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Identifying structural signatures of shear banding in
model polymer nanopillars†

Robert J. S. Ivancica and Robert A. Rigglemanb

Amorphous solids are critical in the design and production of nanoscale devices, but under strong
confinement these materials exhibit changes in their mechanical properties which are not well un-
derstood. Phenomenological models explain these properties by postulating an underlying defect
structure in these materials but do not detail the microscopic properties of these defects. Using
machine learning methods, we identify mesoscale defects that lead to shear banding in model
polymer nanopillars well below the glass transition temperature as a function of pillar diameter.
Our results show that the primary structural features responsible for shear banding on this scale
are fluctuations in the diameter of the pillar. Surprisingly, these fluctuations are quite small com-
pared to the diameter of the pillar, less than half of a particle diameter in size. At intermediate pillar
diameters, we find that these fluctuations tend to concentrate along the minor axis of shear band
planes. We also see the importance of mean “softness” as a classifier of shear banding grow as
a function of pillar diameter. Softness is a new field that characterizes local structure and is highly
correlated with particle-level dynamics such that softer particles are more likely to rearrange. This
demonstrates that softness, a quantity that relates particle-level structure to dynamics on short
time and length scales, can predict large time and length scale phenomena related to material
failure.

1 Introduction
There are numerous applications where amorphous organic mate-
rials are used in highly confined geometries, including as polymer
photoresists in semiconductor manufacturing1, the active layers
in organic light-emitting diodes2,3, and in polymer nanocompos-
ites at high loadings of nanoparticles4,5. In many of these appli-
cations, in particular semiconductor manufacturing, the mechan-
ical properties of the confined material are of utmost importance.
Generally speaking, amorphous materials have many unique me-
chanical properties including high strength, high stiffness, and
low mechanical dissipation6–12. These properties make them de-
sirable in a number of engineering applications; however, their
use is hindered by their tendency to fail in a brittle manner13–17.
A hallmark of these catastrophic failure modes is shear banding,
the localization of shear strain to a narrow region which develops
during deformation18,19. Shear banding has been experimentally
observed in many types of amorphous materials including: gran-
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ular materials20,21, bubble rafts22,23, complex fluids24,25, and
metallic glasses26,27.

Although shear banding has been extensively studied in the
bulk using phenomenological models, a microscopic theory of
shear banding has proven elusive. The phenomenological mod-
els that describe shear banding can broadly be classified into two
types. Solid mechanics models postulate some constitutive rela-
tions about how a material behaves at each point in space. In
these theories, a shear band forms when a small region of the
material has a perturbed set of constitutive relations causing it
to shear more easily28–30. Similarly, mean-field models, includ-
ing shear transformation zones31,32, soft glassy rheology33, and
others34, hypothesize mesocale “configurational soft spots"19, re-
gions that are more likely to yield under shear stress, and these
regions propagate to form a shear band. While these two types of
theories have significantly different starting points, they both pre-
dict that shear bands form from mesoscale defects in a solid but
provide few details as to the nature of these defects. Although
some indirect estimates of their volume are available35,36, the
microscopic structure that underlies these defects is unknown37.
Moreover, it is unclear whether bulk defects are the primary cause
of shear banding in confined materials. Previous work has shown
that the location of strain localization is somehow quenched into
the molecular structure when forming a glass38, suggesting that
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the local structure could play a key role.

In this study, we examine a large set of molecular dynamics sim-
ulations of amorphous oligomeric nanopillars that are strained
to failure. Using a novel machine learning method, we detect
mesoscale structural defects which lead to shear band forma-
tion. We systematically vary the pillar diameter in these systems
from 12.5 – 100 monomer diameters to understand how these de-
fects vary as the system becomes less confined and more bulk-
like. From this defect structure, we make quantitative predictions
about where shear bands will form. Our machine learning ap-
proach allows us to look at a broad array of structural features
and perform an unbiased selection of those which correlate with
shear banding at each pillar diameter. Here, we pay special atten-
tion to another machine-learned microscopic structural quantity,
“softness," which is strongly predictive of particle-level rearrange-
ments in disordered materials39. Softer particles have structures
which make them more likely to rearrange than harder (less soft)
particles. This quantity has been implicated in the understand-
ing of aging glasses40 and the universal yield strain in bulk dis-
ordered materials41, but the connection between softness and
mesoscale phenomena such as shear banding has not been ex-
plored.

We find that small fluctuations in the diameter of the pillar,
less than half of a particle diameter in size, are most predictive
of where shear bands will form in these pillars regardless of the
diameter of the pillar. This is surprising as these surface fluctua-
tions are not mechanically induced (from dust for example) but
come about from the thermalization of the pillars themselves. We
also find that our coarse grained softness features become more
important for distinguishing whether a plane will shear band as
pillar diameter increases. Planes that are softer than average are
more likely to shear band. To ensure the density features are not
sufficient to predict shear banding alone, we verify that these soft-
ness features do better than random chance at identifying shear
bands even in the absence of correlations with other density fea-
tures.

The importance of these results is twofold. First, they suggest
that small surface defects induced during the thermalization of
nanoscale amorphous components may play a major role in their
mechanical properties up to the micron scale. Indeed, these re-
sults suggest that focusing on manufacturing processes that lead
to smooth surfaces as opposed to hard interiors will yield stronger
nanoscale materials. Second, more fundamentally, they suggest
that softness may be the microscopic origin of mesoscale config-
urational soft spots in the bulk. This connection is non-trivial as
we are relating a structural quantity (that is associated with local,
short-time scale dynamics) to shear band formation, a non-local,
long-time scale event. Even more interesting, we find that we do
not need to know the dynamical nature of these defects as we
approach the shear banding event. Knowing their configuration
prior to deformation is sufficient. This suggests that at temper-
atures well below the glass transition temperature these defects
are locked in place.

2 METHODS

2.1 Simulation model

We simulate a coarse grained bead-spring polymer with chains
of length N = 5. The bonded interactions are taken through a
harmonic bonding potential,

Ub
jk =

kh

2
(
r jk−d

)2
, (1)

where r jk is the radial distance between monomers j and k and
kh = 2000ε/d2. Here, d and ε are the length and energy scales
of our simulations respectively. The non-bonded interactions are
taken using a modified 12-6 Lennard-Jones (LJ) potential,

Unb
jk = 4ε

[(
σ

r jk−∆

)12
−
(

σ

r jk−∆

)6
]
. (2)

We choose ∆ = 0.75d and σ = d−∆/21/6. This gives our potential
shorter range and higher curvature while restricting the minimum
to reside at the same location as the standard LJ potential where
∆ = 0. This modification promotes brittle fracture at low temper-
atures as is expected in experiments. In the text, we present our
findings in units reduced by d,ε and the monomer mass m. This
study was completed using the LAMMPS42 simulation package
with a simulation timestep of 0.0006636, chosen to be commensu-
rate with the increased curvature of the non-bonded interactions.
The pillars are aligned along the ẑ axis and periodic in this di-
rection, and surfaces in the radial direction are free. We hold
the length of our pillars fixed at L = 200 particle diameters and
vary the diameter of our pillars to be nominally D = 12.5, 25, 50,
and 100 particle diameters. We generate Npillar = 100 indepen-
dent pillar configurations for the three smallest pillar diameters
and Npillar = 50 independent pillar configurations for the largest
diameter pillars.

