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Hydrogels of semiflexible biopolymers such as collagen have been shown to contract axially under shear
strain, in contrast to the axial dilation observed for most elastic materials. Recent work has shown that this
behavior can be understood in terms of the porous, two-component nature and consequent time-dependent
compressibility of hydrogels. The apparent normal stress measured by a torsional rheometer reflects only the
tensile contribution of the axial component σzz on long (compressible) timescales, crossing over to the first
normal stress difference, N1 = σxx − σzz at short (incompressible) times. While the behavior of N1 is well
understood for isotropic viscoelastic materials undergoing affine shear deformation, biopolymer networks are
often anisotropic and deform nonaffinely. Here, we numerically study the normal stresses that arise under shear
in subisostatic, athermal semiflexible polymer networks. We show that such systems exhibit strong deviations
from affine behavior and that these anomalies are controlled by a rigidity transition as a function of strain.

Normal solids and liquids exhibit shear stress under imposed
shear deformation. With the exception of simple Newtonian liq-
uids, most materials also develop so-called normal stresses in
response to shear. Unlike shear stress, however, these stresses
are directed perpendicular to surface on which they act and ap-
pear as diagonal terms in the stress tensor. In the case of elastic
solids, a common manifestation of normal stress is the Poynting
effect, in which a solid tends to elongate in response to torsional
strain. In a classic series of experiments, Poynting observed such
elongation for a variety of systems, ranging from simple metal
wires to rubber [1, 2]. By symmetry, this elongation should not
depend on the sign or direction of the applied torsion, leading to
lowest-order response that is expected to be quadratic in the the
strain. This makes the Poynting effect a fundamentally nonlinear
phenomenon. This is one reason why normal stresses are typi-
cally less apparent than the shear stress, which varies linearly
with strain. Nevertheless, normal stresses have very dramatic
consequences, including both rod climbing and tubeless siphon-
ing, as well as die swell [3]. These phenomena, as well as the
Poynting effect, correspond to positive normal stress.

In a cone-plate rheometer, shown schematically in Fig. 1a, the
measured axial force F in torsion depends not only on the tensile
axial stress component σzz, but also on the azimuthal component
σxx, which acts as a hoop stress. For incompressible materials,
this hoop stress generates a radial pressure gradient that con-
tributes vertical thrust that counteracts σzz. In this case, the sign
of the first normal stress difference, N1 = σxx − σzz determines
the sign of the measured axial force for sheared incompressible
materials, according to F = N1πR2/2. The first normal stress
difference, N1, is fundamental to the nonlinear viscoelastic re-
sponse of materials and is almost universally positive, particu-
larly for solids. For typical polymer networks, positive N1 re-
sults from the fact that polymer extension in the azimuthal di-
rection tends to be greater than in the axial direction [4]. It was
thus surprising when biopolymer gels, such as fibrin and colla-
gen, were recently identified as apparent exceptions to this, with
an inverted or negative Poynting effect [5, 6]. Theory and simu-
lation studies [5–12] have shown that this observed negative nor-
mal stress is a generic feature of semiflexible networks, playing
a significant role in the onset of the nonlinear strain-stiffening re-
sponse characteristic of biopolymer networks [10, 12, 13]. How-

ever, as recently demonstrated [14, 15], this anomaly for gels
can be understood to arise from their porous, two-component
nature. This porosity renders the gels effectively compressible
on long enough time scales, over which the radial pressure gra-
dient relaxes as the solvent flows from the sample boundaries,
such that only the negative contribution from σzz is measured,
with F = −σzzπR2 [14, 15]. Consistent with this interpretation,
these networks showed a normal (positive) Poynting effect on
short enough time scales, in which the gels become effectively
incompressible, indicating that the normal stress difference N1
remains positive.
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FIG. 1. (a) Schematic of a hydrogel sample in a cone-plate rheometer
of radius R, with coordinates defined such that the x-axis and z-axis are
oriented along the azimuthal (shear) and axial (gradient) directions, re-
spectively. Positive axial force F corresponds to the sample pushing up
against the cone. (b) Applying sufficient shear strain γ to a subisostatic
(z < zc) network invokes a transition from a bending-dominated regime
(floppy in the absence of bending interactions) below γc to a stretching-
dominated regime above γc. The details of the phase boundary γc(z)
(blue line) depend on the network structure.

For isotropic viscoelastic materials undergoing affine (homo-
geneous) simple shear deformation, the Lodge-Meissner rela-
tion relates N1 to the shear stress σxz as N1 = σxzγ [4]. This
relation, first identified by Rivlin for elastic solids [16], holds
for any material in which the principal strain axes and principal
stress axes remain parallel throughout the applied deformation,
which is satisfied as long as the material is initially isotropic
and deforms affinely [17]. Prior work has shown that networks
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of athermal fibers, of which collagen is a prime example, un-
dergo highly nonaffine deformation under imposed shear strain.
In such networks, it was recently shown that the degree of non-
affinity depends on the system’s proximity to a strain-controlled
transition that occurs along a critical line in the γ-z plane, where
γ is the applied shear strain and z is the connectivity, or average
number of connections to each network junction [18]. Strictly
speaking, this transition occurs at finite strain for central-force
networks below their isostatic point of (linear) marginal stabil-
ity, as sketched in Fig. 1b. For fibers with finite bending rigidity,
this line of marginal stability is manifest in a crossover from a
soft, bending-dominated regime to a stiff, stretching-dominated
regime. This nonlinear stiffening transition coincides with the
development of a highly heterogeneous and anisotropic network
of tensile force chains aligned primarily along the tension axis,
similar to the marginally stable networks of compressive force
chains that develop at the jamming transition in sheared granular
packings [19, 20] and frictional force chains in shear-thickening
suspensions [21, 22], both of which align instead along the com-
pression axis. While force chains have been observed in fibrous
networks [23–26], the properties of force chain networks that
develop during macroscopic strain stiffening, and their effects
on the normal stresses, have not been extensively studied. In
shear-thickening suspensions, the formation of such force net-
works are typically associated with anomalous, and sometimes
negative, values of N1 [27–29]. Given the similarity of the force
chains in sheared semiflexible fiber networks to those observed
in packings/suspensions, as well as the significant nonaffinity
observed near the strain-stiffening transition, it is not obvious
that the Lodge-Meissner relation should apply, or even that N1
should be positive for these networks. While some prior theory
and simulation [9, 24] studies have suggested that semiflexible
networks may generally satisfy the Lodge-Meissner relation, a
systematic study of the effects of network structure and nonaffin-
ity on N1 has been lacking.

