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Three-Dimensional Simulations of Undulatory and
Amoeboid Swimmers in Viscoelastic Fluids†

Jeremy P. Binagia,‡a Christopher J. Guido,‡a and Eric S.G. Shaqfeha,b,c

Microorganisms often move through viscoelastic environments, as biological fluids frequently have
a rich microstructure owing to the presence of large polymeric molecules. Research on the effect
of fluid elasticity on the swimming kinematics of these organisms has usually been focused on
those that move via cilia or flagellum. Experimentally, Shen (Shen et al., Physical Review Let-
ters, 2011, 106, 1–4.) reported that the nematode C. elegans, a model organism used to study
undulatory motion, swims more slowly as the Deborah number describing the fluid’s elasticity is in-
creased. This phenomenon has not been thoroughly studied via a fully resolved three-dimensional
simulation; moreover, the effect of fluid elasticity on the swimming speed of organisms moving via
euglenoid movement, such as E. gracilis, is completely unknown. In this study, we discuss the
simulation of the arbitrary motion of an undulating or pulsating swimmer that occupies finite vol-
ume in three dimensions, with the ability to specify any differential viscoelastic rheological model
for the surrounding fluid. To accomplish this task, we use a modified version of the Immersed
Finite Element Method presented in a previous paper by Guido and Saadat in 2018 (Saadat et
al., Physical Review E, 2018, 98, 063316.). In particular, this version allows for the simulation
of deformable swimmers such that they evolve through an arbitrary set of specified shapes via a
conformation-driven force. From our analysis, we observe several key trends not found in previ-
ous two-dimensional simulations or theoretical analyses for C. elegans, as well as novel results
for the amoeboid motion. In particular, we find that regions of high polymer stress concentrated
at the head and tail of the swimming C. elegans are created by strong extensional flow fields
and are associated with a decrease in swimming speed for a given swimming stroke. In con-
trast, in two dimensions these regions of stress are commonly found distributed along the entire
body, likely owing to the lack of a third dimension for polymer relaxation. A comparison of swim
speeds shows that the calculations in two-dimensional simulations result in an over-prediction of
the speed reduction. We believe that our simulation tool accurately captures the swimming motion
of the two aforementioned model swimmers and furthermore, allows for the simulation of multiple
deformable swimmers, as well as more complex swimming geometries. This methodology opens
many new possibilities for future studies of swimmers in viscoelastic fluids.

1 Introduction
The study of the motion of microorganisms has many applica-
tions, ranging from human fertility1 to disease prevention2,3. A
clear understanding of locomotion at these small length scales can
also aid in the design of synthetic swimmers, which are utilized

a Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
bDepartment of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
cInstitute for Computational and Mathematical Engineering, Stanford University, Stan-
ford, CA 94305, USA
† Electronic Supplementary Information (ESI) available: Supplementary videos of
C. elegans and the amoeboid are included. See DOI: 10.1039/cXsm00000x/
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in a variety of biomedical applications, including targeted drug
delivery4–15. Because these organisms are typically of micron
size, the Reynolds number associated with their motion is van-
ishingly small16. This has allowed researchers to use the tools
of low Reynolds number hydrodynamics (e.g. linearity, super-
position, time reversibility) to develop many interesting insights
into microorganism locomotion17,18. However, while the study of
locomotion at low Reynolds number in Newtonian fluids is well-
developed, relatively little is known about locomotion in complex
fluids, e.g. fluids that exhibit some degree of memory or shear-
dependent viscosity. This is significant in that the vast majority of
biological fluids are actually non-Newtonian, usually since they
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possess a rich microstructure because they are laden with large
biomolecules. The lack of progress in understanding undulatory
locomotion in these fluids can be directly attributed to the dif-
ficult non-linearities complex fluid constitutive models present.
These non-linearities prevent the use of many of the tools that
have facilitated the analysis of swimming motion in Newtonian
fluids. Moreover the behavior of complex fluids in the presence
of an active forcing is oftentimes markedly different from that ex-
hibited by Newtonian fluids. For example, it was shown recently
that fluid elasticity promotes the alignment and collective swim-
ming behavior of sperm cells, suggesting that fluid elasticity could
actually play a central role in successful fertilization19.

To gain an understanding of how microorganisms move utiliz-
ing cilia of flagellum at low Reynolds number, researchers have
analyzed the motion of the much larger nematode C. elegans in a
very viscous fluid as a convenient scale-up experiment of micro-
scopic undulatory motion20. C. elegans swimming experiments
have been conducted both in Newtonian fluids21,22, as well as in
more complex fluids that exhibit a significant degree of fluid elas-
ticity and shear-dependent rheology23–25. In general, it has been
found that C. elegans swims more slowly as the elasticity of the
fluid is increased23.

Undulatory swimming models have been studied both numer-
ically and theoretically. For example, Lauga found that Taylor’s
swimming sheet26 in the limit of small wave amplitude swims
more slowly as the effect of fluid elasticity becomes more pro-
nounced (i.e. increasing Deborah number)27, in rough agree-
ment with the aforementioned experimental results. Later, Riley
and Lauga considered the waving sheet model in a more general
framework, showing that fluid elasticity does not always lead to
a decrease in swimming speed28,29. Similar perturbation analy-
ses have been completed for the motion of waving filaments, and
these researchers also found that fluid elasticity tends to hinder
locomotion30,31. Several prior computational studies have also
been conducted to understand the variation of swimming speed
with Deborah number beyond the applicability of perturbation
theory. Teran et al. found in their 2D simulations of a finite-
length line-element model that fluid elasticity actually leads to an
increase in the swimming speed32. There, they showed that re-
gions of large polymer stress accumulate near the swimming body
and are associated with the change in swimming speed. In this
study we will show that such regions of large stress arise from
extensional flow points near the head and tail of the swimmer.
It was later shown by Thomases et al. that either an increase or
decrease in swimming speed can be observed depending on the
type of swimming motion, i.e, if it is driven by large head or tail
undulations (called a burrower and kicker respectively) and on
the degree to which the prescribed target curvature in these mod-
els is actually achieved (i.e, whether it is a "soft" or "stiff" swim-
mer)33,34. More recent work by Salazar et al. found that a speed
increase could only be observed if the polymer stress diffusion
coefficient used in these studies was sufficiently large35.

A series of studies related to swimming motion in 3D have
been conducted recently for both small amplitude swimming in
shear thinning fluids and for a different organism, C. reinhardtii,
which swims with a breaststroke-like gait via two anterior flag-

ella14,36. The study of 3D locomotion in shear thinning fluids
demonstrated that the calculation of quantities that depend upon
flow derivatives (e.g. shear rate) can be qualitatively different
when computed in 2D vs. 3D36. For example, the author found
for a small-amplitude undulatory swimmer modeled as a cylin-
der that the maximum shear-rate was located at the surface of
the swimmer (as one might expect). However, the same calcu-
lation repeated for a waving sheet predicted that the maximum
occurs some distance away from the swimmer (with decreasing
shear rate as one moves closer to the surface). While these calcu-
lations were illustrated using shear thinning rheology, this work
suggested that similar errors are likely to occur in viscoelastic flu-
ids as well. While the above study of Montenegro-Johnson was
done in the context of the undulatory motion of C. elegans, re-
cently the flagellar motion of C. reinhardtii was succesfully sim-
ulated by Li et al. through the use of a 3D immersed boundary
method. This group of researchers made a number of interest-
ing observations, including that in 3D, polymer stresses accumu-
late near the tips of the flagellar structures, but these structures
were only resolved as line elements (i.e. a series of connected
points)14. More recently, members of the same group considered
the steady motion of slender objects in viscoelastic fluids to un-
derstand more generically how the orientation of these elongated
structures is related to regions of polymer stress in the surround-
ing flow37. The purpose of our work seeks to build on these
results and examine large amplitude undulatory swimming of C.
elegans in a viscoelastic fluid, with the body of the nematode be-
ing fully meshed in 3D. Additionally, we seek to analyze the flow
field surrounding the undulatory swimmer to further understand
its relationship to the organism’s calculated swimming speed.

In summary, the effect of fluid elasticity on swimming motion is
a complex topic and is clearly not fully understood. While the pre-
viously mentioned studies in 2D have provided valuable insights
into swimming behavior in viscoelastic fluids, none of these stud-
ies have considered fully three-dimensional flow driven by a fully-
resolved immersed body (i.e. finite thickness rather than a series
of points). These features are likely critical for accurate predic-
tion of swimming kinematics as suggested by previous results for
small amplitude undulatory motion in a shear thinning fluid36.
Furthermore, these 2D studies utilize relatively high viscoelastic
viscosity ratios (β = η/η0) while the experiments by Shen et al.
were conducted at relatively low values of β 23. In our work,
we seek to explore the effect of the viscosity ratio on the results
as well as to investigate the full three-dimensional behavior of
the flow to demonstrate that these must be taken into account to
gather a complete understanding of this problem.

