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The Comment on our paper introducing “a symmetric method to obtain shear moduli from
microrheology” proposes an interpolation method to generate oversampled data from an original time
series that are then used to approximate shear moduli at frequencies “beyond the Nyquist frequency.”
The author states that this can be done without the use of “preconceived fitting functions,” implying
that the results are unique and reliable. We disagree with these assertions. While it is possible to
generate reasonable looking transforms at frequencies above the Nyquist limit by interpolation, any
results obtained above the Nyquist limit will be questionable at best. Moreover, while the cubic
spline interpolation the author uses may be standard, it constitutes a particular “preconceived” fit
and produces oversampled data that are not unique.

PACS numbers:

The point of our recent paper [1] was to develop and
test a direct analysis method to extract the frequency-
dependent response of a soft material from the dis-
placement fluctuations of embedded probes, using the
Fluctuation-Dissipation Theorem. The application we
had in mind was to time-series such as those obtained
in microrheology experiments, such as those in Ref. [1]
and cited therein. We assumed that the data represent a
continuous time-dependent process that is sampled at a
fixed rate fs = 1/∆t, where ∆t is the sampling interval.
For such a sampling method, the Nyquist-Shannon the-
orem specifies the frequency fs/2 as the upper bound
of frequencies at which the corresponding frequency-
dependent transform can still be reliably determined. We
applied our method to both real and synthetic sampled
data to test its reliability within the range of frequencies
limited by the Nyquist-Shannon theorem.

In the Comment [2], the author proposes an exten-
sion of our method in Ref. [1] to determine the complex
shear modulus “beyond the Nyquist frequency.” For this,
the author uses spline fitting and interpolation of the
mean-squared displacement (MSD) to generate an over-
sampled data set, which is then analyzed. As with any
time series, it is always possible to artificially generate
an oversampled MSD with a higher sampling rate us-
ing some interpolation method. This typically results in
transformed quantities that appear well-behaved beyond
the fundamental Nyquist-Shannon limit. It is important
to note, however, that interpolation and oversampling
such as proposed in the Comment is not unique, mean-
ing that different results for the frequency regime above
the Nyquist-Shannon limit can all be consistent with the
same original sampled data. Fundamentally, one can
therefore not be sure that results obtained above the

Nyquist frequency are meaningful or reliable. In other
words, as the Comment author himself noted in the ear-
lier Ref. [3], “no real information exists above the Nyquist
frequency.” For this reason, we did not employ such over-
sampling.

We further argue that it is dangerous to rely on such
oversampling specifically in the context of microrheology,
which is frequently used to identify high-frequency relax-
ation mechanisms in soft matter systems. Rapid physical
relaxation mechanisms may be absent from time series
recorded at low frequencies. A good example of high
frequency effects is decreased compliance due to inertia,
which causes significant deviations from simple power law
behavior in the high-frequency response of viscoelastic
media [4]. Importantly, this effect is fully describable by
the linear response formalism we reviewed in Secs. 2.1-3
in Ref. [1], e.g., in the unsteady Stokes regime of a liquid,
even if the Stokes relation or its generalization (e.g., Eqs.
(3,4) in the Comment) are violated. Here, interpolation
of the kind proposed in the Comment would likely fail
to capture inertial effects that might lie just beyond the
Nyquist frequency, although it might still be useful in
suppressing aliasing effects.

Thus, while we agree with the Comment author that
oversampling can yield results over a frequency range
that exceeds the Nyquist frequency, we disagree that
oversampling delivers reliable results beyond this funda-
mental limit. Moreover, we disagree with the author that
his technique “does not need preconceived fitting func-
tions.” Beginning with an original data set obtained at
a finite sampling rate, there is no unique or universal
interpolation that can be used to unambiguously gener-
ate an extended, or oversampled data set. Interpolation
necessarily makes use of a “preconceived” function, such
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as the cubic spline used in the Comment. While such a
spline fit may be standard, it is not unique.

In addition to the proposed interpolation, the Com-
ment compares the results of our approach in Ref. [1] with
a similar transformation method from Ref. [3], as applied
to the oversampled data. Apart from some small differ-
ences at the highest frequencies, the author concludes
that both methods yield good approximations over the
range compared. For the reasons stated above, this com-
parison should only be made up to the Nyquist frequency.
As shown in the Comment, interpolation can be useful for
removing the most obvious artifacts arising from alias-
ing, such as the strong downturn in K ′ apparent Fig.
1 of the Comment (reproduced from Ref. [1]). But, as
shown in Ref. [1], this downturn was only apparent in
approximately the final factor of two in frequency near
the Nyquist limit, beyond which no reliable information
can be extracted. Thus, the advantage of interpolation
is limited and primarily cosmetic in our view.

Concerning the accuracy of the two approaches shown
in Fig. 2 of the Comment, we agree that the approach
in Ref. [3] appears to offer a wider range of data accu-
rate to 1%. We note, however, that this method exhibits
larger relative errors (approaching 10% in G′′) than our
approach does at the Nyquist frequency. Moreover, the
Comment shows that the relative error of the approach
in Ref. [3] systematically increases more rapidly with fre-
quency than the transform we employed in Ref. [1]. Thus,
while any comparison is likely to depend on the system
studied, it is unclear whether the method proposed in the
Comment delivers higher overall accuracy.

In the penultimate paragraph, the Comment mentions
a “discrepancy between the two outputs” and suggests
“possible coding/indexing issues” in the method we used.
We are not sure what discrepancy the author is referring
to here, since this note was preceded by a comparison
of our original figure (reproduced in the Comment as
Fig. 1) and the analysis of interpolated data. Obviously,
a difference is expected between interpolated and non-
interpolated data. If the discrepancy refers to the differ-
ence we observed between our method and the method
of Ref. [3], as applied to non-interpolated data, such a

difference is also to be expected since the algorithms are
different. We note that the Comment also reports a dif-
ference between these methods in Fig. 2. By writing
“when the analytical method introduced by Nishi et al.
is accurately implemented . . . ”, the author of the Com-
ment suggests that the algorithm in the Appendix of the
Comment corrects an error in our analysis. In order to
exclude that possibility, we have confirmed that our code
and that of the Appendix yield identical results for the
MSD data we used in our original Fig. 2 (Fig. 1 in the
Comment). We agree with the Comment that the initial
point of the MSD equals zero, and we use this fact.

Beyond our main concern over the reliability of the in-
terpolation proposed in the Comment, it is interesting to
note that the actual transformations used in Eqs. (13,14)
of Ref. [1] and Eq. (5) of the Comment differ in the order
of the time derivative of the MSD used. In Ref. [1], we use
a single time derivative, while Eq. (5) of the Comment
is based on the second derivative of the MSD. We ar-
gue that the former is simpler and more direct, although
we note that there can be an advantage of the second-
derivative approach of [3] for systems that are fluid-like
at long times. In this case the second derivative vanishes
at long times, while the first derivative does not. But
since the main goal of both Refs. [1] and [3] is to obtain
more accurate high-frequency moduli, the long-time or
low-frequency limit is of less importance. Moreover, in a
typical optical trapping-based microrheology experiment,
the probe particles tend to be physically confined, so that
the long-time dynamics of a fluctuating probe would be
regularized, even in a fluid.
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