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A Simple Landscape of Metastable State Energies for
Two-Dimensional Cellular Matter†
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The mechanical behavior of cellular matter in two dimensions can be inferred from geometric infor-
mation near its energetic ground state. Here it is shown that the much larger set of all metastable
state energies is universally described by a systematic expansion in moments of the joint probabil-
ity distribution of size (area) and topology (number of neighbors). The approach captures bounds
to the entire range of metastable state energies and quantitatively identifies any such state. The
resulting energy landscape is invariant across different classes of energy functionals, across sim-
ulation techniques, and across system polydispersities. The theory also finds a threshold in tissue
adhesion beyond which no metastable states are possible. Mechanical properties of cellular mat-
ter in biological and technological applications can thus be identified by visual information only.

1 Introduction
Two-dimensional Cellular Matter consists of domains (units like
cells, drops, or bubbles, typically in single layers) that tile the
plane with only a small fraction of continuous phase between
them. These systems are found across fields and across length-
scales from the microstructure of metals and biological tissues
to geological formations1–3. Geometrically, such materials are
patterns of polygons (Fig. 1a); while ordered crystals are impor-
tant special cases4–6, disordered arrangements of domains are
much more commonly encountered. Ground states of mechani-
cal energy in these systems have been shown to undergo a tran-
sition from rigid/solid to floppy/fluid states7–9, which can be
detected through geometric properties of the domains, particu-
larly the perimeter-to-area ratio. Alternatively, such disordered
ground states can also be characterized by particular correlations
between the distributions of domain size and domain topolo-
gies10,11. Beyond the ground states, cellular systems inhabit a
complex energy landscape of metastable states. In this work, a
simple and universal expression for the metastable state ener-
gies is developed, with statistical moments of domain sizes and
topologies as variables. This amounts to formulating a general
linear continuum mechanics for inelastic deformations, quantifi-
able from morphological traits visible e.g. in tissue images.

A global energy minimum, if it exists at all in disordered sys-
tems13, is very hard to determine (even in 2D foams, the only
mathematically proven ground state is the monodisperse hon-
eycomb14). Nevertheless, various annealing strategies in simu-
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Fig. 1 Cellular Matter in 2D. a, Examples of cellular systems encoun-
tered in nature 12: foam, Drosophila wing epithelial tissue, Cucumis epi-
dermal tissue. b, Schematics of the energy functional elements in foam
(constant tension), tissue (perimeter elasticity and adhesion), and spring
(Hookean elasticity) model systems.

lations find consistent low-energy states, which we call "(disor-
dered) ground states" here. Often, however, a cellular material is
only known to be in a local energy minimum, i.e., a metastable
state (MS) somewhere above the ground state energy. The com-
plex MS landscape is analogous to inherent structure networks
in models of packings and liquids15,16, and related to jammed
states17,18, as the system requires finite stress to move from one
MS to another. Note that, while a small uncertainty is inherent
in the energy value of the heuristically defined disordered ground
states, the energies of metastable states discussed in the present
work are larger by a significantly greater amount. Conversely,
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significantly lower energies can only be obtained by introducing
large-scale correlations into the system, e.g. spatially ordering the
domains of a polydisperse system by size. Such a pattern is statis-
tically extremely unlikely, and is not disordered.

In very recent work, the authors characterized the energies of
topologically adjacent metastable states through the lengths of
particular edges19; similar correlations were discovered in 3D tis-
sue simulations as well20. The present work does not make use
of this results, but focuses on the statistics of the areas Ai and
topologies (number of neighbors) ni of the individual domains,
which can be measured much more robustly than edge lengths.
We show that this description dramatically simplifies the energy
landscape and allows extraction of MS energy information from a
snapshot of the structure only.

2 Simulation of Cellular Matter Energy

2.1 Mechanical Energy Functionals

As we discuss static or quasi-static states of cellular matter, we ex-
clude dynamical or dissipative effects, while covering a variety of
elastic effects in a general mechanical energy functional. In this
functional, we further assume that (i) the systems are composed
of domains with equal properties, (ii) energy contributions from
the (small) continuous phase fraction are negligible, and (iii) con-
tributions from the bulk phase are dominated by the interfaces.
The latter implies that interaction energy between domains can
be equally partitioned between neighbors, so that the system en-
ergy is additive over domains i. Item (iii) also enforces constant
areas Ai to exclude bulk contributions. Under these assumptions,
the remaining, interface-dominated energy in 2D can be system-
atically expanded to first and second order in domain perimeters
Pi, yielding19

