the contact guidance. In cases where
the geometry is very anisotropic, it is possible that contact guid-
ance could occur from geometry alone30. Further, a more realistic
treatment of filopods as in24 might lead to additional geometry
dependence; see the Discussion below.

The distribution of the cell orientation (Figure 6(a)-(c)) shows
two peaks in the probability density function, illustrating cells’
preference for moving along the fiber alignment direction. The x-
axis is set to be θ = 0. The two peaks occur at θ =±π/2 i.e along
the y- axis. The network is stretched along y-axis. Thus most
cells are moving along the direction along which the network is
stretched.

Such a distribution can also be understood with a Fokker-
Planck equation (See Supplementary Materials). The dashed
lines in Figure 6(a)-(c) are fitting results from the Fokker-Planck
approach. This alternative Fokker-Planck treatment also gives
consistent value of the initial slope of the curve Ncell vs. N f iber

to the simulations. We leave the discussion of Fokker-Planck
approach to the Supplementary Material, because this approach
does not explicitly consider the mechanical aspects of cell migra-
tion, which is the focus of this paper.

3.2 Durotaxis

We now turn to simulations which demonstrate durotaxis. We
first test the hydrogel case (p = 1) where a sharp jump in stiffness
is created by varying the spring constant k as in Figure (4). We

start the cell on the interface with orientation parallel to the in-
terface (positive x-axis direction). The simulation lasts for 15 cell
cycles. At the end of the simulation, we record the location and
the orientation of the cell.

We find that in the basic model (without FA maturation) the cell
will move (albeit slightly) towards decreasing stiffness, which is
the opposite of durotaxis (see Figure 7(a)). This is easy to under-
stand: suppose a cell has four FAs at top left, top right, bottom left
and bottom right respectively. The FAs feel traction forces from
the network due to cell contraction, and the cell is in torque bal-
ance. At a certain point, the top left FA will break first, since the
cell has a larger detachment rate at the rear and the stiff region
causes a stronger stretching of the FAs. This breaking event will
further causes torque imbalance. The cell needs to rotate clock-
wise to reach new torque balance (Figure 7(b)). FA maturation
resolves this problem since more FAs mature in the stiff region.
and the cell with can correctly sense and move towards the stiffer
region (Figure 7(c)). In the following, we will use the full model
with FA maturation unless otherwise stated (FA maturation does
not affect contact guidance. The contact guidance results shown
above is from the full model. But we observe similar results from
the basic model).

Next we test the biopolymer network case. Figure (8) is an
example of a cell (with FA maturation) moving on a substrate
with a spatially varying stiffness obtained by varying p. Initially,
the cell center is on the interface (Figure 8a). After two cell cycles,
the cell moves rightwards but does not steer to the stiff region yet
(Figure 8b). After four cell cycles, the cell reorients towards the
stiff region (Figure 8c).

In Figure 9 we repeat the simulation 500 times and measure
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Fig. 7 Stiffness gradient by varying k. The average y coordinate as a function of time (a) The cell model without FA maturation shows negative
durotaxis. (c) With FA maturation the cell moves towards the stiff (top) region. (b) Cell orientation change in the model without FA maturation.

A B C

Fig. 8 An example of a cell (with FA maturation) migrating on a substrate with a spatially varying stiffness. (a) initial state; (b): third; (c); fifth cell cycle.
The red dots represent focal adhesions. Dashed line shows the interface between the stiff substrate (top) and soft substrate (bottom). pupper = 0.65,
plower = 0.50, κ/k = 0.001. Arrows indicate the orientation of the cell. Note that in this example the cell is circular (radius equals 4 lattice spacing). The
actual shape of the network is the same as in Figure 4. The right side of the network is pieced together with left side in the figures above, since the
periodic boundary condition is applied.
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the average coordinate of the cell, 〈y〉, and the distribution of cell
orientations at the end of the simulation. It is clear that 〈y〉 and
〈θ〉 is positively correlated with the stiffness gradient. The cell’s
ability is highly sensitive to stiffness gradients. For example, for
pupper = 0.60 and plower = 0.55, the geometry of the two sides of
the network looks essentially the same (see Supplementary Ma-
terials). Nevertheless, the cell shows a strong preference to move
up (Figure 9e). Since we use a large number of FAs the model
integrates the stiffness information over the whole cell adhesion
area and averages out the randomness. As a result, the cell shows
a consistent tendency to move towards the stiff region.

One problem of varying bond occupation probability p to cre-
ate a stiffness gradient is that the shear modulus dependence on
p refers to a macroscopic phenomenon: at small length scales,
a small difference in G is often overwhelmed by disorder. In or-
der to treat small G differences as observed in experiment (such
as two-fold over the size of the cell18), we test the case where
the stiffness gradient is created by varying spring constant k of
bonds (Figure 10 (a)). To mimic the stiffness gradient in experi-
ments, the spring constant of the softer region is set to be 50% of
the stiffer region. We set the initial orientation of cells to be the
positive y direction. When cells move on the homogeneous sub-
strates, the average velocity of cells in the y direction is roughly
a constant, as the slope of the average y coordinate vs time is a
constant (black curve in Figure 10 (b)). When cells start on stiffer
region and move towards the softer region, the average velocity
of cells in the y direction quickly slows down as cells approaches
the interface, and most cells make sharp turns to avoid entering
the softer region (red curve in Figure 10 (b)). Interestingly, if
cells start on the softer region and move towards the stiffer re-
gion, the majority of cells fail to move out of the softer region
and get trapped locally (blue curve in Figure 10 (b)). The results
here confirm that our model is capable of showing durotaxis with
a stiffness change similar to experiments.