While considerable work has been done concerning swimmers
that swim via undulatory or helical motion38–40, there exist rel-
atively few studies on organisms at low Reynolds number that
move via more exotic body deformation methods, such as the
euglenoid movement (i.e. metaboly) exhibited by Euglena. In
particular, it was recently found that Dictyostelium amoebae and
human neutrophils could freely swim in solution at speeds com-
parable to those at which they crawl across substrates by under-
going extensive deformations in shape41,42. Aiming to model this
phenomena, Farutin and Misbah simulated a vesicle with a simple
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force distribution to illustrate how such an organism could pro-
pel itself through deformations of its membrane43. In later work,
the effect of confinement on the swimming kinematics of these
types of swimmers was quantified in 2D44,45. More recently, this
model has been extended to 3D flows in Newtonian fluids, and
the effect of cytoskeleton elasticity has been considered by allow-
ing for changes in membrane area by modeling the swimmer as a
capsule rather than a vesicle46. However, to our knowledge there
have been no such studies examining this swimming behavior in
a viscoelastic fluid. We demonstrate in this work that the reduc-
tion in swimming speed for amoeboid motion is quite similar to
that found for C. elegans, and that the physics of speed reduction
show several similarities despite how different the two modes of
swimming are .

In this manuscript, we compare fully three-dimensional compu-
tational results for two different model organisms: the undulatory
motion of C. elegans and the amoeboid motion. In regards to the
undulatory motion, we find that 2D simulations over-predict the
reduction in swimming speed compared to 3D simulations. From
an analysis of the surrounding flow field, we note that this is likely
associated with the high concentration of polymer stress near the
head and tail of the swimmer (in 2D, this stress is found along the
entire body for32,33,35). Furthermore, we use a local decomposi-
tion of the flow field to show explicitly that these regions of high
polymer stress are created by strong extensional flow at said lo-
cations. For the amoeboid motion, we see a trend in swim speed
directly analogous to that of C. elegans: a monotonic decrease in
speed increasing with Deborah number ultimately approaching a
value that appears to be asymptotic for large De. For the amoe-
boid, we also calculate the swimming power expenditure and ef-
ficiency as a function of De. We find that the amoeba spends
a disproportionate amount of energy even with the reduction of
speed it incurs, thus leading to a decrease in swimming efficiency
with De.

2 Methodology

2.1 Governing Equations for Swimming Bodies

We consider the dynamic problem of an incompressible elas-
tic body suspended in an incompressible Newtonian or complex
polymeric fluid media, where the suspended body is a neutrally
buoyant, active swimmer. The total domain under consideration
is defined to be Ω which will be broken into two sub-domains Ωf

and Ωs which represent the volume of the fluid and the swim-
mer respectively. The governing equations are conservation of
momentum in both the fluid and solid sub-domains as well as
continuity:

ρ
Dvvv
Dt

= ∇ ·σσσ f xxx ∈Ω
f, (1)

ρ
Dvvv
Dt

= ∇ ·σσσ s xxx ∈Ω
s, (2)

∇ · vvv = 0 xxx ∈Ω. (3)

We have defined the stress in the solid and fluid to be σσσ s and σσσ f

respectively. At the boundary of contact between the solid and the

liquid we also require a stress balance to be satisfied. In the case
of a swimming body, there can be an additional active traction
applied at the surface of the particle generated by the internal
mechanics of the swimmer. We call this extra active traction fff act.
We denote this boundary as ∂Ωs with an outwardly-pointing unit
normal nnn. We write the stress balance condition as

(σσσ s−σσσ
f) ·nnn+ fff act = 0 xxx ∈ ∂Ω

s. (4)

Two distinct ways of modeling a swimming organism will be
presented. While modeling C. elegans, we will assume that we
know the shapes that the organism forms as a function of time.
This will allow us to generate active forces through the solid stress
by updating the reference configuration of the swimmer. These
input shapes will be provided from direct experimental measure-
ments23. In this case the constitutive model will drive the swim-
mer to the correct shape under the condition that the shear modu-
lus of the swimmer is sufficiently high (meaning any effects of the
elasticity of the swimmer are lost, since the only role of the "elas-
ticity" in this case is to drive the swimmer to the correct target
shape). In the shape-driven model, we do not need to specify any
additional active tractions. This model can be thought of as being
shape-controlled (i.e. swim stroke controlled), where speed is a
consequence of configuration. One may think of this method as a
three-dimensional extension of previous work in two-dimensions
where the prescribed "active force" was proportional to the in-
stantaneous deviation from a target curvature of the swimming
body (modeled as a infinitesimally thin line)32,33,35,47. The sec-
ond way we will model swimming motion is by directly enforcing
an additional active traction fff act. This will be our methodology
for the amoeboid motion presented later in this paper. In this case
the shapes of the swimmers are a direct consequence of the im-
posed force distribution (and thus are not necessarily the same
if we change the fluid properties). Additionally, by using this
methodology the elastic properties of the swimming body itself
can be incorporated in a meaningful way46.

Since microorganisms operate in the limit of zero Reynolds
number (negligible inertia)16, conservation of momentum ap-
plied to the swimming body requires that any imposed active trac-
tions cannot give rise to a net force or torque:17

∫
∂Ωs

fff actdS = 0, (5)

∫
∂Ωs

xxx× fff actdS = 0. (6)

To model a viscoelastic, polymeric suspending medium, we rep-
resent the suspending fluid stress as a sum of a Newtonian stress
with an additional polymeric stress,

σσσ
f = σσσ

N +σσσ
P =−pI+η

(
∂vvv
∂xxx

+
∂vvv
∂xxx

T
)
+σσσ

P. (7)

In the above, we have defined p to be the hydrodynamic pressure
and η to be the Newtonian fluid viscosity. We describe the extra
polymer stress, σσσP, generally using the Giesekus model48, which
describes the evolution of the extra stress through a conformation
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tensor c and a relaxation time λ ,

σσσ
P =

ηp

λ
(c− I), (8)

λ
O
c +(c− I)+α(c− I)2 = 0. (9)

In Eqn. 9,
O
c is the upper-convected time derivative and we have

defined ηp to be the polymeric viscosity. The Giesekus consti-
tutive equation considers the individual polymer molecules to
be Hookean dumbbells, allowing for anisotropic drag via the
Giesekus mobility parameter α. The Oldroyd-B model is recov-
ered from the Giesekus model if α = 0, and for the majority of
this paper the Oldroyd-B model will be considered. The Oldroyd-
B model, however, displays no shear thinning, so when we exam-
ine both the effects of fluid elasticity and shear thinning on the
swimming speed we will utilize the Giesekus model. Otherwise,
using the Oldroyd-B model is advantageous as we ensure that the
trends we observe are solely elastic in origin. The zero shear vis-
cosity of the suspending fluid is constant and is given by:

η0 = η +ηp. (10)

We also must specify a constitutive model for the swimming
body. The suspended swimmer will either be modeled as a 3D
solid hyper-elastic material or as a 2D hyper-elastic membrane.
The second Piola-Kirchhoff stress, S, is calculated using the prin-
ciple of virtual work from the strain energy density W , which
is a function of the invariants of the right Cauchy-Green tensor
C = FTF:

S = 2
∂W
∂C

= 2

{(
∂W
∂ IC

1
+ IC

1
∂W
∂ IC

2

)
I−C

∂W
∂ IC

2
+ IC

3 C−1 ∂W
∂ IC

3

}
. (11)

For the deformable solid implementation we utilize a slightly
compressible neo-Hookean model with bulk modulus λp and
shear modulus µp. The form of the strain energy density W is
thus:

W =
λp

4
(IC

3 −1)−
(

λp

2
+µp

)
ln
(

IC
3

)1/2
+

µp

2

(
IC
1 −3

)
. (12)

Any membrane in our simulations is assumed to be infinitely
thin and therefore we consider a two-dimensional hyper-elastic
material model. In this reduced system, we now solve for ten-
sions that have an energy areal density (these tensions obey the
same relationships as their stress counterparts but are now de-
noted with a hat). IĈ

1 and IĈ
2 are the only two independent invari-

ants of Ĉ in this reduced system and the following relationship
now holds:

Ŝ = 2
∂Ŵ

∂ Ĉ
= 2

{
∂Ŵ

∂ IĈ
1

I+ J2Ĉ−1 ∂Ŵ

∂ IĈ
2

}
. (13)

For swimmers modeled as membranes, the well-known Skalak
model is used:

Ŵ =
µ̂p

2

(
1
2

I2
1 + I1− I2

)
+

µ̂D

8
I2
2 . (14)

where I1 = IĈ
1 − 2 and I2 = IĈ

2 − 1 are the two invariants of the
Skalak model. The Skalak model is generally used to enforce lo-
cal area-incompressibility in a membrane so the dilatational mod-
ulus, µ̂D, is set to be much larger than the shear modulus, µ̂p.

2.2 Numerical Implementation

To solve the coupled fluid-solid problem we utilize an Immersed
Finite Element Method (IFEM). More details about this method
can be found in a recent publication49. To arrive at the governing
equations, we rewrite Eqns. 1 and 2 as a single equation over the
total domain as follows:

ρ
Dvvv
Dt

= ∇ ·σσσ f + fff IB xxx ∈Ω, (15)

where fff IB is the immersed boundary force density. It is clear that
for conservation of momentum to be satisfied everywhere, the
immersed boundary force density must take the following form:

fff IB = ∇ · (σσσ s−σσσ
f) xxx ∈Ω

s. (16)

The discretized immersed boundary method utilizes two sepa-
rate grids. The Lagrangian grid tracks the swimmers (Ωs) while
a second fixed Eulerian grid is utilized for the entire domain
(Ωs +Ωf = Ω).