Using a cooling rate of 5× 10−5, we find the glass transition
temperature of the pillars to be Tg = 0.38 by identifying the inter-
section of linear fits of the density as a function of temperature
in the supercooled and glassy states. Pillars were thermalized
at T = 0.5 within a cylindrical, harmonic confining wall which is
fixed to ensure the density of the monomers is ρ ≈ 0.3 within it.
The pillars were cooled at a rate of 5× 10−4 to a temperature of
T = 0.05. This caused the pillar diameter to contract away from
the confining wall as the density of monomers rose to ρ ≈ 1.0
within the pillar below Tg. We then deform our samples by apply-
ing a uniaxial strain to the ẑ axis at an engineering strain rate of
ε̇ = 2.5×10−5.

2.2 Softness field

The softness field used in this study was first characterized in Ref.
41. We repeat relevant details here for completeness. We first
characterize the local structure around each monomer j, using a
set of NLSF = 165 “local structure functions":

ΨR( j; µ,L) = ∑
k

e(r jk−µ)2/L2
(3)
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ΨA( j;ξ ,λ ,ζ ) = ∑
k,l

e(r2
jk+r2

kl+r2
jl)/ξ 2 (

1+λ cosθ jkl
)ζ (4)

where µ, L, ξ , λ , and ζ are parameters that characterize the
members of each family of structure functions. Here, r jk is the
distance between monomers j and k. The variable θ jkl is the an-
gle made between monomers j, k, and l. The summations are
performed for all monomers within a radius RS

c . Our results are
insensitive to changes in RS

c so long as we include the first few
neighboring shells39. In this work, we set RS

c = 2.5. The param-
eter sets that we used to characterize the local environment may
be found in the supporting materials. We standardize each lo-
cal structure function by subtracting its mean and dividing by its
standard deviation across all monomers and then assign each par-
ticle j a vector, v j ∈RNLSF in which each orthogonal component of
the vector is one of the standardized local structure functions. We
call these “local structure vectors".

Next we need to develop a “training set", an example set of re-
arranging and non-rearranging particle the machine learning al-
gorithm. To create this set, we ran additional independent molec-
ular dynamics simulations in which we thermalized and strained
pillars at several temperatures: T = 0.05, 0.1, 0.15, 0.2, 0.25, 0.275,
0.3, and 0.325. These pillars all had a nominal diameter of D = 50
and had a length along their ẑ axis of 100. Because the deforma-
tion of the pillars causes affine transformations of particle config-
urations which do not necessarily correspond to rearrangements,
we quantify rearrangements of particle j using:

D2
min( j; t) =

1
N j

N j

∑
k
[r jk(t +∆t)−Λ j(t)r jk(t)]

2 (5)

which measures the non-affine motion of particle j at time t.
Here r jk is the vector between particles j and k and Λ j(t) is the
best fit local gradient tensor about particle j which minimizes
the quantity31. Summations are performed over all N j particles
within a cutoff radius of 2.5 particle diameters. We chose ∆t to
correspond to a strain of 0.00166. We say that a particle j at time
t rearranges if D2

min( j; t)> 0.1. This value was chosen by using the
same method as in Ref. 39. Additionally, we confine our rearrang-
ing and non-rearranging sets of particles to be selected from a re-
gion 17 particle diameters from the center of the pillar and in the
elastic regime of strain to avoid rearrangements caused by zero-
modes on the surface of the pillar and particles in the shear band
respectively. At each temperature, we chose Nr = 700 randomly
rearranging particles, and Nn = 700 non-rearranging particles to
be in our training set. We say that a particle is non-rearranging
if it has the one of the lowest Nn values of D2

min averaged over a
relaxation time43.

We then use a linear support vector machine (SVM) to calcu-
late the hyperplane that best separates the local structure vectors
corresponding to rearranging particles from points corresponding
to non-rearranging particles. It is not possible to specify a hyper-
plane that completely separates rearranging particles from non-
rearranging ones. Thus, the SVM is designed to penalize particles
whose classification is incorrect. This misclassification penalty is
controlled by the parameter C where larger C values correspond

to fewer incorrect classifications. This parameter was chosen to
be C = 0.1 by k-folds cross-validation. We find that more than 93%
of rearrangements occur on particles with softness S> 0 by nested
cross-validation44. As with plane weakness, SVM algorithm was
implemented using the scikit-learn package45. For the purposes
of this study, we normalize our softness field to have zero mean
and unit variance at each pillar diameter. This leads to an eas-
ier interpretation of our softness based results as the number of
standard deviations away from 0.

2.3 Structure functions

Shear bands are expected to form along approximately 45° planes
in the pillars. We partition our pillars into Nplane = 7200 45°–
planes with 200 partitions in the ẑ axis and 36 partitions in the
θ̂ direction, along the polar angle. We seek to mathematically
encode the structure of these planes. To do this, we devise a set of
“structure functions" that describe the local structure of the pillar
around each of plane. We define these functions to respect the
symmetries of the elliptical prism that characterizes each plane
in the pillar. These functions come in two categories with three
families each. The first category is the density structure functions:

Gh (i;ξh,h) =
1

D2 ∑
j

Θ
P
i j (h,ξh) (6)

GR (i;ξh,LR,R) =
1
R ∑

j
Θ

P
i j (0,ξh)e−di j(R)

2/L2
R (7)

GA,a (i;ξh,ξR,θc) =
1

D2 ∑
j

Θ
P
i j (0,ξh)Θ

E
i j (ξR)cos

(
θ

a
i j

)ζ (θc)
(8)

where each structure function is for a plane i and sums are
performed over all particles j whose contribution to the sum is
greater than 0.1 for numerical efficiency. Here, LR, ξh, ξR, h, and
R are parameters that characterize these functions. The function
ΘP

i j (h,ξh) = e−(|hi j |−h)2/ξ 2
h is a soft step function that controls the

spatial extent of the mapping from plane i to particle j, hi j is
the distance between plane i and particle j and ξh is a parameter
that controls the decay length of ΘP

i j. The function di j (R) is the
distance in plane i that particle j is away from an ellipse that is
centered on the ẑ axis and has a minor axis of length R. The
ellipse is oriented so that it covers the ellipse of eccentricity 1√

2
that is formed by making a 45° plane through the pillar. This
distance is found numerically using the algorithm in Ref. 46. The
ellipse is defined by the equation (xM)2/2+(xm)2 = R2 where xM

and xm are the in plane distances along the major and minor axes
of the ellipse cut out by the 45°–plane respectively. The function
ΘE

i j (ξR) = e−((x
M
i j )

2/2+(xm
i j)

2)/ξ 2
R is a soft step function for particles

within an ellipse with a minor axis of length ξR. The variable θ a
i j

is the angle between the a axis of plane i and particle j where a is
either the major (M) or minor (m) axis. Here, ζ (θc) =

−1
log2(cos(θc))

.