Here, we investigate the behavior of the various normal stress
components in athermal subisostatic fiber networks near the
strain-stiffening transition, using numerical models of disor-
dered semiflexible fiber networks in two and three dimensions.
We show that the general scaling of the normal stresses with
shear strain below, near, and above the rigidity transition re-
mains consistent irrespective of the underlying network struc-
ture. However, we demonstrate that such networks can exhibit
anomalous behavior in N1 that is highly sensitive to the network
structure, and that this anomaly is most pronounced near the
point of marginal stability as a function of strain, i.e., along the
phase boundary in Fig. 1b that corresponds to nonlinear strain-
stiffening. This anomaly at the stiffening transition results from
the formation of a highly heterogeneous, anisotropic, system-
spanning network of strong tensile force chains, whose spatial
structure and force distribution determines the relative values of
each normal stress component and thus N1. Our results sug-
gest that any underlying anisotropy in the network structure can
result in anomalous behavior in N1 that is maximized at the crit-
ical strain, suggesting that the sign and magnitude of N1 can, in
principle, be tuned by selectively modifying the network struc-
ture. Interestingly, our results suggest that in the limit of very
large and nearly isotropic systems, such as large off-lattice net-
work models or experimental gels, the Lodge-Meissner relation

should be satisfied at any strain, in spite of the significant non-
affine deformations and heterogeneous force network associated
with the critical strain.

(a) (b) (c)

(d) (e) (f)

FIG. 2. (A) Sample of a reconstituted collagen network exhibiting clear
connective and geometric disorder, adapted from Ref. [18]. We inves-
tigate the mechanics of bond-diluted athermal semiflexible fiber net-
works including (b) phantom 2D triangular networks with added po-
sitional disorder, (c) phantom FCC lattice-based networks, (d) random
fiber (Mikado) networks, (e) 2D bidisperse disk packing-derived net-
works and (f) 3D bidisperse sphere packing-derived networks.

Numerical models

We consider discrete models of semiflexible polymer net-
works in 2 and 3 dimensions, including both lattice-based and
off-lattice network structures, with filament-bending (i.e. freely
hinging crosslinks between fibers) and bond-bending interac-
tions. For lattice-based models, we consider two-dimensional
(triangular) and three-dimensional (face-centered cubic) lattice-
based networks, and for off-lattice networks we consider two-
dimensional Mikado and bidisperse disk packing-derived net-
works as well as three-dimensional bidisperse sphere packing-
derived networks. Examples of these are shown in Figure 2.

We construct disordered lattice-based networks in 2D begin-
ning with fibers arranged on a periodic triangular lattice with
lattice spacing l0 = 1 and sides of W lattice units [30, 31], which
we then phantomize by disconnecting one of three intersecting
fibers at each node, in order to reduce the average network con-
nectivity 〈z〉 to 4 [32]. Prior work has shown that, in 2D net-
works, the buckling of long, straight fibers leads to unrealistic
mechanical effects including a dip in the differential shear mod-
ulus K = ∂σxz/∂γ [12]. We avoid this by introducing geometric
distortion to the unstrained lattice network by moving each node
a random distance in the range [0, δmax] in a random direction,
with δmax ≤ 0.5 in order to avoid overlapping nodes [33–35],
and subsequently redefining the rest lengths li j,0 between pairs of
nodes and rest angles θi jk,0 between connected triplets of nodes
so that the geometrically disordered network exhibits zero stress
in the unstrained state. In order to avoid system-spanning (or
nearly system-spanning) fibers, which introduce unrealistic con-
tributions to the macroscopic mechanics [10, 36], we remove ev-
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ery qth bond along each fiber, beginning with a randomly chosen
bond, prior to dilution. For phantomized triangular networks, we
use W = 120 and q = 20. Similarly, the process for generating
3D face-centered cubic (FCC) lattice-based networks (as shown
in Figure 2c) begins with fibers arranged on a periodic FCC lat-
tice [37] with sides of W lattice units with lattice spacing l0 = 1.
We phantomize these as well [38], yielding an average z = 4,
and cut a single randomly chosen bond on each fiber prior to
dilution. We use 3D FCC networks with W = 25.

Mikado networks are constructed by placing straight seg-
ments of length L with random positions and orientations into
a 2D periodic box of side length W, adding crosslinks at the in-
tersections between segments [39, 40]. Fibers are deposited ran-
domly until the desired average crosslink density L/lc is reached,
where lc is the average bond length. Even in the infinite crosslink
density limit, Mikado networks yield z < 4. We generate net-
works with W = 10L and L/lc ≈ 12, yielding an initial connec-
tivity of z ≈ 3.6 prior to dilution.