It is worth noting that some experiments shows that cells
can respond to not only sharp changes in stiffness, but also
smooth changes5,31. To test if our model can predict similar phe-
nomenon, we set a linear gradient of spring constant instead of a
sharp interface, and keep all other setting the same as in Figure 10
(a). From the trajectory of cells (Figure 11(a)), we can clearly see
that a large proportion of cells sense the existence of linear stiff-
ness gradient and make turns to avoid moving into softer regions.
This observation is further confirmed by the average y coordinate
of cells vs time curve (Figure 11(b)). After five cell cycles, the
average velocity of cells in the y direction approaches zero, which
is in stark contrast to the uniform stiffness case (black curve in
Figure 10 (b)).

Another interesting prediction of our model, for the case of
biopolymer gels, is that cells are insensitive to the change of bend-
ing stiffness κ of the network (We tested κ/k ranging from 0.001
to 0.03. results not shown here). A possible explanation is that
the strong cell contractions drive the local network into nonlinear
region, which is dominated by stretching energy13,14 and hence
insensitive to κ. This result suggests that cells may not show
durotaxis under a stiffness gradient created by spatially varying
crosslink density for biopolymer gels.

4 Discussion
In this paper we present a simple mechanical model basing on the
work of Buenemann et al. 18. We generalize the model to two-
dimensions by considering torque balance of the cell in addition
to force balance. This naturally allows the cell in our model to
re-orient during the migration. Consistent with experimental ob-
servations, our model exhibits re-orientation that is influenced by
both fiber alignment and stiffness gradient. Our model also shows
that FA formation, maturation and detachment play a critical role
in determining the reorientation of the cell.

For contact guidance, an interesting question is whether geo-
metrical anisotropy or mechanical anisotropy governs the effect.
First, we need to emphasize that mechanical anisotropy is almost
always inseparable from geometrical anisotropy. To give a simple
example, consider a gel with all the fibers aligned in the horizon-
tal direction. Clearly, in this situation, the gel is easier to deform
in the vertical direction than the horizontal direction: that is, me-
chanical anisotropy originates from geometrical anisotropy. In
our simulations, we varied the bending stiffness κ of the network
to generate networks with similar geometry but different mechan-
ical properties (Figure 8b). We observe that, in our model, con-
tact guidance disappears in the large κ limit. Thus mechanical
response and mechanical anisotropy is the fundamental cause of
contact guidance in our picture. For actual (not idealized ellipti-
cal) cells, the situation might be different24,30, probably because
of competition between protrusions which is beyond the scope of
our model. We can regard our work as a proof of principle that
contact guidance could arise from anisotropy of stiffness.

Most experiments which reported durotaxis were conducted on
hydrogels instead of biopolymer gels1,31. However, biopolymers
constitute a major part of tissues. and it is important to consider
their fibrous structure32. One difference between hydrogels and
biopolymer gels is that biopolymer gels often have strong me-
chanical anisotropy33.

To address both cases, we treat both hydrogels and biopolymer
gels using lattice-based models with different bond occupation
probability. We find that FA maturation is indispensable for the
case of durotaxis on hydrogels. In fact, we show with our sim-
ple model that the cell would prefer to move along the descend-
ing direction of stiffness in the absence of FA maturation. With
FA maturation, our model shows durotaxis under stiffness gradi-
ent created by different mechanisms, including spatially varying
bond occupation probability p and spatially varying spring con-
stant k. In addition, cells in our model can respond to not only
sharp interface, but also smooth stiffness changes. Importantly,
the change of stiffness in our model is comparable to that in ex-
periment. All these observations confirm the usefulness of our
model in explaining the formation of durotaxis.

So far, we have only considered single-cell properties, as this is
already computationally challenging. Of course, inclusion of sub-
strate mechanics immediately .gives rise to long-range cell-cell
interactions; these then need to included along with direct inter-
actions via adhesion proteins.. Future work will consider multi-
cellular systems and the roles of guidance and/or durotaxis for
collective motion.
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Fig. 9 Stiffness gradients guide cell migration. (a)-(c) Average y coordinate of the cells versus time. (d)-(f) Distribution of cell orientations. Parameters:
κ/k = 0.001, (a) and (d) pupper = 0.65, plower = 0.50. (b) and (e) pupper = 0.60, plower = 0.55. (c) and (f) pupper = 0.58, plower = 0.57
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.

In summary, the aim of this paper was to show that a simple
mechanical model is capable of explaining two important forms
of mechanical steering, contact guidance and durotaxis. In re-
ality, cell migration involves many complex biological processes
that we have not considered. For instance, mechanical signaling
can regulate cellular behaviors via signaling pathways34,35. Some
cells can secret Matrix Metalloproteinases (MMPs) which can re-
model extracellular matrix proteins36. In this work we simplify
the problem by considering only mechanical aspects. Our model
can serve as a framework for future work which incorporates bio-
chemical signaling and other biological processes.
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