These families correspond to simple physical quantities in the
following way. Eq 6 is proportional to the density of particles a
distance h away from plane i in a plane of thickness ξh. Eq 7
is proportional to the density of particles in an elliptical shell of
width LR and thickness ξh that has a minor axis of length of R
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and is centered on plane i. Finally, ζ (θc) is defined so that the
cos(θc)

ζ (θc) = 1
2 allowing us to interpret of this term as another

soft step function with a cutoff angle of θc. Thus, Eq 8 is propor-
tional to the density of particles in pie slices that have width θc

and width of ξR and depth of ξh along the major and minor axes
of plane i. We call these families of structure functions the plane
density, radial density, and angular density structure functions re-
spectively.

The other category is the softness structure functions.
These come in three families, Γh (i;ξh,h), ΓR (i;ξh,LR,R), and
ΓA,a (i;ξh,ξR,θc), and measure the mean softness of the regions
that correspond to the density structure functions, Gh (i;ξh,h),
GR (i;ξh,LR,R), and GA,a (i;ξh,ξR,θc) respectively. We define these
functions specifically as:

Γh (i;ξh,h) =
∑ j S jΘ

P
i j (h,ξh)

∑ j ΘP
i j (h,ξh)

(9)

ΓR (i;ξh,LR,R) =
∑ j S jΘ

P
i j (0,ξh)e−di j(R)

2/L2
R

∑ j ΘP
i j (0,ξh)e−di j(R)

2/L2
R

(10)

ΓA,a (i;ξh,ξR,θc) =
∑ j S jΘ

P
i j (0,ξh)ΘE

i j (ξR)cos
(

θ a
i j

)ζ (θc)

∑ j ΘP
i j (0,ξh)ΘE

i j (ξR)cos
(

θ a
i j

)ζ (θc)
(11)

where each function is for a plane i and sums are performed
over all interior particles j. For this study, we define the interior
of the pillar as all particles greater than 3.5 particle diameters
from the pillar’s surface. Summations are restricted to interior
particles because the structures which cause rearrangements in
the bulk, where the softness field was developed, are likely to be
different than the structures on the surface of the pillars that lead
to rearrangements. For numerical efficiency, we further restrict
the summation so that a term only contributes to either sum if the
product of that term’s functions (excluding S j) is greater than 0.1.
We call these structure functions the plane, radial, and angular
softness structure functions respectively.

2.4 Plane weakness

The primary goal of this paper is to identify which structural mo-
tifs (e.g., the local density in the center of the pillar, or perhaps
the local roughness on the surface) are associated with shear band
formation. We approach this problem as one of classification in
which we want to distinguish between two sets of planes: those
that are likely to shear band and those that are not; these sets will
be called “weak" and “strong" planes respectively. Thus, we aim
to create an independent function for each pillar diameter, called
a “classifier", that can classify a plane into the weak or strong
category at each pillar diameter based on its structure alone. By
independent, we mean that our classifiers should be trained on
independent data sets at each pillar diameter, not that they are
necessarily statistically independent of each other (though we ex-
amine this point in the supporting materials). Using specific clas-
sifiers for each pillar diameter allows for the possibility that the
features which determine shear banding vary with pillar diameter.

We approach this problem in a way that mirrors the creation of
our softness field (described in 2.2 Softness field). For each pillar,
we describe every 45°–plane prior to deformation with NSF = 612
structure functions. Specific parameter sets used can be found in
the supporting materials. At each pillar diameter, we standardize
each structure function by subtracting the mean and dividing by
the standard deviation. We then assign each plane i a vector,
pi ∈RNSF where each orthogonal component of the vector is one of
the standardized structure functions. We call these the “structure
vectors", {p1, ..., pN} where N = Nplane×Npillar.

To determine where each pillar shear bands, we consider the
local von Mises shear strain rate around each particle j, denoted
as J2, j, a common metric in numerical studies of shear band-
ing47–49. We evaluate the local shear strain rate between the
unstretched pillar configuration and the pillar configuration at a
strain of ε = 5.5% with a cut-off radius of 2.5 particle diameters.
At this strain, we see we see regions of strain localization for all
pillar diameters. An example of this may be seen in Figure 1c. For
each plane i, we then evaluate its average strain rate,

〈J2〉i =
∑ j J2, jΘ

P
i j (0,ξh)

∑ j ΘP
i j (0,ξh)

. (12)

where the summation runs over all monomers in the interior of
the pillar. Here, we take ξh = 2 but find our results are qualita-
tively insensitive to this parameter.

To develop our classifier, we build a training set of planes:
one population that does shear band (shear band planes), and
a second population that does not shear band (non-shear band
planes), which are defined based on the largest and smallest av-
erage von Mises shear strain rate in a pillar, respectively. These
planes are selected from the set of Npillar independent pillar ther-
malizations and deformations at each pillar diameter. This yields
a training set with 2Npillar elements at each pillar diameter.

To solve this classification problem, a linear support vector ma-
chine (SVM) finds the best hyperplane to separate shear band and
non-shear band structure vectors in RNSF . We define the “weak-
ness" of a plane i, Wi, to be the shortest signed distance from pi
to this hyperplane in RNSF . Larger values of plane weakness indi-
cate planes that are structurally similar to shear banding planes
while smaller values of Wi indicate little structural similarity to
shear banding planes. This hyperplane is then employed to deter-
mine the plane weakness of any plane at a given pillar diameter.
We normalize our hyperplane so that the distribution of plane
weakness has a standard deviation of 1. Our SVM method was
implemented using scikit-learn45. To ensure that our model was
not overfit, we employ recursive feature elimination (RFE) which
prunes Nprune of the least important structure functions from our
model50.