ε f =
1

6NL0
∑

i
Pi , (1)

εt =
1

6NL0

(
∑

i

(Pi−Pi,0)
2

Pi,0
− γ ∑

i
Pi

)
. (2)

The former corresponds to foams and the latter to common tis-
sue models7,9,21, cf. Fig. 1b. The average energy ε of N domains
is normalized by the edge length L0 of a regular hexagon of the
average area Ā = Atot/N, which we set to Ā = 1 without loss of
generality. In εt , Pi,0 is the equilibrium perimeter of individual
domains, set to the equivalent circle perimeter 2

√
πAi (a different

choice merely rescales the functional), and γ > 0 is a dimension-
less adhesion strength. Loss of rigidity of the ground state occurs
for γ > γc ≈ 0.1222 analogous to a critical shape index7,23. For all
functionals, we explore samples of a wide range of polydispersi-
ties.

It is convenient for a common treatment of all functionals to
translate εt to an equivalent foam energy ε∗f = 1

6NL0
∑i P∗i , sum-

ming domain perimeters P∗i in the metastable tissue states (even
though these are not equilibria under ε f ). The Supplementary
Information shows in detail how εt can be obtained reliably from
ε∗f , i.e., there is an accurate functional relation εt(γ,ε

∗
f ).

To probe the generality of our results, limited simulations were
also performed for a very different energy functional, in order to
assess whether the results carry over to systems where a domain
geometry can be constructed, but does not originally determine
energy: We model a set of N point objects confined to area Atot

interacting by springs of rest length d0,i j = r0,i + r0, j, mimicking
sticky elastic objects of undeformed size r0, j. These sizes are ob-
tained as equivalent circle radii of areas Ai, with ∑

N
i Ai = Atot as

before. Assuming harmonic spring energies, this yields

εs =
1

6NL 2
0

∑
i

n.n.

∑
j
(di j−d0,i j)

2 , (3)

where di j is the actual distance between object i and j and the
j sum is over nearest neighbors of i (Fig. 1b). After finding lo-
cal equilibrium positions of the point objects, a Voronoi tiling is
constructed, whose total edge length again yields a proxy foam
energy ε∗f . Varying the width of the distribution of the r0,i gives
access to a range of domain polydispersities.

2.2 Simulation Methods

Using the foam energy ε f and the tissue energy εt (with various
γ values), we generate a large number of metastable mechani-
cal equilibrium states employing Surface Evolver (SE), a program
specialized for this task24. As initial configurations for SE sim-
ulations, N Voronoi cells based on different types of point pro-
cesses are constructed in a rectangle of area Atot with periodic
boundary conditions: (1) a perturbed lattice algorithm22,25 us-
ing random displacements of the points in a regular triangular
lattice; (2) Lloyd’s algorithm26, which reduces disorder by reg-
ularizing Voronoi patterns; and (3) an excluded-volume algo-
rithm27, where the Voronoi cells have hard-core exclusion areas.
Each point process has a control parameter adjusting the degree
of disorder; typically the number of domains is N = 400 or 900 per
sample, but larger simulations have been run and were in agree-
ment with the results shown. Target values for domain areas Ai

are generated from a gamma distribution with desired polydis-
persity cA and assigned to individual cells by a combination of
random and/or systematic protocols (other shapes of area dis-
tributions yield unchanged results in the range of cA considered
in this work). SE then displaces vertices in order to minimize
the given energy functional; the program provides various tools
for iterations towards the minimum and check of convergence.
We use nonlinear edge representations to allow for the degrees
of freedom of curved edges. If in the process of minimization
an edge between domains shrinks to negligible length (a four-
way edge junction forms), this indicates an unstable state, and
SE performs a T1 transition. This repeats until a MS is found; al-
ternatively, further MS are found through deliberate induction of
non-spontaneous T1 transitions. The combined results of many
simulation samples delineate the MS region in a complex energy
landscape. Degenerate ground states of εt ("floppy" states) are
characterized by a dramatic decrease of the energy to zero within
the precision of the simulations. Overall, we analyze >200,000
MS and their statistical properties across polydispersities and en-
ergy functionals. For further details on different simulation pro-
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Fig. 2 Metastable state parameter dependences in foams and tissues. a, Linear correlation for monodisperse systems between (equivalent) foam
energy (ε f ,ε∗f ) and defect density µ20; the dashed line is the least square fit of empirical data with slope M20. Error bars on binned data are standard
deviations. Inset: The averaged standard deviation of ε f over all bins decays as 1/