We distinguish between the immersed boundary force on the
Lagrangian grid and the immersed boundary force in the Eulerian
domain which are defined to be FFF IB,s and FFF IB,f respectively (note
that force densities are given by a lowercase fff and forces are
given by an uppercase FFF).

On the Eulerian domain we therefore solve the following ex-
pression with a third order accurate finite volume scheme devel-
oped at Stanford’s Center for Turbulence research50:

ρ
Dvvv
Dt

= ∇ ·σσσ f + fff IB,f xxx ∈Ω. (17)

We solve for the conformation tensor c as six scalar equations
(since c is symmetric) using a log-conformation method to ensure
positive definiteness51,52. Details about this method can be found
in previous papers53–55.

We are left to determine the values of FFF IB,s for which we utilize
finite elements. Details of this expression can be found in a more
detailed computational methods paper published elsewhere49.
Discretely we can calculate the immersed boundary force at each
node in our Lagrangian domain from the First Piola-Kirchoff stress
Pi j on each element, the shape function at each node Nk, and the
extra active tractions fff act:

F IB,s
k,i =−

∫
Ωs

0

(
Ps

i j−Pf
i j

)
∇ jNkdΩ+

∫
∂Ωs

0

fff actdS. (18)

In the case of a membrane with vanishingly small thickness,
we can rewrite the volume integral as an integral over an area.
The fluid stresses integrated over a vanishingly small volume go
to zero, simplifying our expression. Our discretized local surface
now has a coordinate system with two tangent basis vectors el ,
shape functions N̂k parameterized in the surface coordinate, and
a tension P̂. This gives us a force contribution at each node:
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F IB
k,i =−

∫
∂Ωs

0

(
P̂s

l j

)
∇ jN̂kel,i + fff actdS. (19)

Note that in the above expression the gradient of the shape func-
tion N̂k is with respect to the local surface coordinate in the direc-
tion of el and P̂ is the tension so l and j in the above expression
range from 1 to 2 instead of 1 to 3 as in the previous expressions.

For the solution of Eqn. 17 we require the immersed boundary
force on the Eulerian domain, FFF IB,f. These forces are found dis-
cretely through an interpolation operator that spreads the forces
FFF IB,s to the Eulerian grid49. Similarly, a reverse procedure is re-
quired to interpolate velocities from the Eulerian Grid back to the
Lagrangian Grid so that the position of the swimmer may be up-
dated at each timestep.

2.3 Additional Considerations for Swimmers Modeled as
Membranes

Membrane immersed boundary models have two notable special
considerations. First, the viscosity of the fluid inside the mem-
brane may not be the same as the exterior fluid and the viscoelas-
tic properties of the fluid inside may need to be neglected. The
second important consideration is that the volume of the capsule
can drift over time due to interpolation errors, necessitating ex-
plicit correction.

For the simulation of swimmers as membranes, we solve the
following Poisson equation to determine which nodes of the fluid
domain are inside the membrane boundaries (this information is
encoded as an indicator function I):

∇
2I = ∇ ·G, (20)

where
G =

∫
∂Ωs

ndS.

For details of this implementation see Bagchi et al., 200956.

Using this information, the swimmer can be assigned variable
viscosity ratios and the viscoelastic part of the stress of the fluid
interior to the the membrane can be set to zero (a reasonable
assumption if the cytoplasm of a micro-swimmer is negligibly vis-
coelastic compared to the medium surrounding the swimmer).
We can subsequently set the viscosity in the fluid domain to be:

η0 = ηout +(ηin−ηout)I.

We also can set the viscoelastic stress of the fluid inside the mem-
brane to zero by modifying the polymer viscosity (we call this
modified polymer viscosity η∗p):

η
∗
p = ηp−ηpI.

Additionally, since the divergence free character of the flow is
not preserved exactly during the velocity interpolation step in the
immersed boundary method, the swimmers modeled using a thin
membrane may undergo a gradual volume change during the sim-
ulation (Note that even though the relative volume change is typ-
ically on the order of 10−4 and smaller in a single time step, the
associated numerical error will propagate and will cause errors

of a few percent by the end of the simulation). In order to avoid
this, we utilize the volume conservation algorithm proposed by
Mendez in 201457.

2.4 Modeling the Motion of C. elegans

To model the motion of C. elegans we extensively use data from
experiments to ensure that we are modeling the correct swim-
ming stroke. The data for swim speed reduction and for the shape
of the backbone was provided by Paulo Arratia’s group, and de-
tails about these experiments can be found in numerous papers
elsewhere21,23–25. In the case of this model, the active tractions
are not explicitly specified; instead, the reference configuration of
the solid body is updated at every timestep to the desired target
shape. If the solid elasticity is sufficiently large then the swimmer
will "chase" the desired shape with little error.

We can write all of the governing equations in a standard non-
dimensional form for this case as follows (where non-dimensional
variables and operators are given an overbar):

Re
Dv̄vv
Dt̄

= ∇̄ · σ̄σσ f =−p̄+β ∇̄
2v̄vv+

1−β

De
(c− I) x ∈Ω

f, (21)

Re
Dv̄vv
Dt̄

=
1

Ca
∇̄ · σ̄σσ s x ∈Ω

s, (22)

∇̄ · v̄vv = 0 x ∈Ω, (23)

De
Ō
c +(c− I)+α(c− I)2 = 0. (24)

We also have the following non-dimensional energy density rela-
tionship in the solid:

ˆ̄W =
λp

4µp
(IC

3 −1)−
(

λp

2µp
+1
)

ln
(

IC
3

)1/2
+

1
2

(
IC
1 −3

)
. (25)

We have chosen to non-dimensionalize all of the length quantities
with the diameter of the swimmer Dp and all time quantities with
the temporal frequency of the swimming motion f (T = 1/ f is
the period of the swimming cycle). This leaves us with a total of

6 dimensionless parameters: The Reynolds number (Re =
ρ f D2

p
η0

),
the Deborah Number (De = λ f ) the viscoelastic viscosity ratio
(β = η

η+ηp
), the mobility parameter (α), and the capillary number

(Ca = f η0
µp

) now appear in the evolution equations. Additionally,
λp
µp

appears in the constitutive equation for the solid swimmer.

For the studies presented in this paper the Reynolds number
will be smaller than 10−1, but the Deborah number and β will be
free to vary. Additionally, we will utilize α to tune how much the
suspending solutions shear thin. For most of the paper we will
consider the case of zero fluid shear thinning (α = 0), but we will
briefly consider the effect shear thinning has on undulatory mo-
tion. The capillary number in this shape-driven case will actually
quantify how well the shape is being "chased" (i.e. how large the
forces are that drive the swimmer to the correct configuration)
and has no bearing on any measurable elastic properties of the
body of the swimming organism. We will therefore set the capil-
lary number to be very small (less than 10−5) so that the shape
is adequately followed (any further reduction in capillary number
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Fig. 1 Analysis of how well the nematode follows prescribed kinematics at very low Ca. a) Steady-state volume averaged trace of the Green-Lagrange
strain tensor (E = 0.5(FT F− I)) as a function of time within a swim cycle for a range of De number (De = 0,0.1,0.25,0.5,1,2) at β = 0.38. Note that the
magnitude of this measure is much less than unity for all presented curves so we are seeing good shape agreement between the actual shape and the
prescribed shape. b) The best case scenario for the difference in shapes at the two extreme De numbers of 0.1 (red) and 2 (blue) at t = 0.5. c) The
worst case scenario for the difference in shapes at the two extreme De numbers of 0.1 (red) and 2 (blue) at t = 0.6.

will lead to negligible changes in measured quantities like speed).
Additionally, the ratio λp

µp
will be set to be much less than one to

ensure that it has no effect on any measured quantities.

In the case of modeling C. elegans we are provided with a series
of experimental shapes for the backbone of the swimming worm;
these snapshots come from the experimental data set utilized in
Shen et al.23 Note that as mentioned in that work, the gait of
C. elegans is largely invariant to changes in fluid elasticity (this
is in contrast to other organisms, e.g. C. reinhardtii). For this
reason, we specify the same set of shapes for both Newtonian
and viscoelastic simulations. If at a given timestep we do not
have a measured shape, a shape is interpolated in time from the
given shapes using cubic spline interpolation. The backbone is
a set of coordinates xxxb(s) that are parameterized in terms of the
arc length of the swimmer, which is assumed to to be of constant
length. Additionally this swimmer has a known curvature and
tangent vector, κb(s) and ttt(s). A spherocylinder mesh of diameter
Dp (radius Rp) and length L with points X̄XX (0 < X̄1 < L and 0 <

X̄2 <Dp) is mapped to a new shape for the reference configuration
XXX as follows:

X1 = xb,1(X̄)+ t2(X̄1)Tp−χt2(X̄1) (26)

X2 = xb,2(X̄)− t1(X̄1)Tp +χt1(X̄1) (27)

χ =

(
1

κ(X̄1)
+Tp

)

− 1
2κ(X̄1)

√
4
(
1+Tpκ(X̄1)

)2−8κ(X̄1)
(
X̄2−Rp +Tp

)
(28)

Tp =


√

R2
p− X̄1

2, if X̄1 =< Rp

Rp, if Rp < X̄1 =< L−Rp√
R2

p− (X̄1−L+Rp)2, if X̄1 => L−Rp

(29)

This shape transformation ensures that the new specified shape
conserves volume locally (we are limited to solving for volume in-
compressible shapes since we use an incompressible flow solver).
Additionally, this shape transformation assumes that any motion
of the worm maintains that each cross section of the body is nor-
mal to the specified backbone. It is worth noting that the transfor-
mation presented is not unique and that many different 3D trans-
formations with the same backbone coordinates could be speci-
fied. In this case, the transformation proposed is selected because
it closely resembles the motions of dorsal and ventral muscles
contracting in a real swimming C. elegans.