Two choices are made in the development of our linear SVM
used to generate plane weakness. First, we must decide how
many structure functions to prune from our model, Nprune. Sec-
ond, the SVM method typically incorporates a misclassification
penalty C, as described in the section 2.2 Softness field, which
must be chosen as well. We want to make both of these choices
so that our model best generalizes to new planes. To do this,
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we use stratified 3-fold cross-validation with a grid-search over
a set of possible C values ranging from 10−4–100 and Nprune val-
ues ranging from 0–(NSF−1). To ensure our parameter selection
was independent of fold selection, we randomly shuffle planes
between between our folds 10 times and take Nprune and C to
be the values which produce the highest average cross-validation
accuracy across re-shufflings.

While a linear SVM may not be the best model for shear band
classification, there are two reasons why we use it here regardless.
First, we are in a data-limited regime, i.e. our training set size
is much less than the number of structure functions describing
a plane (2Npillar � NSF). This regime tends to disallow overly
complicated non-linear models such as neural-networks or radial
basis function SVMs, and we have found that we rely on RFE
extensively (which simplifies our model even further) to prevent
over-fitting (See supporting materials). Second, the principle aim
of this paper is not to determine the best model to classify shear
bands but instead to develop an adequate model and analyze the
structural motifs it unveils. Linear models, in particular, are easy
to analyze.

2.5 Multiple Feature Importance Ranking Measure

Once a classifier is obtained, our main task is to analyze it to de-
termine which structures it uses to distinguish shear band from
non-shear band planes. Since plane weakness Wi is defined as
the signed normal distance to a hyperplane in a space defined by
our structure functions, a natural approach to determining the
importance of various structure functions would be to consider
the magnitude of the projection of the hyperplane normal onto
each structure function axis. This approach, however, would not
account for the instability in the RFE algorithm given correlations
between structure functions. For example, consider the structure
functions Gh (i;ξh,h) and Gh (i;ξh,h+δh) where δh is an arbitrar-
ily small constant. These structure functions must be perfectly
correlated. During the pruning process, the RFE algorithm will
recognize this and arbitrarily prune one of these structure func-
tions causing its importance to drop to 0 under the previous met-
ric while its neighbor will have some finite importance. Thus, as
a result of correlation and our fitting procedure, slight differences
in sampled data may lead to large differences in the perceived
importance of arbitrarily similar structure functions.

To remedy this problem, we will say that a structure function is
important to our model if varying that structure function is likely
to cause a large variance in plane weakness. Thus, in the pre-
vious example, the importance of the pruned structure function
would not go to 0 as it is correlated with its neighbor. This is
because varying the pruned structure function would likely vary
its neighbor and thus, vary plane weakness. A metric for this
is called the Feature Importance Ranking Measure (FIRM)51. A
structure function’s FIRM score is the percentage of the variance
in plane weakness that can be described by the variance in that
structure function if correlations with other structure functions
are included. As such, FIRM scores range between 0, where the
variance in plane weakness is not described by a given structure
function, and 1, where the variance of plane weakness is entirely

described by variance of a given structure function. In the event
that our structure functions are uncorrelated, FIRM simplifies to
the projection of the structure function onto the hyperplane nor-
mal.

While FIRM is restricted to the analysis of individual structure
functions, we often wish to understand the importance of sets
of related structure functions. To address this short-coming, in
this work we extend FIRM to analyze the importance of multi-
ple structure functions simultaneously. Our approach, the Multi-
ple Feature Importance Ranking Measure (MFIRM), describes the
percentage of the variance in plane weakness that can be ascribed
to the variance in a given set of structure functions if we take cor-
relations into account, and we use this metric to distinguish the
importance of families of structure functions (e.g., surface den-
sity fluctuations, angular density fluctuations, etc.). We derive
this metric (which parallels that of FIRM) below.

Consider a set of NMFIRM structure functions for which we want
to determine the importance. Let

f : RNSF −→ RNMFIRM (13)

be a function which projects the orthogonal components which
correspond to the set of structure functions from the original vec-
tor space of all structure functions to a new vector space with only
the structure functions of which we wish to find the importance.
The expected plane weakness given a set of values of the selected
features t ∈ RNMFIRM is:

q f (t) = 〈W (p) | f (p) = t〉 (14)

The MFIRM score of this set of features then corresponds to the
standard deviation of q f (t):

Q f =

√∫
dt
(
q f (t)−〈q f 〉

)2 P( f (p) = t) (15)

where P( f (p) = t) is the probability density of obtaining select-
ing the structure function values t and 〈q f 〉 is the expected value
of q f (t).

In general, this quantity is quite difficult to calculate as
P( f (p) = t) is unknown. To simplify calculation, we assume the
structure functions are normally distributed with a mean of µ and
covariance matrix Σ. The mean may be partitioned into µf and µl
which correspond to the sets of structure functions that that are
part of the f mapping, i.e. the ones we wish to know the im-
portance of, and structure functions that are leftover, i.e. not in
that set, respectively. Similarly, we may partition the covariance
matrix as well,

Σ =

(
Σll Σlf
Σfl Σff

)
. (16)

Then, via the properties of the conditional distributions of the
multivariate normal distribution, we find

q f (t)−〈q f 〉= nT
l ΣlfΣ

−1
ff (t−µf)+nT

f (t−µf) , (17)

where nf and nl is the partitioned normal of plane weakness.
The superscript T ’s denote transposition. Then, we may use the
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quadratic form expectation to show that Eq. 15 is

Q f =

√
ṽT Σffṽ, (18)

where ṽT = nT
l ΣlfΣ

−1
ff + nT

f . If the structure functions are not
normally distributed, this quantity provides a second-order ap-
proximation of MFIRM. Because plane weakness is normalized to
have a standard deviation of 1, Q f may be readily interpreted
as the percentage of variance in plane weakness that can be de-
scribed by a given set of features. For models which are not nor-
malized, we can normalize by the standard deviation in the mea-
sure to obtain the same interpretation.

2.6 Fluctuation models

The correlation between structure functions makes it difficult to
disentangle whether high FIRM and MFIRM scores represent a
single underlying important variable or many such important
variables. For example, again consider the structure functions
Gh (i;ξh,h) and Gh (i;ξh,h+δh) where δh is chosen to be arbitrar-
ily small. These structure functions have identical FIRM scores
as they are perfectly correlated, but including Gh (i;ξh,h+δh) in
our model does not help classify shear band planes because it is
degenerate with its neighbor. Thus, while there are two structure
functions, they really measure the same information. To ascer-
tain whether two subsets of structure functions measure the dif-
ferent underlying variables, we want to instead ask the following
question: given two subsets of structure functions A and B, does
B classify shear band planes well independent of its correlations
with A? If so, the structure functions in B must have access to
some underlying variable (information) that is not present in A
which is predictive of shear band formation.