√
N. b, c, Monodisperse structures (N = 400) at defect densities of

µ20 = 0.095 (low energy) and µ20 = 0.99 (high energy), respectively; these states are also indicated in a. Domains are color-coded by topology, green:
n = 4, yellow: n = 5, gray: n = 6, blue: n = 7, purple: n = 8, pink: n = 9. d, Polydisperse MS occupy a finite region in the µ20−µ11 plane, delineated by
the analytical curves for maximum covariance ±µmax

11 (µ20) (red dashed) and maximum energy εmax
f (black dashed). e, f Two MS for cA = 0.4 with equal

µ20 = 0.655, but different covariance: e, µ11 = 0.297,ε f = 0.985 (low energy) and f, µ11 = 0.085,ε f = 1.014 (high energy).

tocols and the independence of our results on the algorithms see
the Supplementary Information.

3 Monodisperse Systems
Considering monodisperse foam first, we expect any topological
defects in a MS to indicate higher foam energy (as the regu-
lar honeycomb is the ground state), see Fig. 2b,c. Indeed, ε f

is found to increase linearly with the topology variance, µ20 ≡
(1/N)∑i(ni−6)2, as shown in Fig. 2a, i.e.,

ε
mono
f (µ20) = ε0 +M20µ20 . (4)

By definition, ε0 = 1; we find the "modulus" value M20 ≈ 0.041.
Surprisingly, the linear relation is valid for the entire realizable
range of µ20: any attempt to construct a MS with µ20 > µmax

20 ≈ 1.0
invariably produces unstable states, i.e., states undergoing spon-
taneous neighbor-change T1 relaxations19,20,28 whose topologi-
cal changes lead to smaller µ20 (cf. Materials and Methods). Be-
cause of (4), this also means MS energy is bounded by εmax

f ≈
1.045. Domains in a configuration with µ20 ∼ 1 carry, on aver-
age, a topological charge of ±129, which can be conjectured as a
threshold for the proliferation of unstable states that have to re-
lax to lower-energy MS30. Note that Fig. 2a depicts all individual
sample energies (in gray) – even the most extreme variation of
ε f from the mean is moderate, while the standard deviation (er-
ror bars) is much tighter and decays as 1/

√
N (inset), as expected

from independently sampled values. For large enough sets of do-
mains, the simple prediction (4) thus becomes very accurate.

Extensive simulations of MS tissue energies εt in monodisperse
samples, when rescaled to ε∗f , do not just qualitatively reproduce
these results, but they prove quantitatively indistinguishable from
the foam results (Fig. 2a). This holds independent of the adhesion
parameter γ, as long as the system is rigid/solid (γ < γc). Thus,
it is not necessary to know the value of γ in order to classify the
MS energy of a tissue state. The slope M20 of (4) can be rational-
ized by analytically computing the energy change from elemen-
tary perturbations of the honeycomb lattice (see Supplementary
Information). Performing either one or two elementary T1 opera-
tions from this ground state, one obtains two different predictions
M(1)

20 ≈ 0.031 and M(2)
20 ≈ 0.045, respectively, which bracket the em-

pirical value of M20.

4 Polydisperse Systems

It is easy to convince oneself that knowing µ20 in a polydisperse
system is not sufficient to predict its energy (see Fig. 2e,f for a
counterexample). To generalize the theoretical approach to the
polydisperse case, we model foam energy as a functional of the
joint probability distribution p(n,A) of topologies and sizes. All
information about this distribution is contained in its moments
µi j

31. The 0th and 1st moments are trivial (µ00 = 1,µ01 = Ā =

1,µ10 = n̄ = 6). The simplest leading-order expansion of ε f is then
the linear combination

ε f = ε0 +M20µ20 +M11µ11 +M02µ02 . (5)
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Fig. 3 Linear theory of metastable state mechanical energy. a, Planar
energy landscape ε f (µ20,µ11) of binned foam simulation data of various
polydispersities, compared with the universal prediction ε th

f (gray plane)
from (8). b, Direct comparison of ε th

f with (ε f ,ε
∗
f ) simulation data from

individual foam, tissue, and spring system samples (red dashed line indi-
cates perfect agreement). c, The lowest and highest sample MS energies
from foam simulations (red and blue symbols, respectively) are well ap-
proximated by the estimates εmin

f , εmax
f (lines), even beyond the nominal

range of validity cA . 0.45.