The objective of this method is to study prescribed kinematics
where there is little difference in the prescribed shapes depending
on the De studied. Therefore, we need to ensure in our simula-
tions that the target shape is actually achieved. In Fig. 1a we
examine how well the shape is actually chased for our Ca values
of 10−5. We plot the volume average magnitude of the first invari-
ant of the Green-Lagrange strain tensor for multiple De numbers
over a cycle. If we were at the prescribed shape we would ex-
pect this metric to be exactly zero, and we can see clearly that
all values presented are very small compared to unity for all De,
meaning that we are prescribing kinematics quite well. In addi-
tion, we have shown shape comparison for the lowest and highest
De (0.1 and 2) for two different times in the cycle in Fig. 1b/c.
At t = 0.6 we can see the worst agreement in our strain measures
and we see some slight discrepancies in shape. At t = 0.5 the
strain measures for each De are both small and nearly equal; con-
sequently, we observe shapes that are nearly identical. Therefore,
in the studies presented we are studying effects for the case of
nearly prescribed kinematics.

2.5 The Amoeboid Model

As a simple model for describing amoeboid motion, we utilize the
axisymmetric forcing method first proposed by Farutin and Mis-
bah43–46. The swimmer is modeled using a Skalak law membrane
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t / T = 0

t / T = 0.6

t / T = 0.2

t / T = 0.8

t / T = 0.4

t / T = 1.0

nswim 

Fig. 2 Shape evolution over time over the course of one period (T ) for the C. elegans simulations (shown for De = 0.1, β = 0.25). These shapes
are obtained as the computational "elastic" forces are used to drive the nematode towards the prescribed reference configuration. The reference
configuration, updated at each time step, is based on experimental measurements provided by David Gagnon and Paulo Arratia of the backbone
of swimming C. elegans organisms. The arrow denotes the average net swimming direction for the C. elegans simulations , nswim. A video of this
swimming motion is supplied in the electronic supplementary information †.

with zero shear modulus and a nearly incompressible area with
additional active tractions applied to the surface of the swimmer.
We start with an initially spheroidal shape and then impose the
additional active tractions as follows:

fff act = nnn(xxx)
3

∑
l=2

Fl,0Yl,0(XXX)+FFF1, (30)

F2,0 = F cosωt, (31)

F3,0 =−F sinωt. (32)

In the above expression, Yl,m are the spherical harmonics and
ω = 2π f is the angular frequency. We only utilize the axisymmet-
ric harmonics in this formulation, but in general more harmonics
could be included to generate more complex surface motion. In
these expressions xxx represents the current position of any point
of the body in space while XXX represents the position of the same
point in the reference configuration. Since we need our specified
forces to introduce no net torque or force, it can be shown that

FFF1 is required to be46:

FFF1 = ccc111×nnn(xxx)+ ccc222, (33)

ccc222 =−
1
A

∫
∂Ωs

fff actdS, (34)

ccc111 =−
1

2V

∫
∂Ωs

xxx× fff actdS− 1
2V

∫
∂Ωs

xxx× ccc222dS, (35)

where A and V are the surface area and volume of the amoeboid
respectively.

Similar to the case of the C. elegans model, we can write all
of the equations in a dimensionless form, where variables have
been non-dimensionalized by Rp (the reduced radius of the initial
configuration). The evolution equations remain the same as Eqns.
21-24, but the Skalak Law introduces a different non-dimensional
energy density:

ˆ̄W =
1
2

(
1
2

I2
1 + I1− I2

)
+

µ̂D

8µ̂p
I2
2 . (36)

Additionally, the active forces can be non-dimensionalized in the
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Fig. 3 A sample center of mass trajectory for C. elegans in a Newtonian
fluid using the same set of shapes illustrated in Fig. 2. Note that the
swimmer started in the upper right hand corner of this figure and moved
down and to the left. To calculate speed we use the integrated velocity in
the average translational direction of this trajectory.

following way:

f̄ff act
= nnn(X̄XX)

3

∑
l=2

F̄l,0Yl,0(X̄XX)+ F̄FF111, (37)

F̄2,0 = Scos(2π t̄), (38)

F̄3,0 =−S sin(2π t̄). (39)

This leaves us with a total of 7 dimensionless parameters. As

before, the Reynolds number (Re =
ρ f R2

p
η0

), the Deborah Number
(De= λ f ) the viscoelastic viscosity ratio (β = η

η+ηp
), and the cap-

illary number (Ca = ωη0
Rp µ̂p

) appear in the evolution equations. Ad-

ditionally, µ̂D
µ̂p

appears in the constitutive equation for the amoe-
boid swimmer. One additional variable is introduced from the
swimming tractions, S = F

η0ω
. Lastly, one geometric parameter

exists for the initial shape of the spheroidal capsule, which we
choose to be the excess area, Λ = A

4π(3V/4/π)2/3 −1.

The Reynolds number will be smaller than 10−1, but the Deb-
orah number and β will be free to vary as before. The capillary
number in this case will actually quantify the effect of elasticity
compared to viscous forces. However in our studies the shear
stress in the membrane will be taken to be negligible so that
Ca = ∞. The active forcing parameter S quantifies how much ex-
tra traction a swimmer can produce relative to the viscous forces
in the fluid and will be set to be much greater than 1 in this
study. In these studies this ratio is set to 8, and any further in-
crease in this parameter is seen to have negligible impacts on the
speed and kinematics of the swimming body. Additionally, the ra-
tio µ̂D

FRp
= ( µ̂D

µ̂p
)Ca−1S−1 will be set to be much greater than one

to ensure that our membrane remains nearly area incompressible
(as real cells are generally seen to behave this way due to the very
limited area-extensibility of the lipid bilayer). In our studies we
set this parameter to 64 and note that area is conserved to within

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 4 Speed as a function of time for C. elegans in a Newtonian fluid
using the same set of shapes that was illustrated in Fig. 2. These two
simulations were conducted at two different box sizes. The solid curve is
for a box of 15Dp x 15Dp x 7.5Dp and the dashed curve is for a box of size
30Dp x 30Dp x 7.5Dp. The maximum difference in these speeds is less
than 1%, indicating convergence with respect to box size.

0.5% during a swim cycle.

2.6 Summary of the Numerical Algorithm
The following are the steps in our modified version of the IFEM
applied to swimming bodies:

1. Calculate the internal forces on the particle (Lagrangian
grid) based on the particle current configuration at time step
n, xxxs,n

k , and the reference configuration XXX s
k, as well as the

swimmers velocity vvvs,n
k , and the value of the conformation

tensor cccs,n
k .

The swimming motion is introduced in this step in one of
two ways. When we model C. elegans we change the ref-
erence configuration, XXX s

k, according to Eqns. 26-29 and set
fff act = 0. If we are modeling the amoeboid we calculate fff act

using Eqns. 30-32 and the reference configuration is held
constant.

Eqns. 18 and 19 can be utilized to evaluate the immersed
boundary forces for a deformable solid like C. elegans or for
a membrane like the swimming amoeba respectively.

2. Spread the force to the fluid domain (Eulerian grid) at node
J, where we represent our spreading/interpolating operator
as a series of weights, φ . More details about this operator
can be found in our previous paper49.

FFF IB,f
J = ∑

k
FFF IB,s

k φJ(xxxJ− xxxs,n
k ). (40)

3. Next, the Navier-Stokes and continuity equations are solved
to calculate fluid velocities vvv and pressure p using a finite
volume algorithm. The components of the conformation ten-
sor are also updated. As discussed in Sec. 2.2, we utilize
a finite volume solver utilizing a fractional step method to
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Fig. 5 Average speed (U) normalized by the value in a Newtonian fluid
(UN ) for the shape-driven C. elegans simulations. For all De and β , the
value is less than unity, indicating a swimming speed slower than that in a
Newtonian fluid. For large De, the speeds shown in Fig. 52a approach an
asymptotic value. These values are plotted as a function of the viscosity
ratio, β , in Fig. 52b; the resulting trend suggests that speed reduction
scales nearly linearly with β .

solve the Navier-Stokes equations. More details concern-
ing the numerical implementation of this solver, originally
developed at Stanford’s Center for Turbulence Research, can
be found in Ham et al.50. The viscoelasticity is updated as six
scalar equations utilizing a log-conformation method. More
details of this algorithm can be found in papers by Richter et
al.54 and Yang et al.53.