We prepare 2D packing-derived (PD) networks by first ran-
domly placing N = W2 radially bidisperse disks with harmonic
repulsive interactions within a periodic square unit cell of side
length W, where half of the disks are assigned a radius r = r0
and half r = φr0, with φ = 1.4 chosen to avoid long-range order
[41]. We incrementally increase r0 from 0 until the system jams,
exhibiting a finite bulk modulus. From this disordered packing,
we generate a contact network by connecting the centers of the
overlapping disks (excluding rattlers) with springs at their rest
lengths [42–44]. The same procedure is followed in 3D, using
N = W3 radially bidisperse harmonic repulsive spheres, also
with φ = 1.4, in a periodic cubic unit cell of side length W.
With sufficiently large systems, this procedure generates contact
networks with z ≈ 2d, where d is the dimensionality. Unless
otherwise stated, we study 2D packing-derived networks with
W = 100 (N = 10000 nodes) and 3D packing-derived networks
with W = 20 (N = 8000 nodes).

After generating the underlying network structure, we repeat-
edly remove randomly chosen bonds and any consequent dan-
gling ends until the network reaches the desired average network
connectivity z. We model the lattice-based and Mikado net-
works as filamentous networks with freely-hinging crosslinks,
in which bending interactions are accounted for only along each
fiber [18, 40], whereas the packing-derived networks are mod-
eled instead as bond-bending networks [45] with bending inter-
actions between all pairs of nearest-neighbor bonds. Given that
the precise mechanics of the connections between fibers in real
collagen and fibrin networks, which can include both branching
points and crosslinks, are not well characterized, using two dif-
ferent crosslink models enables us to study whether the behav-
ior of the normal stresses is independent of the detailed form of
the bending interactions. Prior work has shown that these mod-
els exhibit similar linear mechanics [36, 46] and strain-driven
critical behavior [18, 35, 47]. Energetically, we treat individ-
ual bonds as Hookean springs with stretching modulus µ and
pairs of bending-associated bonds with bending modulus κ. The
HamiltonianH of the full network is

H =
1
V

µ2 ∑
〈i j〉

(
li j − li j,0

)2

li j,0
+
κ

2

∑
〈i jk〉

(
θi jk − θi jk,0

)2

li jk,0

 , (1)

in which the sums are taken over pairs 〈i j〉 and triplets 〈i jk〉 of

connected nodes, and li jk,0 = (li j + l jk)/2. For networks with
freely hinging crosslinks, the second sum is taken only for ad-
jacent pairs of bonds along fibers. Here, V = v0Wd, where
v0 =

√
3/2 for triangular lattice-based networks, v0 =

√
2/2

for FCC lattice-based networks, v0 = 1 otherwise, and d is the
dimensionality. As in prior work, we set µ = 1 and define a
dimensionless bending rigidity κ̃ = κ/µl2c . Bond-diluted net-
work models such as these have been shown to quite effectively
describe the shear elasticity of reconstituted collagen networks
[13, 18], which have a typical average value of z ≈ 3.4 [48].

We perform simulations of networks under simple shear by
incrementally increasing the shear strain γ from 10−2 to 1 in ex-
ponentially spaced steps, using generalized Lees-Edwards peri-
odic boundary conditions [49]. For simplicity of notation when
comparing 2D and 3D simulations, we denote x and z the direc-
tions of shear and gradient, respectively, in both cases. At each
strain value, the network energy is minimized using the FIRE
algorithm [50], and each component of the stress tensor σ is
computed as

σαβ =
1

2V

∑
〈i j〉

fi j,αui j,β (2)

in which ui j = u j − ui is the vector between nodes i and j and fi j
is the force acting on node i due to node j [51]. To symmetrize
the normal stresses in the linear regime, we average the response
of each network sample under positive and negative shear strain.
Unless otherwise stated, the reported stress is averaged over at
least 10 samples.

For comparison, we also consider the limit of an isotropic
medium composed of filaments of length l0 = 1 with uniformly
distributed initial orientations, which are assumed to deform
affinely under simple shear. We compute the resulting stress ten-
sor as a function of strain for this system with two complemen-
tary force extension relations: simple linear Hookean springs,
which support both compression and tension, and “rope”-like
springs that support only tension (see Supplementary Informa-
tion). For the remainder of the paper we refer to the first
isotropic model as the spring model and the second as the rope
model. Both analytical models satisfy the Lodge-Meissner rela-
tion under any applied strain.