Here, µ11 ≡ (1/N)∑i(ni− n̄)(Ai− Ā) is the covariance and µ02 the
area variance; we use cA = µ

1/2
02 as a handy polydispersity mea-

sure. We first observe that a MS with ni = 6 for all i (and thus
µ20 = 0, µ11 = 0) can be maintained up to a maximum polydis-
persity cmax

A ≈ 0.45, while leaving the honeycomb energy ε0 = 1
strictly invariant (see Supplementary Information). If (5) holds
for all states, M02 = 0 is thus required.

Figure 2d shows (for the example of cA = 0.4) that the simu-
lated MS occupy only a finite region in µ20− µ11 space, but the
variation of µ11 is a crucial factor co-determining the MS energy.

For large µ11, as in Fig. 2e, topologies and areas are matched and
the energy is relatively low, while a mismatch of ni and Ai leads to
much higher energy (Fig. 2f): to accommodate large ni for small
Ai or vice versa, cells must deform and increase their perimeters
and thus ε f .

To make progress in understanding both the boundaries of the
region of MS and the accompanying energies, we use a normal
approximation to the area distribution that in the ground state
yields an analytical prediction of µ20 = fgs(cA)

10. For the present
case of MS with variable µ20 at a given cA, we parametrize this
relation with an effective polydispersity x, i.e.,

µ20 = fgs(x) =
4

∑
n=1

(2n−1)erfc
[

β

x
(2n−1)

]
(6)

where β ≈ 0.206 is a constant. The maximum covariance (best
possible match of ni and Ai) follows explicitly,

µ
max
11 (x) = cA

4

∑
n=1

√
2
π

exp
[
−β 2

x2 (2n−1)2
]
, (7)

see the Supplementary Information for the steps of the deriva-
tion. As shown in Fig. 2d, the parametric equation (6), (7)
very accurately describes the region boundary µmax

11 (µ20), while
−µmax

11 is a lower bound. Furthermore, this relation implies that
at the energy minimum of the ground state (dε f =0, x=cA), we
have dµ20/dx = kdµmax

11 /dx with k = −1/(
√

2β ) ≈ −3.43. Extend-
ing the validity of the latter relation to the entire µ20 − µ11 re-
gion, it implies, together with (5), the very simple prediction
M11 = kM20 ≈−0.141.

5 A universal metastable state theory

Our ansatz has thus yielded a universal theoretical expression,
valid for all polydispersities cA . cmax

A , for the metastable state
energies of a foam,

ε
th
f = 1+0.041µ20−0.141µ11 . (8)

Checked against all foam data, the agreement is very good
(Fig. 3a), even for most samples with polydispersities beyond the
nominal range (Fig. 3b). Again, the energies εt from tissue simu-
lations with γ < γc, converted to ε∗f , agree with this formula to the
same degree of accuracy as the foams, and so do the simulations
using spring energy εs (Fig. 3b). The quality of agreement is also
unaffected by the value of the polydispersity.

Less extensive simulations tentatively support the validity for
other energy functionals, such as those including area elastic-
ity21,32. The approach will have to be modified, however, when
considering systems that, while not fluid, possess inherent activ-
ity that leads to fluctuations of shape and/or of the area fraction
of continuous phase33. Such structural changes will cause rear-
rangements in high-energy metastable states (which are likely to
have short-edge domain boundaries and very small energy barri-
ers19) and reduce the probability of their presence, altering the
statistics and restricting the accessible MS region of phase space.
Conversely, activity does not automatically invalidate the present
approach – in many biological tissues, contractility is important
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Fig. 4 Metastable states and loss of rigidity. a, Monodiperse tissue systems with γ = 0.13 (left) and γ = 0.17 (right) show degenerate ground states
(floppy mechanics, purple) with flat ε∗f (µ20) = ε∗f ,c (gray solid line). They coexist with metastable states (orange) conforming to the MS energy prediction
(red dashed line). b, Polydisperse systems with cA = 0.4 for the same γ values. The region of floppy states lies beyond the line ε∗f = ε∗f ,c (gray solid line)
and increases in size with γ; when γ ≥ γu ≈ 0.2, no metastable states remain.

in maintaining cell-cell contacts34.

The effect of activity or thermal excitation of MS near the
ground state is harder to evaluate, as a rigorous connection be-
tween inherent-state energies and energy barriers has not been
established in general. Recent studies of thermally excited vertex
and Voronoi models35 use a description of excitation energies by
spectra of collective vibrational modes, whose connection to the
current formalism using statistical moments would be interesting
to establish.