ρ
Dvvv
Dt

= ∇ ·σσσ f + fff IB,f, (41a)

∇ · vvv = 0, (41b)

λ
O
c +(c− I)+α(c− I)2 = 0. (41c)

4. Next, the velocities from the Eulerian grid are interpolated
back to the Lagrangian grid (to ensure no-slip at the bound-

ary). If we are solving a viscoelastic problem, we also need
to know the conformation tensor at each Lagrangian node:

vvvs,n+1
k = ∑

J∈stencil
vvvJφJ(xxxJ− xxxs

k), (42)

cs,n+1
k = ∑

J∈stencil
cJφJ(xxxJ− xxxs

k). (43)

5. Finally, the Lagrangian grid is updated based on the inter-
polated velocities using an Adams-Bashforth second-order
scheme:

xxxs,n+1
k = xxxs,n

k +∆t(
3
2

vvvs,n
k −

1
2

vvvs,n−1
k ).

In this final step, volume conservation of capsules is strictly
enforced.

3 Results and Discussion
3.1 The Effect of Fluid Elasticity on the Swimming Speed of

C. elegans

With the fully resolved three-dimensional method presented pre-
viously, a series of swimming simulations were conducted at con-
stant shape while varying the Deborah number in the Oldroyd-B
model. These simulations were conducted in a simulation box of
size 15Dp x 15Dp x 7.5Dp, where Dp is the diameter of the ne-
matode. The fluid domain is a non-uniform mesh with increasing
mesh resolution near the plane of the worm; here, the mesh size
is 0.125 x Dp or 0.01 x L where L is the length of the worm. Pe-
riodic boundary conditions are used for the boundaries in the x
and y direction, while no-slip boundary conditions are utilized for
the boundaries in z. These dimensions and boundary conditions
in the z direction were chosen so as to emulate the experimen-
tal configuration utilized by Shen et al., where the nematodes are
swimming in the x−y plane while being confined by plates above
and below their plane of motion23. The box size in the x− y di-
rections is required to be large enough that the worms are essen-
tially non-interacting. In Fig. 4 we examine the effect of doubling
the size of these periodic boundaries. The steady state swimming
speed has been changed by less than 1% due to doubling the box
size (on the order of other errors we are making in meshing).
We see that the effect on the instantaneous speed as a function
of time is quite negligible so all simulations presented here will
be for a box size of 15Dp x 15Dp x 7.5Dp. For this particular set
of simulations the backbone shapes used in the method were a
series of experimental backbones that were provided by Paulo Ar-
ratia’s group for C. elegans. A single cycle was chosen from this
data and was then used to produce periodic motion. The exper-
imental observations show relatively constant kinematics across
all tested fluids, so this periodic motion was used in all swimming
simulations. In Fig. 2 snapshots of this periodic swimming mo-
tion are presented at six different times in the swimming cycle.
Note that the swimmer is moving down and to the left as indi-
cated by the blue arrow in Fig. 2a and that the motion is clearly
not sinusoidal. A video of this swimming motion is supplied in
the electronic supplementary information †.

To calculate speed the trajectory shown in Fig. 3 is utilized.
The center of mass is plotted and the swimmer initially started in
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Fig. 6 For β = 0.25 and De= 0, 0.1, and 0.5: a) Net distance the swimmer
has traveled in the swimming direction (denoted by nswim) during a single
cycle. b) Slope of Fig. 6a, i.e. the instantaneous velocity in the swim
direction. c) Ratio of polymer stress energy integrated over the back half
of the worm’s surface to that for the front half (

∫
Sfront

σ̄
p
ii dS/

∫
Sback

σ̄
p
ii dS).

d) The integrated polymer traction in the swimming direction over the
surface of the swimmer 1

A
∫

S σ̄σσ
p ·n ·nswimdS. In this plot, we see a strong

correlation between the speed of the worm and the relative integrated
stress in front and behind it. For example, up to point 1 in Fig. 6, we
see that the De = 0.1 simulation exhibits more total stress in the front
and swims at a slower speed than that for De = 0.5. Past this point
we observe a relaxation in stress at the front of the body for De = 0.1
and a corresponding increase in speed relative to that of the De = 0.5
simulation. We hypothesize that this decreased stress relaxation at the
front of the body for the higher De simulations leads to the overall lower
swimming speeds seen in Fig. 5. The average polymer traction also
correlates very well with the back-to-front ratio of the polymer energy.

the upper right hand corner of the figure and then swam down
and to the left (10 cycles are illustrated). To calculate speed we
use the component only in the translational direction of motion
(down and to the left in Fig. 3). Speed is therefore calculated as
(in dimensional units):

U =
1
T

∫ t+T

t
u ·nswimdt =

|d(T + t)−d(t)|
T

(44)

where nswim is the unit vector pointing in the direction of the
swimming motion and d is the displacement of the center of mass
of the swimmer. The unit vector nswim is a constant that points
in the net direction traveled over a cycle and is therefore con-
stant over the integration bounds, but isn’t necessarily the same
for every cycle. Therefore this measure of speed is equivalent to
the magnitude of the displacement over a swim cycle divided by
the stroke period. Simulations are conducted until a steady swim
speed is obtained; this steady state value is utilized in all subse-
quent analysis.

The results for the simulations with increasing fluid elasticity
are presented in Fig. 5. The speed normalized by the speed of a
swimmer in a Newtonian fluid decreases as Deborah number in-
creases, and the speed ultimately plateaus at high De. This same
observation is made in experimental work by Shen and Arratia23

as well as in a series of related theoretical model calculations60.
However, the exact plateau speed is a strong function of β , the ra-
tio of the solvent to total solution viscosity. This feature has been
largely unexplored in other computational studies. Moreover the
functional behavior in β is not captured well by simple theoreti-
cal expressions such as those suggested by Lauga which predicts
an ultimate asymptotic speed of zero if the value of β → 060. In
Fig. 5b we can see that the ultimate plateau that is reached is
roughly a linear function of β and the best fit line is drawn as a
red dashed curve.

We hypothesize that the reduction in speed is related to strong
regions of polymer extension very close to the head and the tail of
the swimming C. elegans. In Fig. 7 we can see σ̄

p
ii =

1−β

De (cii−3)
is plotted in three different parts of the swim cycle for two dif-
ferent Deborah numbers of 0.1 and 0.5. Note that all plots of
the polymer stress energy σ̄

p
ii in this study are at the center plane

(i.e. z = 0). The most notable feature of these contour plots is
the extremely high concentration of stress at the head and the
tail of the worm. This is notably different than what is observed
in many 2D simulations where there is concentrated stress at the
head and the tail, but also considerable stress located at other
points around the body32,33,35. In one 3D simulation of a differ-
ent organism, C. reinhardtii, a similar stress buildup is seen14 and
it appears that the three-dimensional nature of the flow is key to
capturing this effect.

At higher De number there appear to be two key effects that
drive the worm to swim faster or slower depending on the
progress of the worm through its swim cycle. As illustrated in
the first and third column of images in Fig. 7, we can see that the
ratio of polymer stress in the front of the worm to the back of the
worm is larger at higher De which means that there are relatively
higher tractions due to the polymer stress acting at the front of
the worm (recall that the worm is swimming down and to the
left on average during the cycle). The correlation between this
stress build-up and slower speed with increasing De allows us to
hypothesize that these polymer tractions are causing extra resis-
tance to the worm’s motion. This feature increases in magnitude
as De increases.

In the second column of images in Fig. 7, we can see extra
polymer stress at the back of the worm that is greater in magni-
tude for low De which likely gives the worm an extra "push" (or
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Fig. 7 Polymer stress energy σ̄
p
ii as a function of De and t for the C. elegans simulations at a viscosity ratio of β = 0.25. In contrast to simulations

conducted in 2D, we see that the regions of highest polymer stress are concentrated at the head and tail, rather than around the entire body of the
nematode. The contour plots suggest two ways in which C. elegans moves more slowly at higher De. First, as illustrated by the set of figures for
t/T = 0.4, regions of high polymer stress behind the nematode seemingly minimize the degree to which the swimmer "slips" backwards during its
swimming motion. Secondly, we observe a slight increase in polymer stress at the head (t/T = 0.2,0.6) in relation to that at the tail of the larger De
simulation, suggesting significant resistance to motion at at these points of the swim cycle. All snapshots presented are at the (z = 0) center plane and
at steady state.

Fig. 8 The local power per unit area exerted on the swimmer by the fluid, P̂ = σ̄σσ
p ·n · v̄. We see that this power is almost always negative across all of

space and time which suggests that the polymer is resisting local motion through the entire cycle. The simulations presented here are at De = 0.1 and
β = 0.25. All snapshots presented are at steady state.

at least lower resistance) since extra tractions are now present in
the back of the worm due to the polymer stress (an idea similar
to that previously offered by Teran et al.). We can see in Fig 6b
that this time point is when the worm is actually moving back-
wards, which means that this extra resistance prevents the worm
from moving backwards as far as the higher De counterpart. We
believe this enhances the speed at low De relative to swimmers at
higher De. But, due to the polymer stretch in the regions near the
head of the worm, the low De worms still swim slower than their
Newtonian counterparts.