Normal stresses and strain-stiffening

Without bending interactions, spring networks exhibit a fi-
nite linear shear modulus G = limγ→0 K > 0 only when their
connectivity z, defined as the average number of connections
at each node, reaches a critical isostatic connectivity zc [36].
While the precise value of zc is sensitive to the heterogeneity of
the network structure, typical values are close to the constraint-
counting value ziso = 2d introduced by Maxwell [52]. Under
shear strain, spring networks that are subisostatic, with z < zc,
develop finite K ≈ µ at a critical strain γc that depends on the net-
work’s connectivity and geometry, with γc → 0 as z → zc from
below. At the critical strain, such networks develop a system-
spanning branched network of primarily tensile force chains,
oriented predominantly along the principal extension axis, in or-
der to support finite stress. Associated with the development
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of this force chain network are characteristic signatures of crit-
icality including diverging nonaffine fluctuations [18]. In net-
works with finite κ̃, K is finite and proportional to κ̃ below the
critical strain, and subisostatic semiflexible polymer networks
therefore undergo a transition from a bending-dominated regime
to a stretching-dominated regime at the critical strain [18]. In
Fig. 3, we show K vs. γ for several values of z, demonstrat-
ing that γc increases with decreasing z. For constant z, γc is
very weakly dependent on κ̃ in the limit of κ̃ → 0, and the
networks exhibit a clear transition from a bending dominated
regime (K ∝ κ̃) for γ < γc to a stretching dominated regime
(K ∝ µ) for γ > γc (Fig. 3a inset). This behavior is also clear
from the proportion of the total energy arising from bending in-
teractions, Hb/H , as we show in Fig. 3c: as κ̃ is decreased, the
transition from the bending-dominated to stretching-dominated
regime at γc sharpens. One can map the critical strain as a func-
tion of z to yield a phase diagram for the mechanical behavior
of subisostatic networks as a function of strain and connectivity,
as shown schematically in Fig 3b [18]. The details of the phase
boundary depends on the underlying network geometry.
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FIG. 3. (a) Differential shear modulus K vs. strain γ for phantomized
triangular networks with κ̃ = 10−6, W = 120, δmax = 0.4, and varying
connectivity z. The vertical dotted line for each z value indicates the
critical strain γc, determined as the strain corresponding to the onset of
finite K in the low-κ̃ limit. These curves illustrate that the critical strain
increases with decreasing z. The solid black line shows the computed K
for the affine isotropic network model with line density ρ = 2

√
3. Inset:

K vs. γ for constant z = 3.6 and varying κ̃. (b) Schematic mechanical
phase diagram indicating the increase in γc with decreasing z below zc =

2d. (c) For the same networks, the ratio of bending energy Hb to total
energy H illustrates the bending-to-stretching transition that occurs at
the critical strain and (inset) sharpens with decreasing κ̃. Colors in both
the main panel and inset correspond to those in panel (a). Lines between
points are intended to serve as guides to the eye.

The normal stress components σii (where i = x, z) both ex-
hibit the same bending-dominated to stretching-dominated tran-
sition at the z-dependent critical strain, with σii ∝ κ̃ for γ < γc
and σii ∝ µ for γ > γc, as shown in Fig. 4a for phantom trian-
gular networks. As we show in Fig. 5, we observe essentially
the same behavior in all subisostatic network models studied
here, supporting the idea that the details of the network structure
[18] and bending energy type [35] have only minor effects on
the general strain-stiffening behavior of semiflexible fiber net-
works. Instead, the governing variables are z and γ. In Supple-
mentary Information, we show that phantomized triangular net-
works exhibit the same mechanical behavior with freely-hinging
crosslinks as with bond-bending interactions, with the only dif-

ference being that bond-bending interactions leads to a higher
apparent κ due to the additional angle constrains. We also ob-
serve that the ratio of the axial normal stress component σzz to
the shear stress σxz becomes maximal, and typically greater than
1, at γc, as we show in Fig. 4b. This peak reflects the sharp tran-
sition from the bending-dominated regime, in which σzz ∝ γ2

and σxz ∝ γ for small γ, yielding σzz/σxz ∝ γ, to the stretching-
dominated regime, in which σxz grows as a power-law with re-
spect to ∆γ and rapidly begins to dominate σzz. Preliminary
observations of this phenomenon were made in prior work us-
ing Mikado networks [8] and in experiments on fibrin [6]. We
observe, in all network models discussed here, that the peak fol-
lows the critical strain as z is varied and grows to a z-dependent
asymptotic value as κ̃ decreases. A maximum in this ratio actu-
ally does occur in the affine isotropic spring network limit due to
the gradual reorientation of fibers under increasing shear strain,
but the maximal value is smaller (∼ 0.4) and the peak strain
much larger (γ ∼ 1) than we observe for our semiflexible net-
work models. The isotropic rope network model, in contrast, ex-
hibits a maximum with σzz/σxz > 1 at zero strain. In semiflexi-
ble networks with small κ̃, it appears that the critical strain marks
a transition from the linear, bending-dominated regime in which
σzz/σxz ∝ γ to a rope-like regime. This results from the fact
that, at and above the critical strain, tension forces vastly out-
weigh compressional forces in networks with low κ̃. In Fig. 4b,
we show that systems with low κ̃ exhibit a ratio σzz/σxz which,
above γc, is quite close to the rope network limit, whereas for
higher κ̃ networks the ratio approaches the spring network limit.
The latter trend is expected, as increasing κ̃ increases the degree
to which the network’s fibers can support compression. Interest-
ingly, we observe that, near the critical strain, σzz/σxz exceeds
even the rope values predicted for the affine isotropic rope net-
work limit, possibly due to the highly heterogeneous nature of
the stress-bearing network at the critical strain. Nevertheless, it
is apparent that a large ratio of the axial normal stress to the shear
stress is a signature of the development of a rope-like stress-
bearing structure at the critical strain. This is further supported
by prior experimental evidence that fibrin networks with stiffer
filaments exhibit a smaller peak in σzz/σxz than more flexible
ones at the critical strain [6].