To do this mathematically, we fit the structure functions in B to
those in A using linear least squares regression for all N planes at
a given pillar diameter. We interpret this fit as a function that pro-
vides the expected value B’s structure functions given A’s structure
functions, i.e. this function describes the correlations between
subsets A and B. We next calculate the residuals between the ac-
tual and expected structure function values. We call these resid-
uals the “fluctuations" away from the structure function set’s ex-
pected value. We then train a new machine learning hyperplane
based exclusively on these fluctuations to obtain plane weakness,
thus creating a metric that distinguishes between shear band and
non-shear band planes based exclusively on these fluctuations.

If this “fluctuation model of B given A" can predict shear band
formation at rates greater than chance, then B must contain an
underlying variable not in A. We note that we do not expect these
models to be especially predictive compared to our original plane
weakness metric because we have restricted the number of struc-
ture functions and have removed any correlations between A and
B which may have aided in the prediction. However, we may con-
clude that the more predictive these fluctuations are the greater
the strength of the underlying variables in B that are not degen-
erate with A.

3 Mechanical properties
Figure 1 shows that the mechanical properties of our pillars de-
pends strongly on the pillar diameter. We plot engineering stress-
strain curves averaged over all configurations at each pillar diam-
eter in Figure 1a. We find that both the Young’s modulus, which
was determined by linear fits to the initial (ε ≤ 0.5%) stress-strain
response, and the strength (stress maximum) of our pillars in-
creases with pillar diameter. Both material properties increase by
more than 50% as the pillar diameter increases from D = 12.5 to
D = 100 as shown in Figure 1b. The overall trends with sample
dimension are in good qualitative agreement with experiments on
thin polymer films as a function of film thickness52,53.
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Fig. 1 Characterization of basic mechanical properties of oligomer
nanopillars. (a) Stress-strain curves averaged over all configurations
found for each nanopillar diameter when deformed under uxiaxial ten-
sion. The curves are vertically shifted by constant c for clarity. (b) Young’s
modulus (navy squares) and the strength (red diamonds) of the nanopil-
lars as a function of the pillar diameter. (c) The local von Mises strain rate
field of a single D = 50 pillar calculated for balls of size 2.5 around each
particle after a strain of ε = 5.5%, and (d) the local von Mises strain rate
field averaged over 50 D = 50 pillars in the isoconfigurational ensemble.
Nanopillar snapshots were created using OVITO software 54.

The strain in our samples strongly localizes into a shear band
as our deformations reach the yield point. To understand how
deformation effects the strain field within our pillars, we examine
the local von Mises shear strain rate around in a ball of size 2.5
around each particle after a strain of ε = 5.5%. Figure 1c shows
the von Mises strain rate field of a single D = 50 pillar, and this
field exhibits an unambiguous shear band plane of high von Mises
shear strain rate. At this low temperature, all of our samples at
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any pillar diameter exhibit a strong strain localization.

A key point we wish to address with our study is whether the lo-
cation where a material fails is dictated by the local structure, and
if so, we further wish to identify the structural motifs that pro-
mote strain localization and shear banding. To first test whether
the local structure plays a role in the localization of a shear band,
we employ the isoconfigurational ensemble55, which is a tech-
nique that played a key role in demonstrating that there exists an
interplay between local structure and dynamic heterogeneities in
supercooled liquids. By beginning a series of simulations with the
same monomer positions, but with momenta re-drawn from the
Maxwell-Boltzmann distribution, we can examine whether the lo-
cation of the shear band in our pillar is caused by random ther-
mal fluctuations or the material structure. If we begin with the
same configuration used to generate the strain field in Figure 1c
and run 50 deformation trajectories with randomly initialized mo-
menta, the average strain field 〈J2, j〉 field for each particle j is
shown in Figure 1d. Clearly the strain tends to localize in one of
two locations, while if the location of the shear band were ran-
dom, we would expect a more uniform distribution. These results
indicate that the local structure that is frozen when the sample is
quenched plays an important role in determining the shear band
location, consistent with prior work 38. Furthermore, this ten-
dency for strain to localize is robust across all studied pillar diam-
eters.

4 Plane weakness
Having established that the local structure dictates where shear
bands will form using the isoconfigurational ensemble, in order to
guide the development of mesoscale and constitutive models, it is
essential to determine the nature of the structural variables that
lead to strain localization. Therefore, we will first demonstrate
that our structural machine-learned quantity, plane weakness, is
quite predictive of shear band formation, and then we will ana-
lyze this metric to determine how it predicts where shear bands
will occur.

4.1 Performance

Figure 2a demonstrates that our classifiers are able to distinguish
shear banding planes (the plane in each pillar with the maximum
〈J2〉i) planes from non-shear banding planes (the plane in each
pillar with the minimum 〈J2〉i) at each pillar diameter. The test set
accuracy, found using 10-fold nested cross-validation44, gives an
unbiased estimate of the percentage of shear band and non-shear
band planes that are correctly classified. At each pillar diameter
over 85% of planes are correctly classified, which is 8 standard
errors above random (50%) proving that we do better than chance
at distinguishing between shear band and non-shear band planes.
The second metric, P(W > 0|SB), provides the probability that a
shear band plane (SB) is classified as weak (W > 0). This was
also found using 10-fold nested cross-validation. We find that
over 90% of shear band planes are weak at each pillar diameter.
These results show that our linear SVMs correctly classify the vast
majority of shear band planes as weak.

One curious feature in Figure 2a is the small but significant

non-monotonicity in both the behavior of the test set accuracy
and P(W > 0|SB). This behavior indicates that it is more difficult
for plane weakness to predict shear band from non-shear band
planes at intermediate pillar diameters suggesting new physics at
these intermediate diameters which is not available at the small-
est or largest pillars. This new physics is expressing itself in one of
two ways. First, it may simply indicate that our fitting procedure
(including our structure function design, our machine learning
model, and our procedure to prevent overfitting) may not work
as well at detecting shear band from non-shear band planes at in-
termediate pillar diameters because of the changing physics gov-
erning shear band formation. On the other hand, this drop in
accuracy may be fundamental, i.e. it may be intrinsically more
difficult to predict shear band formation at intermediate length
scales compared to smaller or larger length scales. Additional re-
search is needed to distinguish between these scenarios.
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Fig. 2 Performance of plane weakness as structural indicator of
shear banding planes. (a) Test set accuracy and expected percentage
of shear bands that are weak at all pillar diameters. (b) The probability
that a plane will shear band as a function of its weakness at pillar diame-
ters D = 12.5 and D = 100. The inset shows the underlying distribution of
plane weakness for all planes at pillar diameters D = 12.5 and D = 100.
Solid lines are exponential fits to the data. Error bars for (a) and (b) are
calculated using a binomial confidence interval. (c) A snapshot of an un-
deformed D = 50 pillar where each monomer j is colored by Pj. Note that
this is the same pillar as in Figures 1c and 1d.