Further analytical predictions can be made from (8): The min-
imum (ground state) energy follows directly as

ε
min
f = 1+M20µ20(cA)−M11µ

max
11 (cA) , (9)

which Fig. 3c shows is an excellent estimate for the low-
est MS energies from simulations. Empirically, the ratio
εmax

f (cA)/εmin
f (cA)≈ 1.045 of maximum to minimum foam energy

found for the monodisperse case remains the same independent
of polydispersity (Fig. 3c). This same estimate of maximum en-
ergy, through (8), also provides a linear boundary to the region
of possible MS in the µ20 − µ11 plane; together with the other
phase boundaries, this estimate delineates the entire MS region
(Fig. 2d).

The region of all metastable states is thus analytically defined
as an area in µ20− µ11 space, and the foam or equivalent foam
energies of these states are well predicted by a linear relation
over that space. Actual energies of tissues or spring systems for
known energy functionals can be recovered from ε∗f , but even
if the functional is not known, the size-topology parameters µ20

and µ11 provide an excellent prediction for the relative position
of the system between the minimum and maximum possible MS
energies.

The relation (8) also provides a more general view of the loss-
of-rigidity transition in tissue systems: Both the criterion γ > γc for
floppy ground states9 and the equivalent p̄ > p̄c for the shape in-
dex p̄ = (1/N)∑i Pi/

√
Ai

7,36 are conditions on average perimeter
length, and thus equivalent foam energy. Under mild assumptions
of unimodality for the area distribution, we can therefore directly
translate the critical shape index into a critical equivalent foam

energy

ε
∗
f ,c(cA)≈ (1+ γ/2)cA(π/2)1/23−1/4

Γ(c−2
A +1/2)/Γ(c−2

A ) , (10)

see Supplementary Information. However, long perimeters and
thus large ε∗f values can also occur in the (more energetic, rigid)
metastable states. The MS energy prediction answers the ques-
tion whether states of high shape index are actually floppy: If (8)
predicts ε∗f < ε∗f ,c, but an actual perimeter measurement shows
ε∗f ≈ ε∗f ,c, the system is in a degenerate ground state. How-
ever, if ε∗f > ε∗f ,c is predicted in agreement with measurements,
the large shape index instead indicates a rigid high-energy MS.
This is illustrated for tissues with γ > γc in Fig. 4a (monodis-
perse) and b (cA = 0.4 polydisperse), respectively. The gray solid
lines are given by ε∗f = ε∗f ,c, separating the simulated floppy and
rigid states. Evidently, there exists a second critical γ = γu be-
yond which the set of degenerate ground states engulfs the entire
MS region. Setting ε∗max

f (cA) = ε∗f ,c(cA) implies a nearly constant
γu≈ 0.195...0.205 in the range cA≤ cmax

A . Beyond γu, tissue systems
are unconditionally floppy/fluid.

6 Conclusions

The present work quantifies the metastable-state mechanical en-
ergy of a wide variety of 2D cellular systems as a universal func-
tion of moments of the size-topology distribution. It thus gener-
alizes the unified use of size-topology correlations for the classi-
fication of ground states37 to include the entirety of MS, a much
larger state space. Remarkably, the universal MS energy (8) is a
formal analog to linear elasticity: it is a quadratic functional of
averaged "displacements" Ai− Ā and ni− n̄, evaluated locally at
each domain. Although changes between metastable states in-
volve the traversing of energy barriers and thus nonlinear and
dissipative processes, the eventual changes in µ20−µ11 space can
be described by linear moduli. Unlike classic elasticity, none of
the moduli are independent: The geometric constraints of space
filling restrict domain patterns so tightly that the relation can be
derived from the simplest of structural examples, and the con-
straints are so universally active that the simple linear expression
is accurate for the entirety of the MS space, independent of simu-
lation protocols and across widely different energy functionals.

The practical relevance of this simple relation is that mechani-
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cal energy values can be straightforwardly quantified from a snap-
shot of e.g. an emulsion, a superlattice domain material, or a bi-
ological tissue layer. Regions with more "unfavorable" statistics
indicate mechanical weakness; in biological tissues, the approach
could aid diagnostics of pathological or morphogenetic changes
that affect mechanical functionality, and thus advance our under-
standing of tissue development and therapy.
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