Stress anisotropy

For typical isotropic elastic materials, the first normal stress
difference N1 = σxx − σzz is positive, and for affinely deforming
isotropic elastic materials like rubber it is typically well approx-
imated by the Lodge-Meissner relation N1 = σxzγ. Negative
values of N1 are unusual, but have been observed in certain ma-
terials including shear-thickening suspensions [28]. However,
negative N1 has not to date been observed in a real elastic solid.
While the normal stresses we observe for all networks (Figs. 4
and 5) are similar in magnitude at and below the critical strain,
we observe that the behavior of the first normal stress difference
N1 depends strongly on the underlying network structure.

Under applied strain γ, the periodic images of each node in
the network transform affinely according to the simple shear de-
formation gradient Λ(γ). This deformation gradient results in
maximal elongation along its principal extension axis with ori-
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FIG. 4. Normal stress components σxx (closed symbols) and σzz (open
symbols) normalized by γ2, for the same phantom triangular networks
as in Fig. 3, with κ̃ = 10−6 and varying z. Dotted lines indicate γc(z).
(b) The corresponding ratio of the axial normal stress σzz to the shear
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set) sharpens with decreasing κ̃. Colors correspond to those in Fig. 3.
The thick solid line corresponds to the affine isotropic spring network
model, and the dashed solid line corresponds to the affine isotropic rope
network model.
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entation θP, with maximal compression along the perpendicular
axis, as shown schematically in Fig. 6c for a small strain. We
determine the principal strains and principal strain axes, which
rotate with applied strain, as a function of γ in Supplementary
Information. For γ = 0, the principal extension axis is oriented
θP = π/4 radians above the x-axis in the x-z plane. For isotropic
and affinely deforming networks with only axial forces, such as
the rope and spring model, the principal stress axes exactly fol-
low the principal strain axes under any applied γ, such that the
Lodge-Meissner relation is always satisfied. That the principal
stress axes follow the principal strain axes is not guaranteed in
disordered networks, as they deform nonaffinely and are not per-

fectly isotropic.
In particular, lattice-based networks such as triangular and

FCC models exhibit significant angular anisotropy; in the un-
strained state, their bonds lie only along vectors corresponding
to the lattice directions, and imposed local geometric disorder
does little to mitigate this long-range anisotropy. We can ex-
plore the effects of this anisotropy by applying an initial rota-
tion of φ radians, relative to the x-axis in the x-z plane, to the
lattice prior to applying shear strain. Arbitrarily, we define the
unrotated (φ = 0) phantom triangular lattice as having bonds
initially oriented at angles θb,0 ∈ [0, π/3, 2π/3] relative to the
x-axis. Even with significant random local geometric distortion
δmax = 0.4, the fibers remain on average oriented along these
initial lattice vectors. In general, tensile force chains develop in
randomly diluted spring networks at the critical strain and tend
to be oriented along the principal extension axis. As bonds in
a phantom triangular network do not have a uniform initial an-
gular distribution and are instead oriented primarily along the
initial lattice bond orientations for a given φ, the tensile force
chains develop along the (slightly rotated) initial lattice bond
orientation that is most stretched at γc, i.e. whichever is closest
to the principal extension axis.

For initially unrotated (φ = 0) triangular lattice networks,
the dominant tensile force chains develop primarily along the
bonds that are initially oriented along the θb,0 = π/3 direction,
as shown in Fig. 6d, with softer branches oriented along the other
directions. As a result, the maximum principal stress is oriented
close to the θb,0 = π/3 direction, not parallel to the principal
extension axis. The initial lattice orientation determines which
of the (rotated) initial lattice bond orientation the tensile force
chains propagate along at γc, thus determining the relative ori-
entation of the maximal principal stress axis to the principal ex-
tension axis. When the initial lattice is rotated by φ = π/6, such
that the initial undistorted lattice bond vectors are oriented along
θb,0 ∈ [π/6, π/2, 5π/6], the dominant force chains instead propa-
gate along the rotated lattice vector corresponding to θb,0 = π/6,
as shown in Fig. 6e.

But how does this affect N1? In the κ̃ = 0 limit, in which
forces only occur parallel to bonds, the value of N1 is en-
tirely determined by the individual bond orientations, with N1 ∝∑

b fblb cos(2θb) where fb is the tension, lb is the length, and
θb ∈ [−π/4, 3π/4] is the angle of bond b relative to the x-axis
in the x-z plane. This range for θb is convenient, as bonds under
tension with θb > π/4 exhibit negative N1, whereas bonds under
tension with θb < π/4 exhibit positive N1. A similar expres-
sion was used in Ref. [29] to describe relative contributions to
N1 based on force networks in non-Brownian suspensions. With
finite κ̃, forces also occur perpendicular to bonds, leading to a
more complicated dependence of N1 on the network configura-
tion. Since the tensile force networks dominate for relatively
low-κ̃ networks at and above the critical strain, it is reasonable
to estimate N1 for such networks in this regime only in terms of
stretching forces, i.e. as a simple function of the bond orienta-
tions.