Now we consider the predictive nature of plane weakness’ mag-
nitude within the entire set of planes at a given pillar diameter
rather than its sign alone in the subset of shear band and non-
shear band planes. The inset of Figure 2b shows the distributions
of weakness across all planes for the D = 12.5 and D = 100 pil-
lars. These distributions are both roughly Gaussian with means
that are approximately 0. We now turn to the probability a plane
will shear band for a given plane weakness, P(SB|W ), in Figure
2b for the D = 12.5 and D = 100 pillars. We see an exponential
increase by more than 2 decades over the range W = 0 to W = 3 in
the probability of shear banding, and the trends are remarkably
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similar across pillar diameter, despite the fact that each diame-
ter is characterized by a distinct classifier. This similarity holds
for across pillar diameters (see supporting materials). This plot
explicitly demonstrates that the probability of a shear banding is
a function of magnitude, not just the sign, of plane weakness.
As a plane becomes weaker as quantified by the local structure
through Wi, it is more likely to shear band.

We next investigate whether there are spatial correlations in
plane weakness that lead to regions in our sample that are more
(or less) likely to shear band. To do so, we begin with P(SB|Wi),
the probability that plane i of given weakness will shear band, and
map it to the particles near the plane to estimate the probability
that particle j will be in a shear band,

Pj =
∑i P(SB|Wi)ΘP

i j (0,ξh)

∑i ΘP
i j (0,ξh)

. (19)

Here, the sum is over all planes, ΘP
i j (h,ξh) = e−(|hi j |−h)2/ξ 2

h is a
weighting function that controls the spatial extent of the mapping
from plane i to particle j, hi j is the distance between plane i and
particle j and ξh = 1/2 is a parameter that controls the decay
length of ΘP

i j. The map of Pj for all particles is shown for a D =

50 pillar in Figure 2c, and this is the same pillar configuration
shown in Figures 1c and 1d. Evidently, spatial correlations exist
in plane weakness leading to two large defect regions in the pillar
where the particles are more likely to be involved in a shear band.
The locations of high average local von Mises shear strain rate
seen in Figure 1d show striking similarities with regions of high
Pj in Figure 2c. The Pearson correlation between these two plots
is 0.52, and the probability that there is no correlation between
these fields is less than 10−6. This strong correlation demonstrates
that plane weakness predicts not only the planes that are likely to
fail but also the spatial regions that are likely to fail in a pillar.
This distinction is important as it indicates that plane weakness
is a direct structural measure of these regions as opposed to an
indirect quantity that is only useful in plane space. We emphasize
that what makes this result remarkable is that we are predicting
the location of shear bands, a strongly nonlinear phenomenon,
from the initial configuration prior to any deformation and then
finding these results directly compare to the actual locations of
failure.

4.2 Importance of individual features

Taken together the results in Figure 2 demonstrate that plane
weakness captures the structural origin of shear banding in glassy
polymer nanopillars well. We now turn to FIRM (as described in
section 2.5 Multiple Feature Importance Ranking Measure) to an-
alyze which individual structure functions are most useful in the
prediction of shear band formation. Because we use a second or-
der approximation of FIRM and MFIRM, we show that most of
our structure functions are approximately normally distributed in
the supporting materials. Figure 3 plots several of the structure
functions along with their FIRM scores to demonstrate the rela-
tive importance of different structural variations to shear band-
ing for pillars with D = 100. The structure function characterizing
the density as a function of radial position in a given plane is

shown in Figure 3a for shear-banding and all planes, where each
point in the curve corresponds to a different structure function.
In general, we see that average radius of a shear banding plane is
slightly smaller than the average plane. What is surprising about
this feature is how small the fluctuation in the radius is, less than
half of a particle diameter. This length scale is nearly constant at
all pillar diameters (See supporting materials). The FIRM score
for the density variations is also the highest near the surface, indi-
cating that the variations in the density near the cylinder surface
can be used to explain a large fraction of the variations in the
plane weakness. In contrast, the density further away from the
interface (where R ≈ 48) is a less important indicator, as shown
by the FIRM scores that decrease below 0.1 for R . 48. Remark-
ably, these fluctuations are not due to any mechanical scraping of
the surface of the pillars but arise from the thermal fluctuations
in the formation of our pillars alone.

The remaining panels in Figure 3 show the importance of struc-
ture functions in other families that we have employed in our ma-
chine learning approach. Figure 3b shows the importance of the
total density in a plane a distance h away from the test plane. In-
tuitively, this function is very important for small h (FIRM score
above 0.8) where it characterizes the density close to the plane,
and this function becomes decreasingly important as h increases.
This provides further confirmation of our previous results reveal-
ing the most important feature is a slight undercoordination of
the shear band plane due to these small surface fluctuations. We
also see that these surface defects are quite long ranged along the
surface of the pillar, approximately 18 particle diameters for the
D= 100 pillar. The length scale of these surface defects grows sub-
linearly with pillar diameter, which suggests that surface defects
may become less important as the pillar diameter increases. This
is in qualitative agreement with capillary-wave model (CWM)
theory for planar liquid-vapor interfaces which suggests that this
length scale should increase with the system’s interfacial area as
these fluctuations can better explore large wavelength modes56

(See supporting materials). This suggests that these surface fluc-
tuations are trapped during the quench of our pillars.