In Fig. 6c we have calculated the ratio of the surface integrated
trace of the polymer stress tensor (i.e. polymer stress energy) in
the front of the worm vs. the back of the worm as a function
of time to quantify the previously described hypothesis. We have

plotted this alongside the distance traveled in the net swim direc-
tion (denoted by nswim) during the steady state cycle as well as
the instantaneous velocity during that cycle in Fig. 6a/b. We can
see that the relative value of this stress asymmetry measure for
different De simulations correlates with the instantaneous veloci-
ties of those simulations. For example, up to point 1c in Fig. 6c,
we see that the De = 0.1 simulation exhibits a lower stress ratio
and swims at a slower speed than that for De = 0.5. Past this point
we observe an increase in the back-to-front (B/F) stress asymme-
try measure and a corresponding increase in speed relative to that
of the De = 0.5 simulation (see Fig. 6b). From examining Fig. 7
we see that the increase in the back-to-front stress ratio seems to
be a result of both relaxation of stress at the front of the body
as well as the establishment of more polymer stress behind the
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Fig. 9 Polymer stress energy σ̄
p
ii and the extensional flow strength for the C. elegans simulations at β = 0.25, De = 0.1, t/T = 1.0. We use an

eigenvalue analysis 58,59 to obtain a qualitative picture of extensional flow around the nematode. To denote the strength of the local extensional flow,
we plot the value of Q = 1

2 [(tr(∇̄v̄)2− tr(∇̄v̄2)] in the flow field when D < 0 since D = (27/4)R2 +Q3 < 0 denotes regions of extension (P = −tr(∇̄v̄) = 0
for incompressible flow and R = −det(∇̄v̄)). We see that the regions of greatest polymer stress are strongly associated with regions of extensional
dominated flow; these regions are situated at the head and tail of the nematode. All snapshots presented are at the (z = 0) center plane and at steady
state.

Fig. 10 Extensional flow strength for the C. elegans simulations at β = 0.25, De = 0.1, t/T = 0.2,0.4,0.6. We use an eigenvalue analysis 58,59 to
obtain a qualitative picture of extensional flow around the nematode. To denote the strength of the local extensional flow, we plot the value of
Q = 1

2 [(tr(∇̄v̄)2 − tr(∇̄v̄2)] in the flow field when D < 0 since D = (27/4)R2 + Q3 < 0 denotes regions of extension. We observe extension around
the head and the tail at all times during the swimming cycle. All snapshots presented are at the (z = 0) center plane and at steady state.

worm at lower De (De = 0.1). These moments during the swim
cycle where the higher De simulations experience lower instan-
taneous velocities relative to those for smaller De are what give
rise to the overall average decrease in swimming speed with re-
spect to De seen in Fig. 5. These moments of lower speed are
very clearly correlated with ratio of polymer stretch behind vs. in
front of the worm.

In Fig. 6d we have similarly plotted the average polymer
traction in the swimming direction on the surface of the worm
( 1

A
∫

S σ̄σσ
p · n · nswimdS). This demonstrates our ability to explic-

itly calculate the polymer tractions (which is a calculation that
2D models cannot perform). It should be noted that the average
polymer traction is always resisting the net motion of the swim-
mer. The average polymer tractions also correlate quite well to
the values of the back-to-front polymer energy integral in Fig. 6c.
A key feature of this plot is that the lower De swimmer (De = 0.1)
has a higher back-to-front ratio and less average polymer traction
resistance at the point where the swimmer is moving backwards
(near t/T = 0.4); this suggests that the extra polymer stretch in

the back of the worm seen in Fig. 7 at t/T = 0.4 reduces the re-
sistance and helps inhibit the backwards motion of the swimmer.

In Fig. 8 we also have plotted the local power per unit area
exerted on the swimmer by the fluid as a function of the posi-
tion along the swimmer for three different time snapshots. The
local power is defined as P̂ = σ̄σσ

p ·n · v̄. We can see that the poly-
mer traction is almost always resisting the local motion since the
power is nearly always negative. This suggests that the role of
the polymeric tractions is largely to resist motion, but when the
swimmer is moving backwards instantaneously during the cycle
(near t/T = 0.4 for example) the resistance actually aids in the net
motion of the worm since it prevents the swimmer from recoiling
substantially.

We use an eigenvalue analysis (which we refer to as PQR anal-
ysis) similar to that used by Ooi et al. and Terrapon et al.58,59 and
first introduced by Chong et al.61 to obtain a qualitative picture of
the flow topology around the nematode so as to understand the
origin of the stresses seen in Fig. 7. Flow at any point in space
can be characterized by the eigenvalues and eigenvectors of the
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Fig. 11 Polymer stress energy normalized by (1−β ) (i.e. σ̄
p
ii

1−β
) as a function of β and t for the C. elegans simulations at a Deborah number of De = 0.5.

As a function of β , we observe only a slight change in the polymer stretch field at various points of the swim cycle. In light of the trend in swim reduction
vs. β seen in fig. 5, this suggests that decreasing the viscosity ratio β leads to a slower swimming speed by merely amplifying the effect seen at larger
values of β (rather than altering the distribution of stress). All snapshots presented are at the (z = 0) center plane and at steady state.

velocity gradient tensor. There are either three real eigenvalues
or one real eigenvalue and a complex conjugate pair. If there are
three real distinct eigenvalues then the flow is extensional in na-
ture, and in the case of one real eigenvalue the flow is vorticity
dominated (i.e. rotational). We can determine which is the case
through the values of the invariants of the velocity gradient ten-
sor: Q = 1

2 [(tr(∇̄v̄)2− tr(∇̄v̄2)] and R = det(∇̄v̄) (the third invariant
P = −tr(∇̄v̄) = 0 for an incompressible fluid). The discriminant,
D = (27/4)R2 + Q3, differentiates between regions of extension
and those dominated by rotation. If D < 0, there exists three real
distinct eigenvalues at that point in the fluid and is thus a region
of predominantly extensional flow. Throughout this document we
plot the value of Q = 1

2 [(tr(∇̄v̄)2− tr(∇̄v̄2)] if D < 0. As discussed
in Terrapon et al., the tensor invariant Q measures the relative
rotation and strain of the flow, so that the smaller the value of Q,
the stronger the degree of extension58. Since all values presented
in this work are dimensionless, any value of Q which has a mag-
nitude greater than 1 (and is negative) is to be interpreted as a
region of strong extension.

In Fig. 9, we can see that regions of very high polymer exten-
sion correspond to the regions in the flow that have the highest
extension rates. The right panel shows clearly that the regions of
strong extensional flow (large, negative Q) occur near the head
and the tail but there is very little extensional flow anywhere
along the rest of the worm’s body. Additionally in Fig. 10, we
can see that the extensional regions are located around the head
and tail of the worm for all times and virtually nowhere else. This
is in line with the observations of polymer stretch. The difference
in the resulting polymer extension as a function of time for differ-
ing values of De presented in Fig. 7 can be explained by a history

effect. The higher De fluids allow for the polymer to remain ex-
tended longer after the extensional flow has relaxed, causing ar-
eas of stretch to persist for much longer in the higher De cases. In
experimental measurements, areas of extension have been noted
considerably far away from the surface of the worm23. Those
extensional points are present in the simulations as well, but the
magnitude of extension at those points is extremely weak com-
pared to the near head and the tail regions, and virtually no poly-
mer stretch is observed in these more distant areas. It is unlikely
that these remote points are responsible for any of the observed
slowdown.

The nearly linear reduction in speed as a function of β observed
in Fig. 5 is very interesting given the very non-linear nature of this
problem. To explore this further σ̄

p
ii

1−β
= 1

De (cii−3) in three differ-
ent parts of the swim cycle for two different β values of 0.25 and
0.38 are shown in Fig. 11. Surprisingly, we observe that the poly-
mer stretch looks virtually identical for these two different values
of β . This clearly explains the linear speed reduction as a function
of β , since the ultimate stress experienced around the worm due
to the polymer is simply (1−β ) σ̄

p
i j. The nearly constant value of

σ̄
p
ii

1−β
around the worm suggests that the linear β pre-factor then

controls the asymptotic slowdown. It would appear that there is
an asymptotic value of the swim speed for β → 0 that is non-zero
(i.e. a non-zero speed in a Maxwell fluid), though we have not
tried to simulate this particular fluid.

The final goal of this study is then to compare the results of our
simulation to the experimental results of Shen and Arratia23 and
previous numerical results33. In Fig. 12 we plot our swim speed
data against that of the two aforementioned studies. In the top
panel our speed reduction at β = 0.67 is plotted as a solid line
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Fig. 12 a) Comparison of normalized average speed (U/UN ) as a func-
tion of De to recent 2D simulation 33 and experimental results 23. We see
that 2D simulations (which were also conducted at β = 0.67) predict a
greater speed reduction (lower value of U/UN ) than those in 3D for all
De. b) Comparison to experimental data by Shen et al. 23. We see a
qualitative agreement in regards to a monotonic decrease in swimming
speed to a asymptotic reduction at large De. All β values have been plot-
ted since the experimental data points correspond to different viscoelastic
fluids with different values of β .

with circular points against the results of a 2D simulation study
by Thomases and Guy for a similar system (the "stiff burrower")
as a dashed red line33. Notably our speed reduction is much
smaller than those observed in 2D across all values of De. This
is likely due to the observations made about polymer extension
in 3D being highly localized to the head and the tail in Fig. 7.
In 2D simulations the stress is much more dispersed around the
body, but in the 3D simulations it appears that much of this stress
is allowed to relax in the third dimension.