In our disordered network models, which deform nonaffinely
and always possess some anisotropy, normalizing the measured
value of N1 by the Lodge-Meissner value (σxzγ) yields a quan-
titative measure of the degree to which the network behaves as
an affinely deforming isotropic material. Since σxzγ is always
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FIG. 6. (a) N1 normalized by the Lodge-Meissner relation N1 = σxzγ
for undiluted triangular lattices (dashed lines) and phantomized trian-
gular networks with z = 3.6, and W = 120, and varying κ̃, in which
the lattice is initially rotated by angle φ = 0 and φ = π/6. In the
subisostatic lattice case, the peak at the critical strain γc changes sign
when the lattice is rotated by φ = nπ/6 with odd n, as shown in (b)
for κ̃ = 10−6 over the full range of θ. In lattice-based networks such as
these with long fibers along specific lattice vectors, force chains pref-
erentially develop at the critical strain along whichever lattice vector
is closest to the principal extension direction for a given applied strain
γ (see Supplementary Information). (c) The principal extension axis
for the simple shear deformation gradient Λ(γ = 0.1) is shown in red,
with the (perpendicular) principal compression axis shown in blue. In
black, we show the corresponding strain ellipsoid, projected onto the x-
z plane. d) The angular orientation of the dominant force chains relative
to θ = π/4 determines the sign of N1. For unrotated networks (φ = 0)
with the same parameters as in (b), the most elongated fibers at the crit-
ical strain γc ≈ 0.1 are oriented with θb > π/4, resulting in negative
N1. (e) When these networks are rotated initially by φ = π/6, the most
elongated fibers at the critical strain are instead oriented with θb < π/4,
resulting in positive N1.

positive, this quantity also indicates when N1 is negative. For
the remainder of this work, we report the normalized quantity
N1/(σxzγ). For unrotated (φ = 0) phantom triangular lattice net-
works, the dominant force chains at γc are tensile and oriented
with θ > π/4 for small γc, predicting that N1 will be negative in
the limit of low κ̃. With increasing γc, i.e. decreasing z, the force
chains should develop with orientations closer to the principal
strain axis, so decreasing z should bring N1 closer to the Lodge-
Meissner value. In Fig. 7a, we plot N1/(σxzγ) as a function of
strain for phantom triangular lattice-based networks with φ = 0,

small κ̃, and varying z, demonstrating that these exhibit a neg-
ative peak in N1 at the z-dependent critical strain, correspond-
ing to the highly anisotropic force chains with θ > π/4 shown
in Fig. 6d. As predicted, the magnitude of this peak decreases
as z decreases and γc increases, as the applied strain causes the
principal stress axis to approach the principal strain axis. Never-
theless, even relatively high γc values yield an anomalous down-
ward peak in γc, indicating that these networks become maxi-
mally anisotropic at the critical strain. At large strains, of order
1 or greater, N1 ≈ σxzγ for all networks, as the deformation be-
comes increasingly affine above the critical strain and the prin-
cipal stress axis approaches the principal strain axis.

We further demonstrate in Fig. 7b that the peak is related to
the critical strain-stiffening transition by showing that, in unro-
tated phantom triangular networks with constant z and varying
κ̃, the peak becomes sharper in the κ̃ → 0 limit. With increas-
ing κ̃, the deformation becomes increasingly affine, so the peak
disappears and N1 grows increasingly positive. With κ̃ → ∞,
the disordered network’s response approaches that of the corre-
sponding affinely deforming undiluted triangular lattice, which
actually yields N1/(σxzγ) > 1 for φ = 0 due to its inherent angu-
lar anisotropy. Given the rotational symmetry of the triangular
lattice for rotations of nπ/3, we expect that, beyond small dif-
ferences due to random dilution, any angular anisotropy-related
mechanical behavior of the lattice should be similar for initial ro-
tations φ = nπ/6 where n is even, whereas the opposite behavior
should occur for odd n. For intermediate angles, we should ob-
serve a transition between these two cases. In Fig. 6a, we show
the response for the full undiluted triangular lattice, as well as
that of diluted phantom triangular networks with varying κ̃, with
φ = 0, in comparison to the corresponding curves for the “op-
posite” initial orientation φ = π/6. We see that, for the full and
diluted networks, N1/(σxzγ) essentially flips about the Lodge-
Meissner value of 1 when the initial lattice is rotated by π/6.
That the peak for the low-κ̃ case flips in sign is supportive of
the idea that the orientation of the dominant force chains, shown
in Fig. 6d-e, controls the sign and magnitude of N1 relative to
σxzγ. In Fig. 6b, we show N1/(σxzγ) for the full range of φ in
the low-κ̃ case, demonstrating the smooth transition between the
aforementioned extremes for rotations of nπ/6. If an angular
average is taken, the Lodge-Meissner relation is satisfied. It is
interesting to note that, even for the phantom diluted triangular
lattice, certain intermediate rotations should approximately sat-
isfy the Lodge-Meissner relation at the critical strain as long as
the dominant force chains, and thus the principal stress axis, are
parallel to the principal extension axis. Phantom FCC networks,
which also exhibit angular anisotropy, show qualitatively similar
behavior, with a downward peak in N1/(σxzγ) for φ = 0.

For off-lattice networks with no long-range order, including
Mikado and 2D/3D PD networks, the force chains that develop
at the critical strain still occur with a directional bias towards
the principal extension axis, but the lack of an underlying lattice
structure means that they exhibit no orientational bias above or
below the principal extension axis. Nevertheless, the highly het-
erogeneous and branched nature of these networks means that
even for relatively large system sizes, some samples do exhibit
deviation from the Lodge-Meissner relation at the critical strain.
In Fig. 8a, we show that N1/(σxzγ) exhibits anomalous behav-
ior with a peak at the critical strain for certain samples for small
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FIG. 7. First normal stress difference N1 ≡ σxx −σzz normalized by the
Lodge-Meissner relation (N1 = σxzγ) in unrotated 2D distorted phan-
tomized triangular networks (φ = 0, δmax = 0.4) as a function of γ
for (a) κ̃ = 10−6 and varied 〈z〉 and (b) 〈z〉 = 3.6 and varied κ̃, with
the Lodge-Meissner result (N1/(σxzγ) = 1) shown as a thick solid line.
Deviation from the Lodge-Meissner relation increases with 〈z〉, and the
ratio exhibits a downward peak and maximal anomaly at the critical
strain γc, which grows with decreasing κ̃ and shifts with γc for varying
〈z〉. At high strain, ratios for all networks (irrespective of 〈z〉 and κ̃)
converge to the affine result.