As described above, the softness of a particle has been shown
to be intimately related to the tendency for an individual parti-
cle to rearrange under mechanical deformation or thermal relax-
ation40,41,43,57. A natural question to ask is whether the softness
of the particles associated with a given plane is in any way in-
dicative of the tendency of that plane to shear band and lead to
failure. In Figure 3c, we plot the structure functions character-
izing the average softness as a function of radial position in the
pillars. The shear banding planes tend to have smaller values
of softness near their surface compared to average planes, sug-
gesting that shear band planes are harder near the surface. Now,
we plot the structure functions that describe the average softness
as a function of distance away from a test plane, h, in Figure
3d. We note that shear band planes have larger values of soft-
ness for small h than non-shear band planes. However, given the
relatively small FIRM score for each of these softness-based struc-
ture functions, we find that they are not individually predictive
of the structural variations in shear banding planes. Other struc-
ture functions, such as the radial density shown in Figure 3a, are

8 | 1–13

Page 8 of 13Soft Matter



0 5 10 15
h

0.98

0.99

1.00

G
h

0.0
0.2
0.4
0.6
0.8
1.0

FIR
M

0 1 2
h

0

5

h
×1

03
0.0
0.2
0.4
0.6
0.8
1.0

FIR
M

47 48 49 50
R

15

10

5

R
×1

02

0.0
0.2
0.4
0.6
0.8
1.0

FIR
M

c d

Density

48 50 52 54
R

0
0.2
0.4
0.6
0.8
1.0

G
R

0.0
0.2
0.4
0.6
0.8
1.0

FIR
M

a

R

R

h
h

h
h

b

Fig. 3 Plots of structure functions averaged over all (blue diamonds) and shear band (red squares) planes with corresponding FIRM scores
(black circles). The left hand axis corresponds to the average of the set of structure functions. The right hand axis corresponds to the FIRM score
of the given structure function. The graphics depicted to the right of the plots illustrate the region over which each structure function is calculated.
The green plane represents the plane of consideration while the magenta regions represent the region over which the density function is calculated.
All functions are plotted for the D = 100 pillar. The functions these plots show are: (a) 〈G̃R (i;3.00,0.5,R)〉, (b) 〈G̃h (i;0.5,h)〉, (c) 〈ΓR (i;3.00,0.5,R)〉
and (d) 〈Γh (i;0.5,h)〉 for h ≤ 1.5. Definitions of the functions in (a), (b), (c), and (d) can be found in Equations 7, 6, 10, and 9 respectively. Here,
a tilde above the function indicates that it has been normalized by the maximum of the given structure function set averaged over all planes, e.g.
〈G̃R (i;3.00,0.5,R)〉X = 〈GR (i;3.00,0.5,R)〉X/max(〈GR (i;3.00,0.5,R)〉all) where X = all or SB indicates averaging over all or shear band planes.

better able to distinguish shear-banding planes on their own.

4.3 Importance of collections of features

The results described above in Figure 3 suggest that different fam-
ilies of structure functions can have varying amounts of overall
importance, and a natural question to ask is how the importance
of groups of structure functions might change with pillar diame-
ter. To answer these questions, we turn to MFIRM. MFIRM then
enables us to examine how the importance of families of structure
functions changes with pillar diameter and assess whether we ap-
proach a limit where the bulk-response dominates the behavior.

Figure 4a considers the MFIRM score of each family of func-
tions weighted by the density at each pillar diameter D. The most
striking feature of this plot is the large MFIRM scores of the ra-
dial and plane density structure functions which correspond to
the sets of structure functions plotted in Figures 3a and 3b re-
spectively. These structure functions account for more than 90
percent of the variance in plane weakness at all pillar diame-
ters though percentage seems to decrease with increasing pillar
diameter. We note that it is possible to have multiple feature
sets with high scores due to the correlation between the fami-
lies of structure functions, an issue we account for below. The

second important feature of Figure 4a is the increasing MFIRM
scores for angular density structure functions, which examine the
density in angular slices along the minor and major axes of the
ellipsoidal plane, with increasing pillar diameter. These scores
explain around 70 percent of the variance in plane weakness by
D = 25, however these structure functions are unimportant for
our smallest nanopillar. Thus, angular density structure functions
are becoming more predictive of shear band formation as pillar
diameter grows.

The MFIRM scores of the families of softness structure func-
tions at each pillar diameter are shown in Figure 4b. Interestingly,
the percentage of the variance in plane weakness these structure
functions can explain increases with the pillar diameter, suggest-
ing that softness structure functions become increasingly impor-
tant as pillar diameter increases. We observe the two largest in-
creases in MFIRM occur in the radial and minor angular mean
softness structure functions. These sets of functions increase from
accounting for 13 and 7 percent of the variance in plane weakness
at D= 12.5 to 39 and 31 percent of the variance in plane weakness
respectively. Interestingly, the plane softness structure functions
that individually have quite small FIRM scores (≈ 5 percent) have
significantly larger MFIRM scores as a collective group (≈ 25 per-
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Fig. 4 Importance of sets of structure functions in shear band pre-
diction. Plots of the MFIRM scores the plane, radial, and angular struc-
ture functions along the major and minor axes of each plane weighted
by (a) the local density and (b) the mean softness as a function of pillar
diameter D. These plots explain the percentage of the variance in plane
weakness explained by each of these sets of features respectively.

cent) at the largest pillar diameter. This suggests that, while local
fluctuations of softness in the plane are not important in shear
band prediction, longer range fluctuations are.

5 Underlying variables excluding in-plane
and surface density fluctuations

As we have made clear by showing the high MFIRM scores of the
plane and radial density structure functions in Figure 4a, in-plane
and in particular surface density fluctuations are the most impor-
tant underlying variable in the plane weakness model. This leads
to the question: are the large and increasing MFIRM scores of
other families of structure functions indicative of other important
underlying variables or are they simply caused by the increased
correlation of structure functions at large pillar diameters? In
other words, we seek to know whether other families of struc-
ture functions provide new information to the machine learning
algorithm or whether they are becoming more important simply
because they are better measures of in-plane and surface den-
sity fluctuations. To do this, we consider fluctuation models of
various sets of structure functions given the plane and radial den-
sity structure functions. Here we use test set accuracy, i.e. the
percentage of correctly classified shear band and non-shear band
planes found using 10-fold nested cross-validation, as a metric of
the predictive strength of various fluctuation models. The results

of this analysis are shown in Figure 5a.
The fluctuation models of the angular density structure func-

tions given the plane and radial density structure functions do no
better than chance (P = 50%) at D = 12.5 and D = 100 but exhibit
some predictive power at intermediate pillar diameters. To better
understand the underlying variable described by these structure
functions at intermediate pillar diameters, we plot the residuals of
the minor and major angular density structure functions, denoted
rA,m and rA,M , in Figures 5b and 5c respectively at D = 50. FIRM
scores listed describe the percentage of variance in the fluctuation
model that is described by each residual. Here we see the minor
angular structure functions in Figure 5b are quite undercoordi-
nated and become increasingly more so with larger angular reso-
lution. In contrast, the major angular structure functions in Fig-
ure 5c are overcoordinated compared to the average plane. This
suggests that the undercoordination experienced by shear band
planes at these intermediate pillar diameters, between 25 and 50
particle diameters, typically occurs along its minor axis. As the
pillar diameter grows, the size of these fluctuations decrease as a
percentage the plane’s radius. This leads to a decrease in the im-
portance of these fluctuations at large pillar diameters. In small
pillars, shear banding is entirely controlled by density fluctuations
in pillar planes rather than the geometry of these fluctuations.