In Fig. 12b we compare our results across a range of β values
against the results from Shen and Arratia23. The data collected
experimentally is at very low β < 0.05 (evaluated to be ηw

η0
where

ηw is the viscosity of water). We do capture the asymptotic value
of speed reduction at low β . However, the results seen by Shen
and Arratia are not captured quantitatively over the whole range
of De. There are two major reasons that likely account for this
difference. First, we assume a very specific 3D motion around the

0 0.5 1 1.5 2
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0.4

0.6

0.8

1

 = 0
 = 0.05
 = 0.15

Fig. 13 The simulated speed reduction for C. elegans at β = 0.25 for
a series of Deborah numbers compared for two fluids. The solid purple
line is the speed reduction for an Oldroyd-B fluid and the open orange
and blue symbols are for a Giesekus fluid with α = 0.05,0.15 respectively.
The Giesekus model at α = 0.15 is highly shear thinning. We see that the
overall speed reduction is lowered due to shear thinning and that there is
no longer an asymptotic speed reduction.

captured experimental 2D backbone adequately describes the en-
tire worm deformation, but in fact there are many such deforma-
tions that are consistent with the worm images. Secondly, each
data point captured by Arratia is at a different value of β since
each solution is a different mixture. A closer evaluation of the
fluid rheology for each mixture at each of their data points with
more attention to the best fit value of β might lead to a better fit
with the experimental data. For example, we can see that since β

decreases moving left to right in the experimental data (as more
polymer is added to solution), if the best fit values of β for the
fluids are higher for the lower De data points, then there would
be considerably better agreement in the comparison curves.

Lastly, we probe the effect that shear thinning has on the speed
reduction. It has largely been observed experimentally that shear
thinning has a very small effect on the swimming kinematics and
on the swim speed reduction in non-elastic fluids23,24. Addition-
ally, in a theoretical perturbation analysis of Taylor’s swimming
sheet, the effect of shear-thinning rheology only appears at fourth
order in the waving amplitude62 whereas elastic effects appear
at second order27,63. In Fig. 13 we see that adding considerable
shear thinning to our simulations does quantitatively and qualita-
tively change the speed reduction behavior as a function of Debo-
rah number. The original results at β = 0.25 are plotted as a solid
curve (α = 0) with filled symbols while the Giesekus model re-
sults with α = 0.05,0.15 are plotted with open symbols in orange
and blue. The Oldroyd-B model (which is simply the Giesekus
model with α = 0) exhibits no shear thinning. We utilized this
model for all of our previous discussions to isolate the effect of
fluid elasticity on swim speed without considering shear thinning
effects. In contrast, the Giesekus model does exhibit shear thin-
ning, the magnitude of which increases with increasing α. Details
concerning the magnitude of this shear thinning in simple shear
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Fig. 14 Example shape evolution for the amoeboid simulations over the course of one period (shown here for De = 5, β = 0.75). The time signatures
indicate the fraction of a full swim cycle at which a given shape is observed. The contour plot denotes the magnitude of the prescribed active traction
(force per unit area). A positive value of this active forcing (red) denotes the amoeba’s membrane is being extended outward in the normal direction at
that point on the surface; a negative value (blue) denotes withdrawal of the membrane surface inward. A video of this swimming motion is supplied in
the electronic supplementary information †.

flow as a function of α can be found in the original paper by
Giesekus in 198264. The results that we show in Fig. 13 there-
fore correspond to the non-shear thinning case as a solid line (the
Oldroyd-B results) as well as two cases with increasing amounts
of shear thinning. The shear thinning introduced by the Giesekus
model has two main effects. The speed reduction is generally
smaller for the shear thinning model, and the asymptotic speed
reduction now shows considerable recovery at high De. Interest-
ingly, this shear thinning effect is qualitatively the same as that
predicted by Li et al. in their 2D numerical study of Taylor’s wav-
ing sheet. There, the inclusion of shear thinning behavior in their
viscoelastic constitutive model led to a recovery in speed reduc-
tion at higher De13. These results suggest that the effects of shear
thinning and fluid elasticity may interact in non-trivial ways that
should be carefully explored experimentally, although this effect
appears to be secondary in nature to the effect of elasticity.

3.2 The Effect of Fluid Elasticity on the Swimming Kinemat-
ics of Amoeboid Motion

We now examine the effect of fluid elasticity on amoeboid motion.
Amoeboid motion is an idealized swimming motion that contrasts
that of the worm since the amoeboid swims through purely nor-
mal deformation of its surface (in contrast, the worm swims by
extension and contraction of its dorsal and ventral muscles). The
amoeboid simulations were conducted in a simulation box of size

10Rp x 10Rp x 10Rp, where Rp is the reduced radius of the ini-
tial configuration (Λ = 0.05). The fluid domain is a uniform mesh
with a mesh size of 0.12 x Rp. Periodic boundary conditions are
used for the boundaries in the x direction, while no-slip boundary
conditions are utilized for the boundaries in y and z. Note that
the axisymmetry of the prescribed forces in the amoeboid model
cause it to swim in the positive x direction. The distance of the
no-slip boundaries in the lateral directions (y and z) are chosen
such that they have a negligible impact on the speed of the swim-
mer (indeed, the confinement ratio C =

2Rp
W as defined by Wu et

al. is 0.1, indicating a low degree of confinement45). Before pro-
ceeding with simulations in a viscoelastic fluid, we validated the
speed of an amoeba in a Newtonian fluid against the results for
Ranganathan et al.46 utilizing their stated parameters. This com-
parison was done in the context of Ca� 1 to rule out differences
in solid constitutive models as a source of error. We found that
our speed was within 2% of the speed reported in this work al-
lowing us to be confident that our algorithm was implemented
correctly. Below in Fig. 14 we have illustrated six snap-shots of
the amoeboid moving in different parts of the cycle. A video of
this swimming motion is supplied in the electronic supplemen-
tary information †. The contours illustrated on the surface are
the magnitude of the extra active traction which is presented in
Eqn. 14.

A series of simulations were conducted varying De utilizing the
Oldroyd-B model while maintaining an internal viscosity equal to
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Fig. 15 Normalized average speed (U/UN ) for the amoeboid simulations.
Similar to the results for the C. elegans simulations, we observe a mono-
tonic decrease in swimming speed to an asymptotic value for large De. In
contrast, however, the speed reduction for the amoeba is always greater
than that for the C. elegans simulations at the same value of β . The
asymptotic values are plotted as a function of the viscosity ratio, β , in
Fig. 15b; as we saw for the C. elegans simulations, the speed reduction
scales nearly linearly with β .

the external viscosity with no polymer contribution. In Fig. 15,
where we plot the normalized speeds, we see many similar fea-
tures to the same plot for C. elegans (Fig. 5). In Fig. 15 we note
that there is an ultimate speed reduction observed at high De and
that there is always a slowdown observed in all cases. However,
the ultimate asymptotic speed reduction for the amoeboid swim-
ming motion is more severe at low values of β relative to that of
C. elegans. In Fig. 16 we note that the polymer stretch is not iso-
lated to small regions of the body (like the head and the tail for
C. elegans) and instead appears to accumulate everywhere around
the amoeboid surface in a thin layer.

In Fig. 16 we can see some similarities between the polymer
stress energy for the C. elegans simulations and the amoeboid
simulations. The polymer stress energy, σ̄

p
ii =

1−β

De (cii−3) is plot-
ted for the amoeboid simulations for De = 0.25 and De = 5 at a
three time points in a swimming cycle. In both cases there are

extreme areas of polymer stress that accumulate near the body of
the swimmer in a thin boundary layer. However, in the case of the
amoeboid, stress accumulates everywhere around the body of the
swimmer instead of being isolated around the head and the tail.
As the amoeboid swims there are areas of extensional flow that
appear around the swimmer and at high De the resulting areas
of stretched polymer are never allowed to relax due to the finite
relaxation of the polymer and the recurring areas of extension (in
contrast the undulatory motion of C. elegans creates extensional
flow that is concentrated in very small regions near the head and
tail).

As a function of β , the asymptotic reduction in swim speed
again shows similar behavior to that of C. elegans where it ap-
pears to nearly linearly depend on β in Fig. 15b. In Fig. 17 we
see that the polymer stretch near the amoeba ( σ̄

p
ii

1−β
) looks remark-

ably similar for two different values of β . In this case we note that
there is a small amount of difference between the contours, espe-
cially in the frame at t/T = 0.6, which likely explains the slight
non-linear behavior we observe in the asymptotic speed reduc-
tion as a function of β . The similarities between the phenomena
of stress accumulation in thin boundary layers and the ultimate
speed reduction dependence on β for C. elegans and the amoe-
boid in viscoelastic fluids are remarkable given the very different
modes of motion and swim strokes. It is also notable that the two
different ways that we can simulate motion (either with constant
swim stroke or by a fixed extra active traction) seem to produce a
very consistent qualitative trend regarding the reduction in swim
speed.