(W = 50, N = 2500 nodes) 2D packing-derived networks, in-
dicating that this effect can occur in off-lattice networks. Aver-
aging over an ensemble of initial network structures, the Lodge-
Meissner relation is approximately satisfied. We show in Fig. 8b,
that larger networks (W = 140, N = 19600 nodes) still exhibit
anomalous peaks at the critical strain, but that these are typi-
cally lower in magnitude than those observed in smaller systems.
The deviation from the LM relation in the bending-dominated
regime appears to decrease with increasing system size as well.
For a given network, the dominant force chains arise along the
network’s “shortest paths“ [24] consisting of connected bonds
oriented close to the principal extension axis at a given strain,
which have some excess length for γ < γc. The critical strain
corresponds to the strain at which, in the κ̃ = 0 limit, one or
more of these shortest paths can no longer rearrange without the
stretching of their constituent bonds. Thus, the structure of the
force chain network and the resulting value of N1/(σxzγ), is de-
termined at the critical strain by the orientations of these (ini-
tially randomly oriented) paths.

While we do observe that individual samples typically closely
approximate the Lodge-Meissner relation, it is unsurprising that
finite-sized systems occasionally show anomalous behavior at
the critical strain, as a consequence of the finite chance of some
angular bias of the force chain network away from the principal
extension axis. In the thermodynamic limit, the Lodge-Meissner
relation should be satisfied even at the critical strain for individ-
ual networks, as increasing the system size should increase the
likelihood that the system can “find” shortest paths close to the
principal strain axis. In other words, deviation from the Lodge-
Meissner relation requires a preferential orientation of the prin-
cipal stress axis above (or below) the principal extension axis,
which can only occur due to some underlying bond orienta-
tion bias in the initial network structure. For off-lattice mod-
els like packing-derived networks with no long-ranged structural
anisotropy, such a preferential orientation is not possible in the
limit of large system sizes, so the Lodge-Meissner relation is sat-
isfied. We observe the same behavior for 3D PD networks and

Mikado networks as in 2D PD networks. It is worth noting that
in off-lattice networks, like in the lattice-based networks, one
can cause N1/(σxzγ) to flip about the Lodge-Meissner value by
appropriately rotating the initial structure, and averaging over all
possible initial orientations removes any deviation from Lodge-
Meissner.
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FIG. 8. Off-lattice networks show signatures of anisotropy in N1 at the
critical strain, but these deviations appear to average out in the limit
of large system sizes or when averaged over many samples. For 2D
packing-derived networks with z = 3.3 and κ̃ = 10−6, we observe
a decrease in the magnitude of the deviations of N1 from the Lodge-
Meissner relation with increasing system size.

To emphasize the dependence of the value of N1 on the highly
heterogeneous force chain network structure at the critical strain,
we show examples of force chains for Mikado, 2D PD, and un-
rotated phantom triangular networks with κ̃ = 0 at the criti-
cal strain in Fig. 9. Mikado and PD networks show randomly
branched force chains with a directional bias towards the prin-
cipal extension axis, whereas the unrotated phantom triangu-
lar network shows the expected force chains oriented above the
principal extension axis (and above θb = π/4). Additionally, we
compute the distribution of contributions to N1 due to bonds ori-
ented with angle θ = θb − π/4, normalized by σxzγ, for each
network structure as a function of ∆γ = γ − γc, also shown in
Fig. 9. Integrating these distributions over θ yields N1/(σxzγ)
as a function of strain. At large strains, the networks all show
very similar behavior, with primarily positive contributions to
N1 coming from primarily tensile bonds oriented close to the
principal extension axis, below θb = π/4, and with the total con-
tribution satisfying the Lodge-Meissner relation.