Next, we turn to fluctuation models of the radial softness struc-
ture functions given the plane and radial density structure func-
tions. A priori, we might expect these fluctuation models to be
the most predictive of all softness structure function models due
to their high MFIRM scores relative to other families of softness
structure functions. Instead, Figure 5a shows that these mod-
els have test set accuracies of just higher than chance, approxi-
mately 55 percent. Because these structure functions have such
high MFIRM scores but are not very predictive on their own, they
must be highly correlated with the plane or radial structure func-
tions. This indicates that the hard exterior regions in Figure 3c
are not the cause of shear band formation, but rather are caused
by surface density fluctuations. We suspect this effect is due to
enhanced surface mobility, which is commonly found in glassy
materials with free surfaces57–59. Monomers near the surface are
more mobile, potentially allowing them to explore phase space
locally60 and leading to harder structures due to a slower effec-
tive quench rate40. Thus, shear band planes which tend to have
smaller local radii are likely to have harder particles at small R
than the average plane. Figure 3c also supports this idea as we
find that on both on average and in shear band planes, softness
decreases as we approach the surface of the pillar.

Finally, we examine fluctuation models of the plane softness
structure functions that are local to the plane (h ≤ 1.5) given
the plane and radial density structure functions. For simplic-
ity of interpretation, we restrict our analysis to the mean soft-
ness of planes that are local to the test plane, h ≤ 1.5. Although
the plane softness structure functions have the smallest MFIRM
scores out of all of the sets of structure functions we have ex-
amined, their fluctuation models obtain large test set accuracies
(P = 0.71±0.04) at large pillar diameters. This indicates that they
must measure some underlying variable not covered by the sim-
ple model involving only the plane and radial density; i.e., the
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Fig. 5 Fluctuation models for various sets of structure functions. (a) The test set accuracy of the fluctuation models of all angular density
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(
〈GA,M (i;3.00,48.6,θc)〉all

)
where X = all or SB indicates averaging over all or shear band planes.

specific packing in the shear band plane becomes increasingly im-
portant as the pillar diameter increases. To understand this latent
variable, we plot the residuals ρh of the plane softness structure
functions in Figure 5d for the D = 100 pillar. Here, we see that
shear band planes are softer than the average plane in the pillar
(h = 0). This effect is apparently important since the FIRM scores
suggest that the variance of each of the first three structure func-
tions accounts for approximately 70 percent of the variance in the
fluctuation model. We find that the mean softness of shear band
planes decreases sharply at h = 1.5, and adding additional plane
softness or angular softness structure functions to this model does
not improve its accuracy (See supporting materials).

Taken together, our analysis of the fluctuation models suggests
that as we approach the large pillar limit, the only underlying
variable that is predictive of shear banding and not accounted
for by the in-plane and surface density fluctuations is the mean
softness local to the plane (h < 1.5). This is interesting as the im-
portance of these in-plane and surface fluctuations is decreasing
with increasing pillar diameter as shown by the MFIRM scores
of the radial and plane density structure functions in Figure 4a.
Combined with the information that MFIRM is increasing for the
plane softness structure functions with pillar diameter, we expect
softness, a microscopic structural quantity to play a major role

in the macroscopic dynamics. The identification of such a struc-
tural quantity is a key step for the development of mesoscale and
constitutive models for the dynamics of materials61.

6 CONCLUSION
Our results demonstrate that the mesocopic structure of planes
can be used to predict shear banding in amorphous solids. This
structure can be quantified by plane weakness. According to our
analysis, the main component of plane weakness for submicro-
scopic pillars are small, less than half of a particle diameter, ra-
dial fluctuations on the exterior of the plane. These fluctuations
come from the thermalization of the pillar alone and are not arti-
ficially induced. This provides valuable insight about manufactur-
ing strong nanoscale components: to strengthen glassy nanoscale
components, we may neglect bulk effects and focus on develop-
ing components that are smooth on the atomistic level. Even in
pristine lab environments, surface defects large enough to cause
shear banding may arise in the melt of a material.

As pillar diameter increases, this variable becomes less impor-
tant and is replaced by other structure functions. In particular, we
find that the mean softness local to a plane is an increasingly im-
portant predictor of shear banding with increased pillar diameter
and is the dominant predictor outside of the radial fluctuations
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at the largest pillar diameter considered. This observation links
the machine learned quantity softness to mesoscale theories such
as Shear Transformation Zone (STZ) theory which hypothesize
mesocale “configurational soft spots", regions that are more likely
to yield under shear stress19. This link is non-trivial as softness
is constructed as a measure of short, local particle motions while
shear bands are by definition long timescale, non-local events.
Moreover, because we are only using configurational information
prior to deformation to predict shear bands, we have shown that
at temperatures well below the glass transition that these defects
can be considered to be frozen in place, i.e. we do not need to
consider thermal fluctuations to build a mesoscale model that pre-
dicts mechanical behavior so long as such behavior occurs well be-
low Tg even when the constituent pieces of a material are atomic
in nature.

These predictions come with some important limitations which
can be found by examining the choices made in this study. First,
we have chosen to study un-scuplted nanopillars. Previous work
has demonstrated that sculpting the surface of metallic glass
nanopillars can increase roughness and change the failure mode
of the pillar from ductile to brittle47. Thus, we postulate that
sculpting may change the relative importance of surface density
fluctuations to mean softness within a plane at a given pillar di-
ameter, i.e. smoothing or roughening our pillar’s surfaces may
make mean softness within a plane more or less important respec-
tively. Similarly, we could “sculpt” our pillars through a process-
ing technique that changes the softness distribution within them.
We suspect that creating homogeneous softness fields within our
pillars would decrease the relative importance of softness com-
pared to surface defects at a given diameter. This may be possible
using physical vapor deposition techniques. On the other hand,
we could imagine that adding nanoparticles may cause large vari-
ations in the local softness field near the particle causing softness
to increase dramatically compared to surface defects at a given
pillar diameter.

Second, we have chosen to consider polymers that are quite
short. This suggests that our research is most applicable to small
molecule glasses and oligomers in which entanglements play lit-
tle role. Within these bounds, we expect that our conclusions
to hold qualitatively as the properties of softness are quite gen-
eral41. For long polymer chains, we anticipate that entangle-
ments will play an essential role in the post-yield behavior62–65,
though we speculate that the connection between surface defects,
local structure, and the location of the initial strain localization
(shear band and/or cavitation) will be robust. The depletion of
entanglements near an interface will also present a competing ef-
fect to decouple from the failure of a confined polymer glass66–68

that is not present in simulations of bulk polymer glasses.
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