However, when examining the regions of extensional flow
around the amoeboid in Fig. 18, we can see that unlike C. el-
egans, there is not one single region where extension is preva-
lent throughout the whole cycle. We use the same PQR analysis
we used for the nematodes to characterize the three-dimensional
flow field58,59 to obtain a qualitative picture of extensional flow
around the amoeba. We plot the value of Q= 1

2 [(tr(∇̄v̄)2− tr(∇̄v̄2)]

if D < 0 at various times throughout the cycle. We define D =

(27/4)R2 +Q3 and if D < 0 we are in a region of extensional flow.
Unlike C. elegans, areas of extension appear in many places along
the surface of the body leading to different areas along the body
experiencing the strongest extension during different parts of the
cycle. These areas of extension have varying strength, but appear
laterally as well as in front/behind the amoeboid depending on
the time in the cycle. We hypothesize that the areas of exten-
sion combined with the finite relaxation time of the suspended
polymers results in the thin boundary layer of polymer extension
nearly everywhere around the amoeboid’s surface in Fig. 16. It
seems the Lagrangian history of each point that tracks with the
surface of the swimmer experiences extension at some point dur-
ing the cycle, but then the associated polymers are unable to re-
lax at sufficiently high De number making the observed boundary
layer more disperse than in the case of C. elegans. Although the
regions of extension appear weaker than those for C. elegans, the
local De number (Delocal) is actually quite high in these exten-
sional regions. In the second row of Fig. 18 the local De number
is plotted for the same time snapshots. We have defined the lo-
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Fig. 16 Polymer stress energy σ̄
p
ii as a function of De and t/T for the amoeboid simulations at a viscosity ratio of β = 0.25. We observe an increase

in the polymer stress energy with De at all moments during the swim cycle. We note that this is qualitatively different from what is observed in the
C. elegans simulations, where for example at t/T = 0.2 it appears that the average polymer extension is greater at lower De. This suggests that the
mechanism for the amoeboid speed reduction is somewhat different than that for C. elegans, although both involve a thin boundary layer of polymer
extension. We hypothesize that the speed reduction for the amoeba is related to the fact that, due to its axisymmetric beating pattern, it swims in a
straight line and thereby accumulates polymeric stress around the entirety of its body. All snapshots presented are at the (z = 0) center plane and at
steady state.

Fig. 17 Polymer stretch σ̄
p
ii

1−β
as a function of β and t/T for the amoeboid simulations at De = 0.25. Note that there are only very subtle changes as

a function of β , but small differences can be seen near the right side of the amoeboid at t/T = 0.6. All snapshots presented are at the (z = 0) center
plane and at steady state.
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Fig. 18 Extensional flow strength for the amoeba simulations at β = 0.75, De = 0.25. We use an eigenvalue analysis 58,59 to obtain a qualitative picture
of extensional flow around the amoeba. To denote the strength of the local extensional flow, we plot the value of Q = 1

2 [(tr(∇̄v̄)2− tr(∇̄v̄2)] in the flow field
when D < 0 since D = (27/4)R2 +Q3 < 0 denotes regions of extension. As described in the text, the tensor invariant Q measures the relative strength
of rotation and strain of the local flow. We see that the regions of greatest extension are located at many points near the body depending on what part
of the cycle the amoeboid is currently in, which explains why we see extension in a boundary layer around almost the entire surface in Fig. 16. In the
second row the local De number is plotted for the same time snapshots. The local Deborah number is the maximum extensional eigenvalue times the
relaxation time of the fluid. We see De numbers in excess of 0.5 which means the we have passed the coil-stretch transition indicating these flows are
sufficiently strong to be generating stretch even for the low De = 0.25. All snapshots presented are at the (z = 0) center plane and at steady state.

cal De number to be the maximum rate of extension (the largest
positive eigenvalue of the local velocity gradient) at each point
multiplied by the fluid relaxation time. We see that even at the
modest De = 0.25 that the local De number exceeds 0.5 so the
polymer will extend substantially due to the flow exceeding the
required local De number for the coil-stretch transition.

It is also very unlikely that these polymer stretch regions re-
sult from shear or the translational motion of the swimmer. If
we consider the amoeboid simulation with most polymer stretch,
De = 5 and β = 0.25, we find that the resulting stretch from the
shear generated by translational motion will be very small. For
this swimmer, U/(Rp f ) ≈ 0.024 since U/UN ≈ 0.2 from Fig. 15
and UN/(Rp f ) = 0.12 (the dimensionless speed in a Newtonian
fluid). Thus an associated Wi based on this swimming speed
would be Wi = λU/Rp = 0.12. If we consider the equivalent
steady shear flow with an Oldroyd-B fluid cii is 3+2Wi2 ≈ 0.0348.
Recall for the Oldroyd-B model that the polymer stress energy is
σ̄

p
ii =

1−β

Wi (cii−3) ≈ 0.18 which is an order of magnitude smaller
than the greatest stretch in Fig. 16, illustrating that these regions
of high stretch are not a result of local shear but almost certainly
due to the local extensions seen in Fig. 18.

Lastly, we also examine other features of the amoeba’s swim-
ming motion in a viscoelastic fluid such as the effect fluid elas-
ticity has on its power expenditure and its average swimming
efficiency. We see that not only does the amoeba swim more
slowly, but it also exhibits a marked decrease in swimming ef-
ficiency since it still expends roughly the same amount of power
to swim. In Fig. 19 we plot both the efficiency and the power
vs. De for three different values of β . We can see that power,
which is expressed as P = 1

T
∫ T

0
∫

fff act ·udSdt, shows a very modest
reduction as the De is increased. Because the swimmer spends al-

most the same amount of energy to move despite it swimming sig-
nificantly more slowly as the De increases, the overall efficiency
ηe = P/(6πηaU2) is reduced considerably with increasing fluid
elasticity.

4 Conclusions
In this study, we have explored the effect of fluid elasticity on
two "model" swimming motions: the undulatory motion of C. ele-
gans and amoeboid motion. Notably, we have performed the first
fully three-dimensional simulations of these types of swimmers in
viscoelastic fluids , including a complete study of the effect of the
elastic fluid viscosity ratio, β , yielding new insights that could not
be captured in previous theoretical or numerical analyses.

For both swimmers, despite the clear differences in the way that
they propel themselves, we find a monotonic reduction in swim-
ming speed to an asymptotic plateau value as the Deborah num-
ber (De) increases. For the motion of C. elegans in particular, we
find regions of large polymer stress concentrated at the head and
tail of the swimmer. Using local invariants of the flow field, we
showed that these regions for the finite De simulations are likely
created by strong extensional flow at these locations throughout
the swim cycle. Interestingly, we found that this is qualitatively
different from predictions of recent 2D simulations, where the
polymer stress is high around the entire immersed body. We sug-
gest this is a potential reason why the swimming speeds in a vis-
coelastic fluid normalized by that in a Newtonian fluid are larger
in the 3D simulations than those produced from previous 2D nu-
merical studies. We also find from our speed reduction curves
that the normalized speed at large De appears to scale linearly
with β . An examination of the polymer stress energy in the flow
field as a function of β shows little change in the distribution of
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Fig. 19 Average power (P) and efficiency (ηe) normalized by their values
in a Newtonian fluid for the amoeboid simulations. We see that not only
does the amoeba swimmer move more slowly with increasing De and β

(Fig. 15), but it also expends less power (the hydrodynamic power for
the amoeboid is defined as P =

∫
S fff act · udS). Because the reduction in

power expenditure is smaller than the reduction in speed for all De and
β , the net effect is that the swimming efficiency in a viscoelastic fluid is
always less than that for a Newtonian fluid (the swimming efficiency is
defined as the ratio of the hydrodynamic power of the amoeba to the
power needed to translate a sphere with the same volume and average
speed: ηe = P/(6πηaU2)).

this stress as β is varied. Thus, we believe that the effect to which
fluid elasticity has on the swimming speed does not change with
β ; rather, β only modulates the degree to which it influences the
swimming speed.

For the case of amoeboid motion, we show that a decrease in
swimming speed is correlated with an accumulation of polymer
stress that surrounds the deforming body. We hypothesize that
since the amoeboid is confined to swim in a straight line unlike
C. elegans, that it is unable to avoid the polymeric stress that it
incurs as the generated flow deforms polymers in the fluid. In
contrast, the C. elegans swimmer is constantly undulating later-
ally relative to its net direction of motion; we think this is the rea-
son the normalized speeds for the amoeba are smaller than those
for C. elegans simulations. We find that the asymptotic swimming
speed at large values of De appears to be a nearly linear function
of β as we found for C. elegans. This suggests that for both organ-

isms the effect of fluid elasticity scales in direct proportion to the
concentration of polymer in solution.

In conclusion, we have demonstrated that the dynamics of de-
formable swimmers in complex fluids can be accurately studied
using a modified 3D Immersed Finite Element Method. The flow
solver and immersed boundary code has been extensively vali-
dated in previous studies49 and has been applied to kinemat-
ically controlled and force controlled swimming motions. The
force controlled studies have been benchmarked against previous
Newtonian flow studies, further suggesting the accuracy of this
proposed method46. Since this simulation tool is capable of sim-
ulating multiple deformable swimmers in arbitrarily complex ge-
ometries, we believe that this algorithm can aid other researchers
in future studies of swimming in viscoelastic fluids.
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We explore swimming speeds of C. elegans and amoeboids in viscoelastic fluids with three-dimensional, 
large amplitude simulations. 
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