At the critical strain, however, the value of N1/(σxzγ) is de-
termined by the balance of very large positive and negative con-
tributions from bonds oriented above and below θb = π/4. For
the Mikado and PD networks shown, these positive and negative
contributions are similar in magnitude at γc, but for the unrotated
phantom triangular lattice, the negative contribution at γc signifi-
cantly outweighs the positive contribution, yielding the observed
negative peak in N1/(σxzγ) vs. γ. The signficant heterogeneity
of the force chain network is evident in noisy nature of these dis-
tributions at γc. We additionally plot, as insets in Fig. 9, the cor-
responding bond force distributions P( f /〈 f 〉) at γc, where f > 0
corresponds to tension and the average 〈 f 〉 is taken only over
bonds under tension. Similar to observations of compressive
force distributions in granular packings [19, 53, 54], frictional
forces in shear-thickening suspensions [21], and tensile forces in
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polymer crazes [55], we observe that the large ( f > 〈 f 〉) tensile
forces in our networks are, at the point of marginal stability i.e.
γc, approximately exponentially distributed. To emphasize this,
we show that the large forces can be approximated by the distri-
bution P( f /〈 f 〉) ∝ exp(−β( f /〈 f 〉 − 1)). We find β = 0.5 appears
to reasonably describe the distributions for the networks shown
here. We also note that the compressive forces appear to exhibit
an exponential tail as well, although they decay faster than the
tensile forces. In a network of rope-like bonds or bucklable indi-
vidual bonds with κ̃ = 0, there would be no compressive forces.
These distributions emphasize that tensile forces dominate at the
critical strain.
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FIG. 9. At the critical strain in the limit of κ̃ = 0, a system-spanning
network of force chains develops that enables the network to bear fi-
nite stress. The angular orientation of this force network’s constitutent
bonds determines the sign of N1. Here, we show representative force
chains for central force (κ̃ = 0) networks at the critical strain for (a)
a Mikado network with z = 3.3, (b) a packing-derived network with
W = 100 and z = 3.4, and (e) a phantomized triangular network with
z = 3.6. We also show the corresponding distributions of N1(θ), the
contribution to N1 from bonds oriented with a given angle θ relative to
π/4, normalized by σxzγ for varying ∆γ = γ − γc. The integral of N1(θ)
over θ ∈ [−π/2, π/2] yields N1. Hence, the relative areas of the positive
and negative portions of the curve for a given γ indicates the sign of
N1. The dominant contributions to N1 are from bonds under tension.
Insets: At the critical strain, the probability distribution of bond ten-
sion f , where fi j = µ(li j/li j,0 − 1), normalized by the mean tensile force
〈 f 〉 = mean( f ( f > 0)), exhibits an exponential tail. The black solid
lines corresponds to P( f /〈 f 〉) ∝ exp(−β( f /〈 f 〉 − 1)), with β = 0.5.

Summary and discussion

In this work, we have shown the general scaling behavior of
the normal stresses in the vicinity of the strain-driven stiffening
transition for athermal semiflexible polymer networks, demon-
strating that both the axial component σzz and azimuthal compo-
nent σxx are quadratic in strain and proportional to the polymer
bending rigidity κ̃ for γ < γc but increase dramatically at the
critical strain, such that both become proportional to the poly-
mer stretching modulus µ for γ > γc. Additionally, we note
that the critical strain coincides with the development of a het-
erogeneous network of primarily tensile force chains, similar to
the compressive force chains observed in granular packings and
frictional force chains observed in shear thickening suspensions.
Along with the development of this force chain network, we ob-
serve a peak in the ratio of the axial normal stress to the shear
stress (previously observed in prior work [6, 8]), which we show
is a signature of the critical strain that becomes sharper with de-
creasing κ̃. For networks with low κ̃, we observe that this ratio
appears to behave like the corresponding ratio for the affine rope
network model, highlighting the primarily tensile nature of the
stress-bearing force chain network. These observations possibly
explain prior evidence that more flexible fibrin networks exhibit
a sharper peak in σzz/σxz than stiffer fibrin networks [6].

Further, we observe that the highly anisotropic and hetero-
geneous structure of the force chain network that develops at
the critical strain results in deviation of the first normal stress
difference N1 = σxx − σzz from the Lodge-Meissner relation
N1 = σxzγ, particularly for networks with significant angular
anisotropy (i.e. lattice-based models). This deviation from the
Lodge-Meissner relation results from a difference in orientation
of the principal stress axis from the principal extension axis,
which in lattice-based models results from force chains at γc
developing primarily along whichever of the transformed initial
lattice vector directions is closest to the principal strain axis. For
lattice orientations in which the principal stress and strain axes
do not align, we observe a peak in N1/(σxzγ) at the critical strain,
consistent with the observation that these force chains are most
anisotropic at the critical strain, and we show that appropriately
rotating the lattice changes the sign of the peak. These results
suggest that one can control the sign and magnitude of N1 by
modifying the network structure, similar to recent work show-
ing that networks can be made auxetic by selectively pruning
bonds [56]. We observe that similar but typically smaller peaks
in N1/(σxzγ) at γc can also occur in off-lattice models, which
lack long-range order and develop more random, branched force
chain networks than lattice-based networks. While the force
chain networks in off-lattice models are, on average, oriented
along the principal strain axis, deviation from Lodge-Meissner is
observed for finite systems at the critical strain and results from
small imbalances between contributions to N1 from bonds ori-
ented on either side of the principal extension axis. Our results
suggest that, in the thermodynamic limit, semiflexible networks
with no long-range angular anisotropy (e.g. off-lattice models
with W → ∞) should satisfy the Lodge-Meissner relation, even
at the critical strain.

This suggests that any observed deviation from the Lodge-
Meissner relation in experimental measurements could serve as
an indication of anisotropy in the network structure. For rel-
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atively isotropic biopolymer gels in which the sample size is
much larger than the mesh size, we expect N1 = σxzγ, mean-
ing that N1, i.e. the measured normal stress on short timescales,
can be expected to be positive. This is in agreement with ex-
perimental measurements of N1 measured for fibrin gels at high
frequencies [14]. We note that prior dynamic studies of spring
networks have shown that viscous damping reduces nonaffinity
at high frequencies [57, 58], which we expect to further reduce
deviation from the Lodge-Meissner relation in this limit.

Finally, we report force probability distributions for networks
at the critical strain in the limit of κ̃ = 0, showing that the
dominant forces at γc are tensile, with additional evidence of
an exponential tail in the large force probability distribution.
Similar force probability distributions have been measured for
other fragile or marginally stable systems, including compres-

sive force networks in granular packings at the jamming point
[19, 53, 54], transient frictional force networks in sheared granu-
lar suspensions [21], and force networks in polymer crazes [55].
Future work will be necessary to characterize these force net-
works and their implications in the strain-driven stiffening tran-
sition.
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